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Introduction
Topological manifolds

Constructing a manifold from its transition
functions

Differentiable structures

1. Manifolds (with boundary)

1.1 Introduction
Most students of this course have met the differentiable manifolds in the previous years of their
undergraduate studies. In this chapter we will develop their theory, considering at the same time
complex manifolds and real manifolds with boundary. To be precise, we will mostly discuss the
slightly more complicated real case, where we need to consider boundaries, and give indications
on how to rewrite everything in the complex case.

Before setting the first formal definition, let us try to give some general ideas. A topological
manifold without boundary is a topological space which is locally euclidean: in other words
something which "locally" can’t be distinguished by Rn. The surface of a sphere, S2, is a typical
example: we know that the surface of the Earth is approximatively a sphere, locally we can’t
topologically distinguish a sphere from a plane and indeed our ancestors were convinced that the
Earth was flat.

We are interested in a slightly more general class of objects: a typical example is the closed
ball B3 = {(x,y,z) ∈ R3|x2 + y2 + z2 ≤ 1}.

B3 is not locally euclidean because of its boundary. Indeed, if we consider a point p ∈ B3 of
norm 1 there is no neighborhood of p (in the topology of B3) homeomorphic to an open set of
R3. To include B3 in our class of objects we need to modify the definitions to allow a boundary.

Note that B3 may be decomposed as disjoint union of its boundary ∂B3 and its interior
◦

B3 as
follows

◦
B3 := {(x,y,z) ∈ R3|x2 + y2 + z2 < 1}
∂B3 := {(x,y,z) ∈ R3|x2 + y2 + z2 = 1}.

We remark that
◦

B3 is a topological manifold without boundary (is an open set of R3!), and ∂B3

is the sphere S2 and therefore it is also a topological manifold without boundary, although of
different dimension. Similarly we will decompose every manifold with boundary as the disjoint
union of two manifolds without boundary: its interior and its boundary.

1.2 Topological manifolds
First, we introduce the model space in the real case.
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Notation 1.1. We will denote by Rn
+ the halfspace of the points of Rn whose last coordinate is

nonnegative:

Rn
+ = {(x1, . . . ,xn) ∈ Rn|xn ≥ 0}.

Similarly Rn
− = {(x1, . . . ,xn) ∈ Rn|xn ≤ 0}.

The symbol Rn
± means: Rn, Rn

+ or Rn
−.

A topological manifold with boundary (sometimes just topological manifold for short) of
dimension nnn is a topological space M which

• is locally homeomorphic to Rn
± (that is: ∀p ∈ M, ∃U open set containing p homeomorphic

to an open set of Rn, Rn
+ or Rn

−)1;
• is Hausdorff;
• admits a countable basis of open sets2.

Example 1.1 Every open set of Rn
± is a topological manifold with boundary.

Recall that an open covering of a topological space M is a family U : = {Ui}i∈I of open
sets of M with the property that

⋃
i∈I Ui = M. The first property in the definition of topological

manifold means that there is an open covering of M made by sets that are homeomorphic to open
subsets of Rn

±.

Example 1.2 The closed interval B1 := [−1,1]⊂ R is a topological manifold with boundary
of dimension 1. B1 is Hausdorff, and has a countable basis of open sets, so to prove our
statement we need only to construct a covering of M made of open sets homeomorphic to
open sets of e.g. R1

+ = [0,+∞). The easiest choice seems to be B1 =
[
−1, 1

2

)
∪
(
−1

2 ,1
]
.

Figure 1.1: The lattice Z2 ⊂ R2

1This is the key property. Unfortunately, this property is not enough to have something that locally "looks like" an
affine space, as shown by some of the examples in the Complement 1.2.2.

2Some authors remove this assumption too. It is equivalent to requiring the manifold to be embeddable in an affine
space (Whitney Embedding Theorem). Without this assumption, the theory becomes more complicated, because the
existence of the partitions of unity that we will later use may fail.
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Figure 1.2: To the left the square [0,1]× [0,1], to the right the torus

Example 1.3 — The torus. We consider the lattice Z2 of the points of R2 with integral
coefficients as in Figure 1.1. This is a subgroup with respect to the group structure of R2

given by the sum. The group quotient T:=R2/Z2 with the quotient topology is a topological
manifold, the torus.

In fact, see Figure 1.2, the square [0,1]× [0,1] maps surjectively to T , sending the 4
vertices to the same point. Moreover each edge is mapped to a circle through that point, and
parallel edges map to the same circle. The internal part of the square maps homeomorphically
to a dense open subset of T , the complement of the two circles.

Each translated of the internal square (a,a+1)× (b,b+1) maps homeomorphically on a
dense open subset of T . The reader can easily check that 4 of those squares are sufficient to
cover the torus.

Figure 1.3: A torus with a "hole"

Example 1.4 — The torus with a hole. Removing the image of a small open disc internal to
one of these squares, one obtains a topological manifold with boundary like in Figure 1.3.

Note that since we removed an open disc, the points in the boundary of that disc maps to
points of the manifold having a small neighbourhood homeomorphic to an open subset of
R2
+, but not homeomorphic to any open subset of R2. These points form the blue curve in the

picture.

Let M be a topological space. A chart (U,ϕ) on M is given by an open set U ⊂ M and a
homeomorphism ϕ : U → D, onto an open set D of Rn

±.
Note the analogy with the road maps, which are functions from a piece of the surface of the

Earth to a piece of paper.
A chart allows us to use the coordinates of Rn to identify a point of the mapped object (U),
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as when we see on a road map that "Rome is in E7". From now on we will denote by ui the i-th
coordinate function on Rn

ui : Rn → R
(w1, . . . ,wn) 7→ wi

Each chart {(U,ϕ)} induces local coordinates (x1, . . . ,xn) defined by

xi := ui ◦ϕ : U → R.

If you have traveled by car, you probably had to "move" from a map to another. For example,
using google maps, to compare the map on the screen of your device with the map on the screen
of the mobile phone of one of your friends.

To follow your path you need to find the coordinates, in both maps, of the same point, your
position in that moment.

Consider for example M = B1 = [−1,1]. Example 1.2 suggests two charts (U1,ϕ1) and
(U2,ϕ2) on B1:

U1 := [−1, 1
2), ϕ1 : [−1, 1

2)→ [0, 3
2) given by ϕ1(t) = t +1;

U2 := (−1
2 ,1], ϕ2 : (−1

2 ,1]→ [0, 3
2) given by ϕ2(t) = 1− t.

The point p = 1
4 ∈ B1 has “coordinates” (coordinate: B1 has dimension 1) 5

4 for (U1,ϕ1) and
3
4 for (U2,ϕ2).

How do the coordinates change? For every ordered pair of charts (Uα ,ϕα) and (Uβ ,ϕβ ) we
define the associated transition function

ϕβα := (ϕβ )|Uα∩Uβ
◦ (ϕα)

−1
|ϕα (Uα∩Uβ )

: ϕα(Uα ∩Uβ )→ ϕβ (Uα ∩Uβ )

Figure 1.4: The transition function ϕβα is defined only on the green region of Dα , mapping it
homeomorphically onto the green region of Dβ .
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In our example U1 ∩U2 =

(
−1

2 ,
1
2

)
and the transition functions ϕ21 and ϕ12 are easily

computed: ϕ21 = ϕ12 :
(1

2 ,
3
2

)
→
(1

2 ,
3
2

)
is given by ϕ21(t) = ϕ12(t) = 2− t. These functions

allow us to compute the coordinates of a point in one of the charts from the coordinates in the
other chart: ϕ21

(5
4

)
= 3

4 and ϕ12
(3

4

)
= 5

4 .
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Notation 1.2. The definition of ϕβα is heavy, because we had to restrict the domains of all
functions to be able to compose them.

From now on we will use the following convention. Let f and g be functions such that the
image of f and the domain of g do not coincide but are subsets of a "common universe". Then by
g◦ f we mean the composition of the restriction of f and g to the biggest possible subsets such
that the composition is possible.

With this convention, the definition "reduces" to the easier ϕβα := ϕβ ◦ϕ−1
α .

Similarly, if we write an inequality among two functions which do not share the same domain,
we mean that the two functions coincide on the points were both are defined.

By definition every topological manifold with boundary M may be covered by a set of charts
{(Uα ,ϕα)}α∈I; in other words U := {Uα}α∈I is an open covering of M.

Assume you have charts of the whole surface of the Earth, and some glue (I mean, anything
one can use to glue two sheets of paper). Then start gluing all your charts in such a way that two
points are glued if and only if they represent the same point on the Earth. You will end up with a
paper-made sphere: you have constructed something homeomorphic to the surface of the Earth,
and the drawings on it make the homeomorphism explicit.

Similarly, we can reconstruct any manifold (well, something homeomorphic to it), by taking
the images of the charts, and gluing them using the transition functions. This gives a very
concrete method to construct manifolds.

1.2.1 Constructing a manifold from its transition functions
Take a family {Dα}α∈I of open sets of Rn, Rn

+ or Rn
− and denote by N the topological space

obtained as disjoint union

N :=
∐
α∈I

Dα .

Give, for each pair α,β ∈ I, open subsets Dβα ⊂ Dα , Dαβ ⊂ Dβ , with Dαα = Dα for all α , and
a homeomorphism ϕβα : Dβα → Dαβ .

Assume that the set of functions ϕβα has the following properties (see Complement 1.2.3)
• ∀α ∈ I, ϕαα = IdDα

;
• ∀α,β ∈ I, ϕαβ = ϕ

−1
βα

;
• ∀α,β ,γ ∈ I, ϕαβ ◦ϕβγ = ϕαγ .
Then we say that xα ∈ Dα is equivalent to xβ ∈ Dβ if and only if ϕβα(xα) = xβ .

xα ∼ xβ ⇔ ϕβα(xα) = xβ

The reader should check that under the above assumptions the equivalence just defined is an
equivalence relation. Denote by M the quotient of N by this equivalence relation:

M := N/∼

In general, M is neither Hausdorff nor it admits a countable base of open sets. But if these
properties are verified, M is a topological manifold with boundary, and {(iα(Dα), i−1

α )}α∈I is a
set of charts covering M. Here iα : Dα → M is the composition of the inclusion of Dα in N with
the projection of N onto its quotient M.

Example 1.5 — A circumference. We apply the above method to construct a manifold.
Set I = {0,1}, so our family will be made of exactly two open sets.
Set D0 =R, D1 =R. These are then two distinct copies of R. To avoid misunderstandings

we will denote by x0 the natural coordinate of D0 and by x1 the natural coordinate of D1.
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Then set

D10 = D0 \{0}= {x0 ∈ D0|x0 ̸= 0} D01 = D1 \{0}= {x1 ∈ D1|x1 ̸= 0}

Then we choose the following transition functions

ϕ00 : D0 → D0 ϕ11 : D1 → D1

x0 7→ x0 x1 7→ x1

ϕ10 : D10 → D01 ϕ01 : D01 → D10

x0 7→
1
x0

x1 7→
1
x1

Complement 1.2.1 Show that the following topological spaces are topological manifolds
with boundary, by checking all the properties in the definition

• the open ball
◦

Bn:= {(x1, . . . ,xn) ∈ Rn|∑i x2
i < 1};

• the closed ball Bn := {(x1, . . . ,xn) ∈ Rn|∑i x2
i ≤ 1};

• the sphere Sn := {(x1, . . . ,xn) ∈ Rn|∑i x2
i = 1};

• the n−dimensional torus T n := Rn/∼ where the equivalence relation is the relation

(x1, . . . ,xn)∼ (y1, . . . ,yn)⇔∀i xi − yi ∈ Z.

People commonly write this as T n = Rn/Zn.

Complement 1.2.2 The following topological spaces are not topological manifolds with
boundary. Determine, for each of them, exactly which of the properties in the definition of
topological manifold with boundary fail.

• The cross {(x,y) ∈ R2|xy = 0,max(|x|, |y|) = 1};

• {(x,y) ∈ R2|x(x2 + y2 −1) = 0};

• The line with two origins R
∐

R/∼ where ∼ is defined as follows. We write by xi the
point in R

∐
R belonging to the i−th copy of R with coordinates x: so −11, 52, 31, 32,

01, 02 are six different points of R
∐

R. We say that xi ∼ y j if x = y ̸= 0; in other words
−11 ∼−12, 31 ∼ 32 but 01 ̸∼ 02.

• The closed long ray. If X is a totally ordered set, the order topology on X is a topology
whose basis is given by the open intervals (a,b) = {x|a < x < b}. Let ω1 be the first
uncountable ordinal ω1, with its well ordering. Consider the half-open interval [0,1)
with the standard ordering of the real numbers. Take their product ω1 × [0,1) with the
lexicographical order, and put the corresponding order topology on it.

Complement 1.2.3 Let {(Uα ,ϕα)}α∈I be charts on M. Show
• ∀α ∈ I, ϕαα = Id;

• ∀α,β ∈ I, ϕαβ = ϕ
−1
βα

;

• ∀α,β ,γ ∈ I, ϕαβ ◦ϕβγ = ϕαγ .
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Complement 1.2.4 Show that the equivalence relation in subsection 1.2.1 is an equivalence
relation on N since each of the properties in Complement 1.2.3 guarantees one of the properties
required by an equivalence relation: reflexivity, symmetry, transitivity.

Complement 1.2.5 Take a topological manifold with boundary M′, cover it with a set
of charts {(Uα ,ϕα)}α∈I . Consider the open sets Dα := ϕα(Uα) and the corresponding
transition functions ϕαβ . Note that we can apply to it the construction 1.2.1, to construct
a new topological space M. Construct a bijective map from M to M′, and show that it is a
homeomorphism.

Figure 1.5: More topological manifolds dominated by the square

Exercise 1.2.1 Figure 1.5 shows two ways to identify the opposite sides of a square that
are different from the identification presented in Figure 1.2. Show that both quotients are
topological manifolds by checking the properties of the definition.

Exercise 1.2.2 For which valuesa of (p,q) ∈ N2, is the (p,q)-cusp Γp,q := {(x,y) ∈ R2|xp =
yq} a topological manifold with boundary? Motivate your answer.

aHint: Look at the map t 7→ (tq, t p)

Exercise 1.2.3 Prove that the topological space N constructed in Example 1.5 is a topological
manifold homeomorphic to the circumference

S1 =
{
(u,v) ∈ R2|u2 + v2 = 1

}
Exercise 1.2.4 — The Blow Up of the real affine plane at the origin. Pick I = {0,1},
D0 ∼= D1 ∼= R2. To avoid confusion, ∀ j ∈ I we denote by (x j,y j) the coordinates of D j. Then
set

D10 =D0 \{x0 = 0} , D01 =D1 \{y1 = 0} .
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Figure 1.6: A picture of the blow up of the real affine plane at the origin

Consider the map ϕ10 : D10 → D01 defined by

ϕ10(x0,y0) =

(
x0y0,

1
x0

)
.

1. Show that ϕ10 is a homeomorphism by producing an explicit formula for its inverse.
2. Notice that there is a unique set of functions ϕβα as in subsection 1.2.1 containing the

given ϕ10 and use it to construct the manifold Bl0(R2) := (D0
∐

D1)/∼.
3. Verify that the functions Fj : D j → R2 defined as

F0(x0,y0) =(x0y0,y0) F1(x1,y1) =(x1,x1y1)
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fulfill F0 = F1 ◦ϕ10, and use that to extend both Fj to a function F : Bl0(R2)→ R2.
4. Show that F is continuous and that, ∀p ̸= 0, #F−1(p) = 1.
5. Showa that F−1(0)∼= S1 (so the point 0 has been “blown up” to a circumference).
aHint: pick any line l through the origin and compute explicitely F−1(l). Look at the result: does it allows

you to associate to l a point of f−1(0)? If so, this is a map from P1
R to F−1(0).

Exercise 1.2.5 — The Blow Up of the complex affine plane at the origin. Construct
a topological manifold Bl0(C2) of dimension 4 by substituting, in the construction of the
Exercise 1.2.4, D0 and D1 with two copies of C2 ∼= R4 and considering (x j,y j) as com-
plex coordinates. Construct an analogous continous map F : Bl0(C2)→ C2 and prove that
F−1(0)∼= S2.

1.3 Differentiable structures
First of all we need to introduce the class of functions we are working with.

Definition 1.3.1 — Smooth and holomorphic functions. Let U ⊂Rn, V ⊂Rm be open sets.
A function F : U →V is smooth if all its components have continuous partial derivatives of
all orders in U .

Similarly, if U ⊂ Cn and V ⊂ Cm are open, we will say that F : U →V is holomorphic
if all its components have continuous (complex) partial derivatives of all orders in U .

We will denote respectively by C∞(U) and O(U) the set of smooth and holomorphic
functions from an open subset U of Kn to K.

We note that C∞(U) and O(U) have a natural structure of K−algebra where K is respectively
R or C.

Despite the analogy in our definition, the reader should be aware that smooth functions and
holomorphic functions are very different. Standard complex analysis shows the holomorphic
functions are automatically analytic, so "rigid" in some sense. For example a holomorphic
function that vanishes on an open set will automatically vanish on any connected component of
its domain intersecting it. In contrast it is easy to build smooth functions not identically zero that
vanish on large open subsets, and they have a major role in the theory of differentiable manifolds.

We will see some occurrences of this phenomenon later on.
We extend the definition of smooth function from Rn to the other model spaces Rn

+ and Rn
−.

Definition 1.3.2 Let U be an open set of Rn
±. A function F : U → Rm is smooth if there is

an open set V ⊂ Rn with V ∩Rn
± =U and a smooth function G : V → Rm which extends F ,

i.e. such that G|U = F .

A function among manifolds induces many maps between open sets of Rn
± (resp. Cn)

by composing it with two charts, one from the domain manifold, one from the codomain
manifold. The natural idea for extending the definition of smooth (resp. holomorphic) function
to the category of manifolds is to declare a function smooth (resp. holomorphic) if all these
compositions are smooth (resp. holomorphic). To ensure that the identity is smooth (resp.
holomorphic), we need all transition functions to be smooth (resp. holomorphic), and this
motivates all the following definitions.

Definition 1.3.3 An atlas (resp. complex atlas) for a topological space M is a family of charts
{(Uα ,ϕα)}α∈I on M such that

⋃
α∈I Uα = M and all transition functions ϕαβ = ϕα ◦ϕ

−1
β

are
smooth (resp. holomorphic).
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Two atlases (resp. complex atlases) are equivalent if their union is an atlas (resp. complex
atlas). A differentiable structure (resp. complex structure) on M is an equivalence class of
atlases for M.

A real manifold with boundary (resp. complex manifold; in both cases we will
sometimes just say manifold for short) is given by a topological manifold with boundary M
and a differentiable structure (resp. complex structure) on it.

The maximal atlas of a manifold is the union of all the atlases in the differentiable
structure (resp. complex structure.

A chart (V,ψ) is compatible with an atlas (resp. complex atlas) {(Uα ,ϕα)}α∈I if
{(Uα ,ϕα)}α∈I ∪{(V,ψ)} is still an atlas (resp. complex atlas).

Note that the maximal atlas of a manifold is an atlas in its differentiable or complex structure.
A maximal atlas is obtained by any other atlas in its differentiable (resp. complex) structure by
adding all charts compatible with it.

Usually one uses a small atlas to determine the differentiable (or complex) structure. For
example the two charts for B1 in the previous section form an atlas and therefore determine a
differentiable structure. However, once the differentiable structure is determined, we can use any
compatible charts for our computations. So, in the example, we may also use, if convenient, the
compatible chart given by the open set (−1,1) with map given by its natural inclusion in R.

Example 1.6 Rn, Sn, Bn and Rn
+ are real manifolds. For example, the atlas {(Ui,ϕi)}i∈{1,2}

for B1 = [−1,1] described in the last section gives a differentiable structure on it, since the
transition functions are smooth.

Example 1.7 Consider the topological torus, the topological manifold in Example 1.3. The
transition functions of the atlas given there are translations, and therefore smooth. This gives
a differentiable structure on the torus, making it a differentiable manifold of dimension 2.

Identifying R2 with the set of the complex numbers C, we can see the topological torus
as the group quotient C/{a+bi|a,b ∈ Z}, a complex manifold of dimension 1.

Definition 1.3.4 — The projective space of a vector space. Let V be a vector space over
a field K. Then

P(V ) := (V \{0})/∼

where the equivalence relation is the relation

x ∼ y ⇔∃λ ∈K, λ ̸= 0, such that x = λy.

Note that P(V ) can be naturally identified with the set of the 1−dimensional subspaces of V .
If dimV is finite and K = R or C, it is easy to give a structure of real (resp. complex)

manifold over P(V ) of dimension dimV −1 by fixing a basis of V .

We write the charts explicitly for V = Rn+1 in the example below.

Example 1.8 The n−dimensional real projective space is Pn
R := P(Rn+1).

We say that a point p ∈ Pn
R has homogeneous coordinates (x0 : x1 : · · · : xn) if p is the

class of the point (x0,x1, . . . ,xn) ∈ Rn+1.
Note that every point can be represented by infinitely many different homogeneous

coordinates, pairwise related by the multiplication by a scalar. However
1. The open set U j := {x j ̸= 0} is well defineda for all j.
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2. The maps ϕ j : U j → Rn defined via

ϕ j(x0 : x1 : · · · : xn) =

(
x0

x j
, · · · ,

x j−1

x j
,
x j+1

x j
, · · · , xn

x j

)
are well defined.

3. {(U j,ϕ j)} j∈{0,...,n} is an atlas for Pn
R.

Note that the complement H j := {x j = 0} of U j (a reference hyperplane) is naturally
homeomorphic to Pn−1

R .

aNotice that e.g. the set {x j ̸= 1} is not well defined.

R Since the sphere Sn ⊂Rn+1 intersects each 1−dimensional subspace in two opposite points,
Pn
R = Sn/∼ where the equivalence relation is the relation x ∼ y ⇔ x =±y.

Example 1.9 The n−dimensional complex projective space is Pn
C := P

(
Cn+1

)
.

It is a complex manifold of dimension n with homogeneous coordinates (x0 : x1 : · · · : xn),
reference hyperplanes H j and atlas {(U j,ϕ j)}0,...,n analogous to those given in Example 1.8.

The complex analogous of the previous remark showing Pn
R as a quotient of Sn is the Hopf

fibration S2n+1 → Pn
C. We will discuss in the Example 3.4 the case n = 1.

Note that every holomorphic function among open sets of Cn and Cm can be seen as a smooth
function among open sets of R2n and R2m. Therefore, every complex manifold has an underlying
structure of real manifold, obtained by considering only the real structure of the codomains of its
charts. In particular, Pn

C is also a real manifold of dimension 2n.
The n−dimensional projective spaces parametrize the 1−dimensional vector subspaces

of a vector space V . The Grassmann manifolds are the natural generalization of this idea,
parametrizing vector subspaces of fixed dimension.

Definition 1.3.5 — The Grassmann manifolds. Let V be a vector space over a field K. Then

Gr(k,V ) := { vector subspaces W ⊂V |dimW = k}

is the Grassmann manifold of the k−subspaces of V . Note that P(V ) can be naturally
identified with Gr(1,V ).

We seta GrK(k,n) := GrK(k,Kn), so Pn
R resp. Pn

C is identified with GrR(1,n+1) (resp.
GrC(1,n+1)).

If dimV is finite and K = R or C, we can extend the structures given to the real and
complex projective spaces to give a structure of real resp. complex manifold to all GrK(k,V ).

aSome authors use GrK(k,n) for the set of the k−dimensional linear subspaces of the projective space Pn
K.

The linear subspaces of dimension k of Pn
K are (by definition) the images of the vector subspaces of dimension

k+1 of Kn+1. So their Gr(k,n) correspond to our Gr(k+1,n+1).

R By Exercise 5.1.14 Gr(q,V ) may also be interpreted as the subset of P(ΛqV ) corresponding
to the tensors of the form v1 ∧·· ·∧ vq.

We do an explicit example.

Example 1.10 — The Grassmann manifolds. Let Wk,n be the set of the k×n matrices of
maximal rank k. It is an open subset of Mk,n(K), the set of all k×n matrices, isomorphic to
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Kkn. Each matrix A ∈Wk,n determines a point HA ∈ GrK(k,n), the subspace generated by its
rows, thus defining a surjective map

Φk,n : Wk,n → GrK(k,n).

Moreover HA = HB if and only if there is an invertible matrix C ∈ GLk(K) such that A =CB.
In other words, Φk,n is the quotient by the left action of GLk(K) on Wk,n, identifying its

orbits with the Grassmannian GrK(k,n).
We give a differentiable (or complex) structure on GrK(k,n) via charts that are (partial)

right inverses of Φk,n as follows.
Let D1,...,k ⊂ GrK(k,n) be the subset of the matrices whose left k× k submatrix is the

identity, i.e. the matrices of the form
1 0 · · · 0 m1,k+1 · · · m1,n
0 1 · · · 0 m2,k+1 · · · m2,n
...

...
...

...
...

0 0 · · · 1 mk,k+1 · · · mk,n


Notice D1,...,k ∼= Kk(n−k). Notice moreover that the restriction (Φk,n)|D1,...,k is injective, so
setting U1,...,k := Φk,n(D1,...,k) its inverse gives a map

ϕ1,··· ,k : U1,...,k → D1,...,k ∼=Kk(n−k)

thus giving the first chart (U1,...,k,ϕ1,··· ,k).
Similarly, for all 1 ≤ j1 ≨ · · · ≨ jk ≤ n we consider the subset D j1,..., jk ⊂ GrK(k,n)

of the matrices containing the identity as the submatrix given by the columns j1, . . . , jk
and U j1,..., jk := Φk,n(D j1,..., jk). We get a chart (U j1,..., jk ,ϕ j1,··· , jk) by defining ϕ j1,··· , jk :=
((Φk,n)|D1,...,k)

−1. Then{
(U j1,..., jk ,ϕ j1,··· , jk)|1 ≤ j1 ≨ · · ·≨ jk ≤ n

}
gives a differentiable or complex structure (depending on K) on GrK(k,n).

We may finally introduce the smooth (resp. holomorphic) functions. Note that the assumption
that all transition functions are smooth (resp. holomorphic) is crucial, as it makes the definition
of smoothness of f in p independent of the choice of the charts.

Definition 1.3.6 Let M be a manifold with atlas {(Uα ,ϕα)}α∈I and N a manifold with atlas
{(Vβ ,ψβ )}β∈I .

A function F : M → N is smooth (resp. holomorphic) in a point ppp∈ M if, given a chart
(Uα ,ϕα) with p ∈ Uα , and a chart (Vβ ,ψβ ) with F(p) ∈ Vβ , the function ψβ ◦F ◦ϕ−1

α is
smooth (resp. holomorphic) in ϕα(p).

A function F : M → N is smooth (resp. holomorphic) if it is smooth (resp. holomorphic)
in every point p ∈ M.

Definition 1.3.7 A diffeomorphism is an invertible smooth function whose inverse is smooth.
A biholomorphism is an invertible holomorphic function whose inverse is holomorphic.

Two open sets U and V are diffeomorphic, respectively biholomorphic, if there exists a
diffeomorphism, respectively biholomorphism, F : U →V .
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Example 1.11 Let A be an invertible matrix with real coefficients.
Then (see Exercise 1.3.5 for more details) A defines a diffeomorphism from Pn−1

R to
itself, mapping a point with homogeneous coordinates v (as column vector) to the point with
homogeneous coordinates Av.

Similarly an invertible matrix with complex coefficients define a biholomorphism from
Pn−1
C to itself.

Notice that there is natural diffeomorphism between GrR(1,n) and Pn−1
R and a natural

biholomorphism between GrC(1,n) and Pn−1
C .

Example 1.12 Let M be a manifold, ϕ : U →Kn
± a chart, D := ϕ(U).

Then U and D are open sets of the manifolds M and Kn
±, and therefore they have a natural

structure of manifold (see Complement 1.3.3): an atlas for U is given by the single chart
ϕ : U → Kn

±; the differential structure of D has an atlas given also by a single chart, the
inclusion i : D ↪→Kn

±.
Then we can consider ϕ as function among two manifolds. It is easy to check that it is a

diffeomorphism.

An important case is given by the smooth (resp. holomorphic) functions from a manifold M
to K. In the real case denote it by

C∞(M) := { f : M → R| f is smooth}.

In the complex case the standard notation is O(M). Note that it is a real (resp. complex) vector
space, with the operations induced by those of the codomain R (resp. C).

Example 1.13 Let M be a manifold, ϕ : U → D ⊂Kn
± a chart. Consider the local coordinates

xi := ui ◦ϕ . Then xi ∈C∞(U) (resp. O(U)).

R This course will never consider two different differentiable structure on the same topologi-
cal manifold, but the student should be aware that it is possible.
It is indeed easy to construct two different differentiable structures on S2, but one can prove
(although this is not always easy) that the two resulting manifolds are diffeomorphic. Note
that the diffeomorphisms will not be the identity: if we consider two different differentiable
structures on the domain and on the codomain, the identity map is not smooth!
The situation in higher dimension is more complicated. Kervaire and Milnor constructed 28
different differentiable structures of S7, which give 28 differentiable manifolds which are
pairwise not diffeomorphic. In this course we are going to consider only one differentiable
structure on each sphere Sk; we just mention that all other differentiable structures are
referred to in the literature as exotic spheres.
Fintushel and Stern proved that a certain topological manifold of dimension 4, the Kummer
4-fold, admits at least a countable number of pairwise not diffeomorphic differentiable
structures. We will not further investigate this problem in these lectures.
From this point of view the complex case is simpler, since it is not difficult to construct
infinitely many pairwise not biholomorphic complex structures on S1 ×S1, but we will not
show this in these lectures.

Complement 1.3.1 Put a differentiable structure on each of the topological manifolds of
Complement 1.2.1

Complement 1.3.2 Put two different differentiable structures on R such that the two result-
ing manifolds are diffeomorphic and contruct the diffeomorphism between them.
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Complement 1.3.3 Let M be a manifold. Prove that every open subset U ⊂ M has a natural
induced differentiable structure.

Exercise 1.3.1 Write an explicit atlas for S1 formed by two charts obtained considering the
stereographic projections S1 \P → R where P is either the north pole (0,1) or the south pole
(0,−1). Write all the transition functions and show that they provide a differentiable structure
on S1.

Exercise 1.3.2 Write an explicit atlas for S2 formed by two charts obtained considering the
stereographic projections S2 \P → R2 where P is either the north pole (0,0,1) or the south
pole (0,0,−1). Write all the transition functions and show that they provide a differentiable
structure on S2.

Now consider your charts as complex charts identifying R2 with C in the natural way.
Find a suitable (as simple as possible) modification of these charts giving a complex atlas for
S2.

Exercise 1.3.3 Show that the complex projective line P1
C is diffeomorphic as a real manifold

to the sphere S2 with the differentiable structure of Exercise 1.3.2.

Exercise 1.3.4 Let M, N be two real (resp. complex) manifolds, and assume ∂M = /0. Then
show that M×N has a natural induced real (resp. complex) structure, by constructing an atlas
for M×N using an atlas of M and an atlas of N. What goes wrong if both manifolds have a
boundary?

Exercise 1.3.5 — Projectivities. Fix a field K ∈ {R,C}, and consider a square matrix
A ∈ Mn+1(K). We wish to associate to A a map ϕA : Pn

K → Pn
K such that

A


x0
x1
...

xn

=


y0
y1
...

yn

=⇒ ϕA(x0,x1, . . . ,xn) = (y0,y1, . . . ,yn).

1. Show that ϕA is a well defined if and only if A is invertible.
2. Show that ϕA is the identity map if and only if A is a multiple of the identity matrix.

In particular, since the multiples of the identity matrix form a normal (in fact central)
subgroup of GLn(K), this defines a faithful action of the quotient

PGLn(K) := GLn(K)/K∗

on Pn
K.

3. Show that every element of PGLn(R) (respectively PGLn(C)) is a diffeomorphism
(respectively biholomorphism) of Pn

R (respectively Pn
C) .

Exercise 1.3.6 Consider the standard complex torus, the complex manifold of dimension 1
in Example 1.7, the group quotient C/{a+bi|a,b ∈ Z}.
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Show that for every complex number λ the map

[z] 7→ [z+λ ]

is a biholomorphism of the complex torus to itself. Show that it is the identity if and only if λ

has integral both the real and the imaginary part.
Finally, show that in all other cases, it has no fixed points.

Exercise 1.3.7 Consider the standard complex torus.
Show that, given a complex number λ , the map

[z] 7→ [z ·λ ]

is well defined if and only if λ has integral both the real and the imaginary part.
Determine all λ ∈C for which the above map is not constant. Show that they give exactly

four maps. Show that they are biholomorphisms and compute the number of fixed points of
each of them.

Exercise 1.3.8 Construct a differentiable structure on each of the two topological manifolds
constructed in Exercise 1.2.1.

Find out which one is diffeomorphic to P2
R.

Exercise 1.3.9 Let M be a manifold, and let (U,ϕ) be a chart on it, D = ϕ(U). Then by
Complement 1.3.3 both U and D are manifolds with the differentiable structure respectively
induced by M and by Rn

+. Show that ϕ is a diffeomorphism among them.

Exercise 1.3.10 Prove that if G : M → N and F : N → N′ are smooth, then also F ◦G : M →
N′ is smooth.
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2. Tangent vectors and differentials

2.1 Tangent spaces

We start introducing germs

Definition 2.1.1 — Germs of smooth or holomorphic functions. Let p be a point in the
real or complex manifold M.

If K = R we consider for each open subset U ⊂ M the space of the smooth functions
C∞(U) = { f : U → R} and the space

Ep := { f ∈C∞(U)|U is open and p ∈U}/∼

where the equivalence relation is the following: two functions f ,g are equivalent if there
exists an open set W ∋ p contained in the domain of both functions such that f|W = g|W . An
equivalence class for this relation is a germ of smooth function at p. Ep is the stalk at ppp of
the sheaf of smooth functions.

If K= C we consider the stalk at p of the sheaf of holomorphic functions

Op := { f : U → C holomorphic |U is open and p ∈U}/∼

with the analogous equivalence relation.

The set Ep is an R-algebra with the following operations.
sum: Given two germs α , β in Ep we define their sum α +β ∈ Ep as follows.
We choose two representatives f , g such that α is the germ of f and β is the germ of g. So
f ∈C∞(U), g ∈C∞(V ) for some open sets U,V ⊂ Rn containing p. Then their common
domain W :=U ∩V is an open set containing p and we define the sum of α and β as the
germ of the sum of the restriction of the representatives to W :

α +β =
[

f|W +g|W
]

This operation is well defined since, if f̃ and g̃ are different representatives respectively of
α and β with common domain W̃ , then f|W +g|W and f|W̃ +g|W̃ coincide on W ∩W̃ and

therefore
[

f|W +g|W
]
=
[

f|W̃ +g|W̃
]
.

product: Given two germs α , β in Ep we define their product αβ ∈ Ep in a similar way
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by using the product of functions instead of the sum of functions

αβ =
[

f|W ·g|W
]

The same argument as in the sum shows that product is also well defined.
product by a scalar: Given a scalar λ ∈K and a germ α in Ep we define their product
λα ∈ Ep as the germ of the function λ f for any representative f ∈C∞ of α . The operation
is well defined since the germ λα does not depend on the choice of the representative f .

The analogous definitions in the complex case furnish Op of a C-algebra structure.
We alert the reader that from now we will often use a letter, such as f or g, for germs as well

as for functions.
Note that, given a germ f ∈ Ep or Op, f (p) ∈K is well defined since all the functions in the

same equivalence class have the same value at p. This is important in the next definition. On the
contrary, ∀q ̸= p, f (q) is not well defined.

Definition 2.1.2 — Tangent vectors. A tangent vector or derivation at p is a linear
application v : Ep → R (in the real case) or v : Op → C (in the complex case) such that for
each pair of germs ( f ,g) the Leibniz rule

v( f g) = f (p)v(g)+g(p)v( f )

holds.
The tangent space of M at p is the K-vector space TpM formed by the derivations at p

with the operations defined by
sum: For each pair (v,w) of derivations at p we define their sum v+w by imposing
that, for all f ∈ Ep, (v+w)( f ) = v( f )+w( f ).
product by a scalar: For each scalar λ ∈K and for each derivation v at p we define
λv by imposing, for each germ f , (λv)( f ) = λv( f ).

We leave to the reader the (easy) check that v+w and λv are derivations.

R Recall that if U is an open subset of a manifold M, it has a natural induced differentiable
structure by Complement 1.3.3. If p is a point of U , the spaces of germs Ep, if p is
considered as a point of U or of M, are naturally canonically isomorphic. So in the
following we will identify them. Consequently, we can and will identify TpU and TpM.

The first example of derivation comes from the partial derivatives in Kn. If two functions
f ,g : Kn → K coincide in a neighborhood of a point p, then for each i between 1 and n their
partial derivatives ∂ f

∂xi
coincide also in the same neighborhood. In particular there is a function(

∂

∂xi

)
p

: Ep → R

(
(

∂

∂xi

)
p

: Op → C in the complex case) well defined by the expression(
∂

∂xi

)
p
([ f ]) =

∂ f
∂xi

(p)

The reader should not find it difficult to verify that all
(

∂

∂xi

)
p

are derivations. We will in fact

prove that they form a basis of TpKn.
We need the following lemma
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Lemma 2.1.3 Consider an open subset U ⊂ Rn, a function f ∈ C∞(U) and a point p ∈ U .
Then there exists an open subset W ⊂ U containing p and functions fi ∈ C∞(W ) such that
fi(p) =

(
∂

∂xi

)
p
([ f ]) and

∀p′ ∈W f (p′) = f (p)+
n

∑
1
(xi(p′)− xi(p)) fi(p′)

The analogous statement obtained by replacing R by C and C∞ by O holds as well.

Proof. We choose W = Bδ (p), the ball of radius δ centered at p with δ small enough to
ensure W ⊂ U . Having fixed p′ ∈ W we consider the straight path γ : [0,1] → W defined by
γ(t) = p+ t(p′− p) connecting p and p′. By the Fundamental Theorem of Calculus and the
Chain Rule

f (p′)− f (p) = ( f ◦ γ)(1)− ( f ◦ γ)(0) =
∫ 1

0
( f ◦ γ)′(t)dt =

=
∫ 1

0

n

∑
i=1

∂ f
∂xi

(γ(t))(xi ◦ γ)′(t)dt =
∫ 1

0

n

∑
i=1

∂ f
∂xi

(γ(t))(xi(p′)− xi(p))dt

Then we define, for each i, the function fi ∈C∞(W ) by

fi(p′) =
∫ 1

0

∂ f
∂xi

(p+ t(p′− p))dt

and deduce

f (p′)− f (p) =
n

∑
1

fi(p′)(xi(p′)− xi(p))

The stated expression for fi(p) is an obvious consequence of the definition of fi. ■

Now we can prove

Theorem 2.1.4 The set
{(

∂

∂xi

)
p
|1 ≤ i ≤ n

}
is a basis for TpKn. In particular dimTpKn = n.

Proof. We need to prove that the vectors
(

∂

∂xi

)
p

are linearly independent and generate TpKn.

The linear independence is easy. Assume that ∑i ai

(
∂

∂xi

)
p
= 0. Then by evaluating this

expression at every coordinate function x j we obtain

0 =

(
∑

i
ai

(
∂

∂xi

)
p

)
(x j) = ∑

i
ai

(
∂x j

∂xi

)
p
= a j

and the linear independence is proved.
To prove generation, pick any v ∈ TpKn.
First we notice that v vanishes at the germ of any constant function. In fact

v([1]) = v([1] · [1]) = 1 · v([1])+1 · v([1]) = 2v([1])⇒ v([1]) = 0

and then v([c]) = cv([1]) = 0 for any constant c ∈K as well.
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By Lemma 2.1.3, for the germ of any smooth function f ,

[ f ] = f (p)[1]+
n

∑
i=1

([xi]− [xi(p)])[ fi]

and then

v([ f ]) =
n

∑
1

fi(p)v([xi]− [xi(p)]) =
n

∑
1

(
∂

∂xi

)
p
([ f ])v([xi])

so

v =
n

∑
1

v([xi])

(
∂

∂xi

)
p

and the proof is complete. ■

The same proof show the analogous statement for TpRn
±.

Note that TpRn
+
∼= Rn even when p lies on the boundary {xn = 0}: a common mistake is to

consider only half of it.
We will extend this result to general manifolds in the next section.

Exercise 2.1.1 Define the germs of the Cr functions analogously to the definition of germs
of C∞ functions and determine if it has a natural structure of R−algebra.

Exercise 2.1.2 In the definition of Ep can we simplify the equivalence relation as follows?
We could say that f ∼ g if and only if f and g and all their first partial derivatives have

the same values at p.
Is that equivalent to the definition we gave? Is that an equivalence relation? Is there an

R−algebra structure on the quotient?

2.2 The differential of a function
The main tool of this section is the differential of a function.

Definition 2.2.1 Let F : M → N be a smooth (resp. holomorphic) function among real (resp.
complex) manifolds.

The differential of F in a point p ∈ U is the linear application dFp : TpM → TF(p)N
defined by

dFp(v)( f ) = v( f ◦F).

for all f ∈ EF(p) respectively OF(p).

Here by f ◦F we mean the germ at p of the composition of any representative of f with F .
We leave to the reader to check the consistency of the definition of dFp. In other words

the reader should show that our definition of f ◦F ∈ EFp does not depend on the choice of the
representative of the germ f , then that v( f ◦F) defines a derivation at F(p), so that we defined a
map dFp : TpM → TF(p)N . Then he/she should prove that dFp is linear.

The following general version of the Chain Rule holds.
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Proposition 2.2.2 — Chain Rule. Given two smooth/holomorphic functions F : N → N′,
G : M → N and a point p ∈ M, then

d(F ◦G)p = dFG(p) ◦dGp

Proof. For all v ∈ TpM, for all f ∈ EF(G(p)),

(dFG(p) ◦dGp)(v)( f ) = (dFG(p)(dGp(v))( f ) =

= dGp(v)( f ◦F) = v( f ◦F ◦G) = d(F ◦G)p(v)( f )

■

The differential of a diffeomorphism (respectively biholomorphism) at a point p of the
domain is automatically invertible. In fact, if F : M → N is a diffeomorphism, there is a smooth
function F−1 : N → M and by Proposition 2.2.2

F−1 ◦F = IdM ⇒ d(F−1)F(p) ◦dFp =(d IdM)p = IdTpM

F ◦F−1 = IdN ⇒ dFp ◦d(F−1)F(p) =(d IdN)F(p) = IdTF(p)N

showing that dFp is an isomorphism by exhibiting an inverse of it:

(dFp)
−1 = d(F−1)F(p)

It follows that if F : M → N is a diffeomorphism then dFp is an isomorphism between the
vector spaces TpM and TF(p)N.

Since the charts are diffeomorphisms, we can use them to give bases of the tangent spaces.

Definition 2.2.3 Let M be a manifold, p ∈ M, (U,ϕ) a chart of MMM in ppp, i.e. a chart in
the differentiable structure such that p ∈ U . Let u1, . . . ,un be the coordinate functions of
ϕ(U)⊂ Rn. Then we define(

∂

∂xi

)
p

:= d(ϕ−1)ϕ(p)

(
∂

∂ui

)
ϕ(p)

.

It follows

Theorem 2.2.4 The set
{(

∂

∂xi

)
p
|1 ≤ i ≤ n

}
is a basis for TpM. In particular dimTpM =

dimM.

Note that
(

∂

∂xi

)
p

: Ep → R is by definition given by

∂ f
∂xi

(p) :=
(

∂

∂xi

)
p

f =
(

∂

∂ui

)
ϕ(p)

( f ◦ϕ
−1) =

∂ ( f ◦ϕ−1)

∂ui
(ϕ(p)).

Why did we choose the notation ∂

∂xi
? Recall the local coordinates introduced in the Example

1.13: the chart (U,ϕ) induces coordinates x1, . . . ,xn on U by xi := ui ◦ϕ .
Then1(

∂

∂xi

)
p
(x j) =

(
∂

∂ui

)
p
(x j ◦ϕ

−1) =

(
∂

∂ui

)
p
(u j) = δi j.

1Here we use the usual Kronecker symbol: δi j equals 1 if i = j, whereas it vanishes if i ̸= j.
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We are now able to compute ∂ f
∂xi

(p) for every function f ∈C∞(U) which we can explicitly
write "in coordinates near p".

This means, given a function, we choose a chart (U,ϕ) in p and consider the induced
coordinates x1, . . . ,xn. If we can express f as combination of the xi, since

(
∂

∂xi

)
p

is a derivation(
∂

∂xi

)
p

x j = δi j we can compute
(

∂

∂xi

)
p

f formally as if xi were coordinates in Rn. For example,

if f = x2
1x2, then(

∂

∂x1

)
p

f =(2x1x2)(p),
(

∂

∂x2

)
p

f =x2
1(p).

By linearity, once we have fixed bases of TpKn and TF(p)Km, we can describe dFp by the
corresponding matrix.

Definition 2.2.5 Let U ⊂ Kn, V ⊂ Km be open sets, and let F : U → V be a smooth (or
holomorphic) function. Let p ∈U .

The Jacobi matrix of F at p is the matrix having as (i, j)-entry (ithth row and jth column)
the partial derivative of the ith component Fi := yi ◦F of F with respect to the jth coordinate,
computed at p:

(
∂

∂x j

)
p

Fi.

Proposition 2.2.6 Let U ⊂ Kn, V ⊂ Km be open sets, and consider a smooth/holomorphic
function F : U →V . We will use coordinates x1, . . . ,xn on U and coordinates y1, . . . ,ym on V .

Fix a point p ∈U . Then dFp is represented, with respect to the bases{(
∂

∂x1

)
p
, . . . ,

(
∂

∂xn

)
p

}
and

{(
∂

∂y1

)
F(p)

, . . . ,

(
∂

∂ym

)
F(p)

}

by the Jacobi matrix of F computed in p.

Proof. We denote by Mi, j the (i, j)-entry of the matrix of dFp in the given bases. By definition

dFp

(
∂

∂x j

)
p
= ∑

i
Mi, j

(
∂

∂yi

)
F(p)

,

and therefore

Mi, j = ∑
k

Mk, j

(
∂

∂yk

)
F(p)

(yi) = dFp

(
∂

∂x j

)
p
(yi) =

(
∂

∂x j

)
p
(yi ◦F)

and the proof is complete. ■

Now that we have given bases to every TpM, so we can associate a matrix to every dFp. The
matrix can be computed by exactly the same method used for Proposition 2.2.6. The result is the
following.

Proposition 2.2.7 Let M and N be manifolds of respective dimensions n and m, and let
F : M → N be a smooth function. Let p ∈ M. Choose charts (U,ϕ) in p for M and (V,ψ) in
F(p) for N, and the respective associated local coordinates x1, . . . ,xn and y1, . . . ,ym.

Then the matrix associated to the linear application dFp with respect to the bases{(
∂

∂x1

)
p
, . . . ,

(
∂

∂xn

)
p

}
and

{(
∂

∂y1

)
F(p)

, . . . ,

(
∂

∂ym

)
F(p)

}
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is the Jacobi matrix of ψ ◦F ◦ϕ−1 computed in ϕ(p). Equivalently, it is the matrix((
∂

∂x j

)
p
(yi ◦F)

)
=

((
∂

∂x j

)
p

Fi

)

Proof. In a neighborhood of p, F =ψ−1◦(ψ ◦F ◦ϕ−1)◦ϕ and therefore dFp = d(ψ−1)ψ(F(p))◦
d(ψ ◦F ◦ϕ−1)ϕ(p) ◦dϕp.

Therefore the matrix we are looking for equals the product of matrices M1M2M3 where

• M1 is the matrix of d(ψ−1)ψ(F(p)) with respect to the bases
{(

∂

∂ui

)
ψ(F(p))

}
and

{(
∂

∂yi

)
F(p)

}
;

• M2 is the matrix of d(ψ ◦F ◦ϕ−1)ϕ(p) with respect to
{(

∂

∂ui

)
ϕ(p)

}
and

{(
∂

∂ui

)
ψ(F(p))

}
;

• M3 is the matrix of dϕp with respect to
{(

∂

∂xi

)
p

}
and

{(
∂

∂ui

)
ϕ(p)

}
;

By Definition 2.2.3, M1 and M3 are both identity matrices (resp. m×m and n× n), and
therefore the matrix we are looking for equals M2, which was computed in Proposition 2.2.6. ■

Now we can give an answer to the following natural question. Why do we call derivations
also "tangent vectors"? Tangent to what? Here is an answer by a simple example.

Consider a connected open subset J ⊂ K containing 0 and a smooth/holomorphic map (a
path)

γ : J →Km

This induces a derivation γ∗ in Tγ(0)Km, the velocity of γ as follows. To ease the notation we
write here only the real case.

For every germ f ∈ Eγ(0) we define

γ∗( f ) =
d( f ◦ γ)

dt
(0)

Here in the right-hand term we are denoting by t the standard coordinate in K and implicitly
replacing the germ f with one of its representatives: it is obvious that the result does not depend
on the choice of the representative. It may not appear immediate that γ∗ is a derivation. A quick
way to show that is by noticing

dγ0

((
d
dt

)
0

)
( f ) =

(
d
dt

)
0
( f ◦ γ) =

d( f ◦ γ)

dt
(0) ⇒ γ∗ =dγ0

((
d
dt

)
0

)
In particular, by Proposition 2.2.6, setting by y1, . . . ,ym the coordinates of Km and by

γi := yi ◦ γ the ith component of γ ,

γ∗ = ∑
dγi

dt
(0)
(

∂

∂yi

)
γ(0)

It is usual to draw the tangent vector γ
p,v
∗ as an arrow with the rearmost end at the point p

and arrowhead at p+ v, so overlapping the image of the path γ p,v, see Figure 2.1. So γ∗ will be
always drawn tangent to the curve image of γ . In the picture below we have consider the velocity
of the path γ(t − t0) = (cos(t − t0),sin(t − t0)) for two different values of t0. The image of the
paths (they have the same image!) is drawn in black, the velocity vectors in red.

It is easy to show that every tangent vector can be obtained in this way. In fact, for every pair
p,v of points of Km we can consider the "straight" path γ p,v(t) = p+ tv and easily compute γ

p,v
∗

as follows.
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Figure 2.1: The velocity vectors look very tangent 

We know by Theorem 2.1.4 that γ
p,v
∗ = ∑ai

(
∂

∂yi

)
p

for some constants ai. We compute the

a j by evaluating γ
p,v
∗ on the coordinate functions:

a j = ∑ai

(
∂

∂yi

)
p
(x j) = γ

p,v
∗ (y j) =

d(y j ◦ γ)

dt
(0) = v j

where v j is the jth component of v = (v1, . . . ,vm).
So every tangent vector can be obtained by a straight path. Different paths give the same

tangent vector if and only if they share at zero the same value and the same first derivatives, in
other words if the paths are tangent.

R Consider, ∀q ∈ N the inclusion map iq : N → M×N defined by iq(p) = (p,q).
By Exercise 2.2.1, iq is smooth and the map d(iq)p is injective.
We can then identify TpM with its image d(iq)p (TpM) in T(p,q)(M×N). With this abuse
of notation the last equality in Exercise 2.2.1 can be written

T(p,q)(M×N) = TpM⊕TqN.

Complement 2.2.1 Let M be a manifold and let U ⊂ M be an open subset with the differen-
tiable structure induced by the differentiable structure of M. Let i : U → M be the inclusion
map, and fix a point p ∈U .

Prove that dip : TpU → TpM is an isomorphism.

Complement 2.2.2 Use Corollary 3.0.1 to prove that {(TU,dϕ)|(U,ϕ) is a chart for M} is
an atlas for T M, so giving to T M a differentiable structure of manifold of dimension 2dimM.

Exercise 2.2.1 Let M,N be manifolds, M without boundary. Consider M ×N with the
differentiable structure in Exercise 1.3.4. Then

• Show that the projections π1 : M×N → M and π2 : M×N → N are smooth.
• Consider, ∀q∈N the inclusion map iq : N →M×N defined by iq(p) = (p,q). Similarly

consider, ∀p ∈ M the inclusion map ip : N → M×N defined by ip(q) = (p,q). Prove
that both maps ip, iq are smooth.

• Show that ∀p ∈ M, ∀q ∈ N, d(π1)(p,q), d(π1)(p,q) are surjective whence d(ip)q, d(iq)p

are injective
• Show that ∀p ∈ M, ∀q ∈ N, the image of d(ip)q equals kerd(π1)(p,q). Similarly the

image of diq equals kerd(π2)(p,q).
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• Show that ∀p ∈ M, ∀q ∈ N, d(π1)(p,q) ◦ (diq)p = IdTpM, d(π2)(p,q) ◦ (dip)q = IdTqN

• Show that T(p,q)(M×N) = d(iq)p (TpM)⊕d(ip)q (TqN).

Exercise 2.2.2 Under the assumptions of Proposition 2.2.2 write, for all i and j, an explicit
expression for

∂ (F ◦G)i

x j
(p)

in terms of the partial derivatives of F and G.

2.3 Submanifolds
In this section we discuss injective maps among manifolds M ↪→ N with good properties, called
embeddings. We will need to use some results which we will state without proof.

Definition 2.3.1 Let M, N be manifolds and let F : M → N be a smooth function. Then
• a critical point of F is a point p ∈ M such that the rank of the linear application dFp is

different from min(dimM,dimN), the maximal possible rank.
• a critical value is a point q ∈ N that is the image q = F(p) of a critical point p.
• a regular value is a point q ∈ N that is not a critical value.

Note that by definition every point which is not in the image of F is a regular value. Indeed,
Sard’s Lemma shows that the set of regular values Reg(F) is very big, and more precisely it is
an open dense subset of N.

A very important special case is the case Reg(F) = N, when no point is a critical point. This
is the case of the immersions (when dimM ≤ dimN), the submersions (when dimM ≥ dimN)
and the embeddings (when moreover the map is a homeomorphism among of M with its image).

Definition 2.3.2 Let M, N be manifolds and let F : M → N be a smooth function. Then
• F is an immersion if ∀p ∈ M, dFp is injective.
• F is a submersion if ∀p ∈ M, dFp is surjective.
• F is a local diffeomorphism if ∀p ∈ M, dFp is invertible.
• F is an embedding if F is an immersion and a homeomorphism among M and F(M),

where F(M) is considered with the topology induced by N.
If F is an embedding then we often identify M with its image F(M)⊂ N, and say that
M ⊂ N is a submanifold.

The following is a famous simple example of embedding.

Example 2.1 — The rational normal curves. The map P1 ↪→ Pd+1 defined by

(x0 : x1) 7→ (xd
0 : xd−1

0 x1 : · · · : x0xd−1
1 : xd

1) (2.1)

is an embedding, whose image is called rational normal curve of degree d.
Let us prove that (2.1) is an embedding.
We first note that the definition (2.1) is well posed.
In fact if we change the homogeneous coordinates of a point in the domain, replacing

(x0 : x1) with, say, (λx0 : λx1) for some λ ∈ K \ {0}, then the homogeneous coordinates
of the image get multiplied by the same constant λ d , and therefore define the same point;
moreover it is not possible that simultaneously xd

0 = xd−1
0 x1 = · · ·= x0xd−1

1 = xd
1 = 0 since

that would imply x0 = x1, a contradiction.
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Then we show that (2.1) is an injective immersion. Let us first consider the chart
U0 = {x0 ̸= 0} of P1 with local coordinate x̄ = xi

x0
. If we call the homogenous coordinates of

the codomain y0, . . .yd the image of {x0 ̸= 0} is contained in the affine open subset {y0 ̸= 0}
having local coordinates ȳ1 =

y1
y0
, . . . , ȳd = yd

y0
and the map is locally

x̄ 7→ (x̄, x̄2, . . . , x̄d)

that is obviously an injective immersion. The analogous computation on the chart U1 =
{x1 ̸= 0} shows that (2.1) is an injective immersion too.

Finally, recalling that every continous bijective map from a compact space to a Hausdoff
space is a homeomorphism, we conclude that (2.1) is an embedding.

It is not difficult to show that the rational normal curve of degree 2 is an irreducible conic,
the conic y2

1 = y0y2 n the coordinates above. See Exercise 2.3.2 for a description of the rational
normal curves of higher degree.

We give now few other classical examples of embeddings. In all cases it is possible to show
that they are embeddings by arguments similar to those in Example 2.1. We leave the details to
the reader.

Example 2.2 — The Veronese surface. The map P2 ↪→ P5 defined by

(x0 : x1 : x2) 7→ (x2
0 : x0x1 : x2

1 : x0x2 : x1x2 : x2
2)

is an embedding, whose image is called Veronese surface.

The two previous examples are special cases of the following general construction.

Example 2.3 — ddd−−−Veronese embeddings. Consider the homogeneous coordinates of Pn
K

as n+1 “variables” x0, . . . ,xn.
Fix an integer d ≥ 1 and set N :=

(n+d
d

)
+ 1. Fix a bijection among the “variables”

y0, . . . ,yN of PN
K and the monomials of degree d in the variables x j: xd0

0 · · ·xdn
n with ∑

n
j=0 d j = d.

This defines a map

Vn,d : Pn
K → PN

K.

The map is well defined since
• if you change the homogeneous coordinates of a point p, they are multiplied by the

same factor λ ∈K\{0}: then the values of all chosen monomials are multiplied by
the same factor λ d and then they define the same point in PN

K;
• for every point p ∈ Pn

K, chosen homogeneous coordinates of it, the monomials of
degree d evaluated in them cannot vanish all simultaneously.

It is not difficult to prove that it is an embedding.

R If d = 1 the maps Vn,1 are (uninteresting) diffeomorphisms.
The rational normal curves are the images of V1,d .
The Veronese surface is the image of V2,2.

The following two examples of embeddings come by a similar idea.

Example 2.4 — Segre varieties. Consider two projective space Ph and Pk with respective
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homogeneous coordinates (x0 : · · · : xh), (y0 : · · · : yk), The monomials xiy j define a map

σh,k : Ph ×Pk → P(h+1)(k+1)−1

that is called Segre embedding of Ph ×Pk. Its image is the Segre variety Σh,k.

Example 2.5 Consider k copies of P1 with respective homogeneous coordinates (xh0 : xh1),
h = 0, . . . ,k .The 2k monomials x0i0x1i1 · · ·xkik define a map

Sk :
(
P1)k → P2k−1

that is called Segre embedding of
(
P1
)k.

Example 2.6 — Plücker embeddings. We have seen in the Remark after Definition
1.3.5 that the Grassmann manifold Gr(k,V ) is in bijection with the elements of P(ΛkV )
corresponding to tensors of the form v1 ∧ v2 ∧·· ·∧ vk. This defines the Plücker embedding

P : Gr(k,V )→ P(ΛkV ).

We conclude this section by considering the boundary of a manifold.

Definition 2.3.3 Let M be a manifold. Then
- the interior of M is the open subset M◦ := {p ∈ M such that ∃ a chart (U,ϕ), p ∈U,

with ϕ(U) open in Kn}.
- the boundary of M is ∂M := M \M◦.

M is without boundary if ∂M = /0.

It is easy to show that M◦ is an open subset of M, so it is a manifold of the same dimension
of M. Moreover M◦ is without boundary. Note that all complex manifolds are without boundary,
so this definition really makes sense only in the real case.

Something similar holds for the boundary. Note that ∂Rn = /0, ∂Rn
+ = ∂Rn

− = Rn−1.
We will use the following lemma without proving it.

Lemma 2.3.4 Let U , V be open subsets of Rn
±, and let F : U → V be a diffeomorphism.

Consider U0 := U ∩ ∂Rn
±, V0 := V ∩ ∂Rn

±. Then F(U0) ⊂ V0 and F|U0 : U0 → V0 is a diffeo-
morphism.

Note that in particular, if U0 is not empty, then also V0 is not empty. Let now M be a manifold,
p ∈ M. Then assume that there is a chart (U,ϕ) such that ϕ(p) ∈ ϕ(U)∩ ∂Rn

±. Then, since
every transition function is a diffeomorphism, by Lemma 2.3.4 for each other chart (V,ψ) with
p ∈V , ψ(p) ∈ ∂Rn

±. It follows

∂M = {p ∈ M such that there exists a chart (U,ϕ) with ϕ(p) ∈ ∂Rn
±}

= {p ∈ M such that for all chart (U,ϕ) with p ∈U,ϕ(p) ∈ ∂Rn
±}

The boundary ∂M has a natural differentiable structure making it a real manifold of dimension
n−1 as follows. Take an atlas {(Uα ,ϕα)}α∈I . Let I′ ⊂ I be the subset of the indices α such that
Uα ∩∂M ̸= /0. Then ϕα(Uα ∩∂M) is a nonempty open subsets of ∂Rn

± = Rn−1. Then we can
consider the maps (ϕα)|Uα∩∂M as maps onto open subsets of Rn−1.

It is now easy to see that {(Uα ∩ ∂M,(ϕα)|Uα∩∂M)}α∈I′ is an atlas for ∂M, making ∂M a
manifold of dimension dimM−1. Since the images of all charts in the atlas are open subsets of
Rn−1, ∂M has no boundary. So ∂∂M = /0.



34 Chapter 2. Tangent vectors and differentials

Example 2.7 We have just seen two examples of embeddings, the inclusions M◦ ↪→ M and
∂M ↪→ M. Similarly, if U ⊂ M is an open subset, the inclusion U ↪→ M is an embedding.

Exercise 2.3.1 Consider the torus T := R2/Z2 with the differentiable structure in Example
1.7 and observe that the quotient map π : R2 → T is a local diffeomorphism.

Consider a line l = la,b,c := {ax+by+ c = 0} ⊂ R2 and observe that l is a submanifold
of R2. Consider the induced map F := π|l : l → T . Show that

1. F is an immersion.
2. If a

b ̸∈Q, F is injective and its image is dense in T .
3. If a

b ∈ Q, F is not injective and its image is a compact embedded submanifold of
dimension 1 of T diffeomorphic to S1.

Observe that in particular F is never an embedding.

Exercise 2.3.2 Show that the rational normal curve in Pd+1, with homogeneous coordinates
(y0 : y1 : · · · : yd), is the locus where the 2×2 minors of the matrix(

y0 y1 · · · yk−1
y1 y2 · · · yk

)
vanish.

Exercise 2.3.3 Show that the image of the Segre embedding of
(
P1
)2 is a quadric of P3, i.e.

is the set of points where a homogenous polynomial of degree 2 in the coordinates of P3

vanish.

Exercise 2.3.4 Show that the Veronese surface in P5 is the zero locus of six quadrics,
and precisely the 2×2 minors of a symmetric 3×3 matrix with entries the homogeneous
coordinates of P5.

Exercise 2.3.5 Show that the image of the Plücker embedding of Gr(2,4) is a quadrica of
P5.

aHint: Restrict first to a chart computing the image of a point of Gr(2,4) corresponding to a matrix of the form(
1 0 a b
0 1 c d

)
.

If you choose the natural homogeneous coordinates in P
(
Λ2K4) you will find out that the image of such point is

always contained in a specific chart, and fulfill an obvious (inhomogeneous) relation of degree 2 among its affine
coordinates.

Exercise 2.3.6 Show that

ϕ (x0 : x1 : x2) =
1

∑
2
j=0 x2

j

(
x2

0,x
2
1,x

2
2,x0x1,x0x2,x1x2

)
defines an embedding of P2

R in R6.
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Exercise 2.3.7 1. Show that

ϕ (x0 : x1 : x2) =
1

∑
2
j=0 x2

j

(
x2

0 − x2
1,x0x1,x0x2,x1x2

)
(2.2)

defines an embedding of P2
R in R4.

Exercise 2.3.8 Since P2
C is compact, every holomorphic function on P2

C is constant and
therefore P2

C cannot be holomorphically embedded in any affine space Cn.
Take your solution of the previous two exercises, substitute R with C (and then smooth

with holomorphic) and find out where exactly it becomes wrong.

Exercise 2.3.9 Construct a smooth function F ∈ C∞(R) such that Reg(F) is exactly the
complement of the image of F .

Exercise 2.3.10 Show that the map F : R→ R2 defined by F(t) = (cos t,sin t) is an immer-
sion and is not an embedding.

Exercise 2.3.11 Consider the function F : (0,2π) → R2 defined by F(t) = (sin t,sin2t).
Show that it is injective immersion but it is not an embedding.

Exercise 2.3.12 Show that {(x2
1 + x2

2 + x2
3 + 3)2 − 16(x2

1 + x2
2) = 0} is a manifold without

boundary embedded in R3. Can you recognize the underlying topological manifold?

2.4 The local diffeomorphism Theorem

We have noticed that the differential of a diffeomorphism is invertible.
This remark is inverted, in some sense, by the famous Inverse Function Theorem stating that,

if the differential of a smooth (respectively holomorphic) function is invertible, then it is a local
diffeomorphism (respectively local biholomorphism). In other words, we can shrink suitably
domain and codomain to obtain a diffeomorphism (respectively biholomorphism). We give now
a precise statement, considering only the real case for sake of simplicity. The complex version of
the statement is completely analogous.

Theorem 2.4.1 — Inverse Function Theorem. Let U be an open subset of Rn and let
F : U → Rm be a smooth function.

Assume that p ∈U is a point such that dFp is an isomorphism of vector spaces.
Then there exists an open subset W of U containing p such that the induced map

F|W : W → F(W )

is a diffeomorphism.

We will not prove the Inverse Function Theorem but we will prove two less famous corollaries
showing that, if the differential of a smooth (resp. holomorphic) function has maximal rank, then
locally up to a coordinate change the function is given by some coordinate functions.
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Corollary 2.4.2 Let U be an open subset of Rn and let F : U → Rm be a smooth function.
Assume that p ∈U is a point such that dFp is a surjective.
Then there exists an open subset W of U containing p and a diffeomorphism G : W →W ′

such that

F ◦G−1 : W ′ → Rm

is the projection on the first coordinates

(x1, . . . ,xn) 7→ (x1, . . . ,xm)

Proof. We denote by K ⊂ TpRn the kernel of dFp and choose any projection π : TpRn → K. So
π is a linear surjective map that is the identity on K.

Choose a basis k1, . . . ,kn−m of K. We introduce a map F1 : Rn → Rn−m by setting

π

(
n

∑
i=1

ai

(
∂

∂xi

)
p

)
=

n−m

∑
j=1

b jk j ⇔ F1(a1, . . . ,an) =(b1, . . . ,bn−m)

Then, using the natural identification Rm ⊕Rn−m = Rn, we define the map

G := F ⊕ (F1)|U : U → Rn

We can then write G(x) = (F(x),F1(x)).
The matrix of dGp with respect to the natural bases is, by Proposition 2.2.6, the Jacobi matrix

of G at p.
The first m rows form the Jacobi matrix of F at p.
The remaining n−m rows form the Jacobi matrix of F1 at p. Since F1 is linear, its Jacobi

matrix (at any point) coincides with the matrix of F1 with respect to the standard bases, which

equals the matrix of π with respect to the bases
{(

∂

∂xi

)
p

}
and v j. Then

kerdGp = kerdFp ∩kerπ = K ∩kerπ = {0}.

So dGp is injective and therefore, by a dimension count, an isomorphism of vector spaces.
Applying the Inverse Function Theorem 2.4.1 we find an open subset W containing p such

that G|W is a diffeomorphism onto the image W ′ := G(W ). Since F ◦ (G|W )−1 is the projection
on the first m coordinates by definition of G, we conclude the proof by renaming G|W as G. ■

Corollary 2.4.3 Let U be an open subset of Rn and let F : U → Rm be a smooth function.
Assume that p ∈U is a point such that dFp is a injective.
Then there exist an open subsets W of U containing p and a diffeomorphism G : F(W )→V

such that

G◦F : W →V

is the injective map given by the first coordinates

(x1, . . . ,xn) 7→ (x1, . . . ,xn,0, . . . ,0)
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Proof. We choose a basis h1, . . . ,hm−n of a subspace H ⊂ TF(p)Rm supplementary to the image
of dFp and define a map F1 : Rm−n → Rm by

m

∑
i=1

bi

(
∂

∂yi

)
F(p)

=
n−m

∑
j=1

a jh j ⇔ F1(a1, . . . ,am−n) =(b1, . . . ,bm)

Then, considering the open subset U ′ :=U ⊕Rm−n of Rn ⊕Rm−n = Rm, we define the map
G′ : U ′ → Rm by

G′(x,v) = F(x)+F1(v)

We note that the first n columns of the Jacobi matrix of G′ at p form the Jacobi matrix of F at p
and the remaining columns form the Jacobi matrix of F1 at p, so the image of dG′

p is the sum of
the images of dFp and d(F1)p. Since by definition the latter equals H, a supplementary of the
first, then dG′

p is surjective and therefore by a dimension count an isomorphism. We conclude
then by the Inverse Image Theorem 2.4.1 choosing as G the inverse of a suitable restriction of
G1. ■

By the Inverse Function Theorem 2.4.1 and its corollaries it easily follows the following
results.

Theorem 2.4.4 — Local diffeomorphism theorem. Let M, N be manifolds, let F : M → N
be a smooth (resp. holomorphic) function and fix a point p ∈ M◦.

Assume that dFp is invertible.
Then there exists open subsets U ⊂M, V ⊂N such that p∈U , F(U) =V , and F|U : U →V

is a diffeomorphism (resp. biholomorphism).

If dFp is surjective, in local coordinates F is the projection on the first coordinates up to change
the chart in the domain.

Proposition 2.4.5 Let M, N be manifolds, F : M → N a smooth (resp. holomorphic) function,
p ∈ M◦. Assume that dFp is surjective. Then for every chart (V,ψ) in F(p) there exists a
chart (U,ϕ) in p such that ψ ◦F ◦ϕ−1 is the projection on the first coordinates:

ψ ◦F ◦ϕ
−1(x1, . . . ,xn) = (x1, . . . ,xm).

If dFp is injective, in local coordinates F is the inclusion of a coordinate subspace up to change
the chart in the codomain.

Proposition 2.4.6 Let M, N be manifolds, F : M → N a smooth (resp. holomorphic) function,
p ∈ M◦. Assume that dFp is injective. Then there exists a chart (U,ϕ) in p and a chart (V,ψ)
in F(p) such that ψ ◦F ◦ϕ−1 is the immersion of the first coordinates:

ψ ◦F ◦ϕ
−1(x1, . . . ,xn) = (x1, . . . ,xn,0, . . . ,0).

A couple of not trivial consequences of Proposition 2.4.6 can be used to construct manifolds.
The following holds only in the real case.

Theorem 2.4.7 — Regular Value Theorem 1. Let M be a real manifold with ∂M = /0, and
choose a function f ∈C∞(M). Let y ∈ R be a regular value of f and set N := f−1((−∞,y]).
Then either N is empty or N has a differentiable structure such that the inclusion N ↪→ M is an
embedding, dimN = dimM and ∂N = f−1(y).

Note that N may have several connected components.
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Example 2.8 The function f = ∑x2
i ∈C∞(Rn) has only one critical point, the origin, so it

has only one critical value, zero. Theorem 2.4.7 induces then a differentiable structure on
each closed ball of positive radius.

Choosing y = 1 we obtain then differential structures on Bn and Sn−1 such that the
respective inclusion maps in Rn are embeddings.

Note that, since composition of embeddings is an embedding, by Example 2.7, in the situation
of Theorem 2.4.7, f−1(y) is embedded in M.

The complex version of Theorem 2.4.7 is

Theorem 2.4.8 — Regular Value Theorem 2. Let M be a complex manifold, and choose a
function f ∈ O(M). Let y ∈ C be a regular value of f . Then f−1(y) has a complex structure
such that the inclusion in M is an embedding and dim f−1(y) = dimM−1.

If we construct a manifold as preimage of a regular value, we can represent its the tangent
spaces as hyperplanes of the corresponding tangent spaces of M. This is what we do when
we draw the tangent line of a plane curve, for example. The next proposition show that this
hyperplane is the kernel2 of the differential of the function.

Proposition 2.4.9 Let M be a manifold. In the real case we assume ∂M = /0. Let f ∈
C∞(M) (in the complex case: O(M)), y ∈ Reg( f ). Set X := f−1(y) with the differentiable
structure induced by Theorem 2.4.7 (in the complex case: 2.4.8), i : X ↪→ M the corresponding
embedding and choose a point p ∈ X . Then dip is injective and dip(TpX) = kerd fp.

Proof. The function f ◦ i ∈ C∞(X) is the constant function, assuming in each point the same
value y. Therefore d f ◦ di = d( f ◦ i) = 0, so the image of di is contained in the kernel of d f :
dip(TpX)⊂ kerd fp.

Since i is an embedding, dip is injective. Since dimX = dimM−1, dip(TpX) has codimen-
sion 1. On the other hand, since y is a regular value, p is not a critical point, and therefore d fp

has maximal rank 1, so kerd fp has codimension 1 too. Since the first space is contained in the
second one, they coincide. ■

We will usually write TpX ⊂ TpM, identifying each vector of TpX with its image in TpM.
This gives an embedding T X ↪→ T M.

We can then construct vector fields on X if we know how to construct vector fields on M.
Take a vector field v : M → T M with the property that ∀p ∈ X , vp ∈ TpX . Then the image of v|X
is contained in T X , so v|X(X) ⊂ T X . It is not difficult to show using Proposition 2.4.6 that if
v ∈ X(M) then v|X ∈ X(X) (if v is smooth, its restriction to X is smooth too).

If M = Rn we can then see the tangent space of X as the orthogonal of the gradient of f .
Using the function in example 2.8, we see that for each point p = (p1, . . . , pn) ∈ Sn−1,

Tp(Sn−1) =

{
∑vi

(
∂

∂ui

)
p
|∑ pivi = 0

}

There is a different version of the regular value theorem, which applies to manifolds with
boundary.

2Some authors prefer to describe it as the orthogonal to the gradient, but in these notes (since we are doing
differential topology and not Riemannian geometry) we do not find it convenient to insert a scalar product since it is
not strictly necessary.
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Theorem 2.4.10 — Regular Value Theorem 3. Let M,N be real manifolds, dimN < dimM,
F : M → N a smooth function, y ∈ Reg(F)∩Reg(F|∂M). Then F−1(y) has a differentiable
structure such that the inclusion F−1(y) ↪→ M is an embedding, and ∂F−1(y) = ∂M∩F−1(y).

It is not difficult to show, exactly as in the other case, that the differential of the inclusion
identify TpX with kerdFp. In particular dimX = dimM−dimN.

The regular value theorems can be also used to prove the existence of a structure of embedded
submanifold of loci that may be only locally represented as preimage of a regular value for a
smooth/holomorphic function, as in Exercise 2.4.2.

Definition 2.4.11 — (Smooth) Cartier divisors. Let M be a real (resp. complex) manifold
without boundary.

A Cartier divisor in M is a closed subset X such that for all x ∈ X there exists an open
subset U ⊂ M containing x and a smooth (resp. holomorphic) function fU on U such that
X ∩U equals f−1

U (0).
If 0 is a regular value for all fU then X is a closed submanifold of codimension 1. In this

case we say that X is a smooth Cartier divisor.

Exercise 2.4.1 Prove that every closed submanifold of dimension 1 is a smooth Cartier
divisor.

Exercise 2.4.2 — The Fermat hypersurface. Show that for all d,n ∈ N the locus{
(x0 : x1 : . . . ,xn) ∈ Pn

C|
n

∑
j=0

xd
j = 0

}

is a smootha Cartier divisor in Pn
C.

aWarning: the expression ∑
n
j=0 xd

j does NOT define a function from Pn
C to C.

Exercise 2.4.3 For K= R,C consider the locus Bl0(K2)⊂K2 ×P1
K defined by the equation

x0y1 = x1y0 where (x0,x1) are the standard coordinates of K2 and (y0 : y1) are the induced
homogeneous coordinates in P1

K.
Prove that Bl0(K2) is a smooth Cartier divisor in K2 ×P1

K.
Prove that Bl0(K2) is homeomorphic to the topological manifold of Exercise 1.2.4 or

1.2.5, depending on the choice of K.
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3. The tangent bundle(s)

Now we introduce the vector fields.

Roughly speaking, a vector field on a manifold M is the datum, for every point p ∈ M,
of a tangent vector vp ∈ TpM. A natural way to do it (locally) is by choosing a chart (U,ϕ),
denoting by x1, . . . ,xn the induced local coordinates and finally by writing something of the
form ∑

n
i=1 fi

∂

∂xi
for some functions fi : U → R: this associates to each point p ∈U the vector

∑
n
i=1 fi(p)

(
∂

∂xi

)
p
. We would like to say that the vector field is smooth at p if all fi are smooth.

Is that independent from the choice of the chart?

If we have two charts containing the same point p ∈ M, they induce two different bases of
TpM. We need to understand the relation between them. It can be computed applying Proposition
2.2.7.

Corollary 3.0.1 Let M be a manifold, p ∈ M, and let (Uα ,ϕα) and (Uβ ,ϕβ ) be two charts
with p ∈ Uα ∩Uβ . We denote with (x1α , . . . ,xnα) and (x1β , . . . ,xnβ ) the respective local
coordinates.

Consider a vector v ∈ TpM, and let viα , resp. v jβ be the coordinates of v in the basis{(
∂

∂xiα

)
p

}
, resp.

{(
∂

∂x jβ

)
p

}
, so that

v =
n

∑
i=1

viα

(
∂

∂xiα

)
p
=

n

∑
i=1

v jβ

(
∂

∂x jβ

)
p
.

Thenv1β

...
vnβ

= J(ϕβα)ϕα (p)

v1α

...
vnα

=

((
∂

∂xiα

)
p

x jβ

)v1α

...
vnα


where J(ϕβα)ϕα (p) denotes the Jacobi matrix of the application ϕβα at the point ϕα(p).
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Proof. Obviouslyv1β

...
vnβ

= M

v1α

...
vnα


for the matrix M representing the identity map of TpM in the bases

{(
∂

∂xiα

)
p

}
in the domain and{(

∂

∂x jβ

)
p

}
in the codomain. Since IdTpM = d(IdM)p for the identity map IdM : M → M, we can

compute M by Proposition 2.2.7, obtaining the Jacobi matrix of the map ϕβ ◦ IdM ◦ϕ−1
α = ϕβα

in ϕα(p). ■

We could now define the smoothness of our "roughly defined" vector fields using their
expression in local coordinates, using Corollary 3.0.1 to prove that our definition does not depend
on the choice of coordinates.

We will instead follow a longer way, putting them in the more general contest of vector
bundles.

3.1 Fibre bundles
Definition 3.1.1 Let F,B be topological spaces.

A fibre bundle over a base B with fibre F is a pair (E,π) where E is a topological space,
the total space, and π : E → B is a continous map, the projection, such that there exists an
open cover {Uα}α∈I , and homeomorphisms φα : E|Uα

:= π−1(Uα)→Uα ×F such that the
diagrams

E|Uα

π
!!

φα
// Uα ×F

π1
{{

Uα

(3.1)

commute, where π1 : Uα ×F →Uα is the projection on the first factor.
In other words we ask π = π1 ◦φα .
The set {φα : E|Uα

→Uα ×F}α∈I is a trivialization of the bundle.
We denote, ∀p ∈ B, by Ep or Fp the "fibre over p": π−1(p).
By (3.1) all Ep are homeomorphic to F .

Example 3.1 The simplest example is the product of topological spaces, with the projection
on one factor: E := B×F , π = π1 : B×F → B the map π(b, f ) = b.

Example 3.2 — The "closed" Moebius Band. Consider the closed square Q := [0,1]2 and
identify the two vertical edges by the equivalence relation (0, t) ∼ (1,1− t)). The closed
(Moebius) band is the quotient topological space M := Q/ ∼. Note that it has a natural
differentiable structure.

The map (x,y) 7→ x induce a map M → [0,1]/(0 ∼ 1)∼= S1. This is a fibre bundle with
fiber [0,1].

An interesting case is the case when F is a discrete set, leading to the theory of the topological
coverings. For example



3.1 Fibre bundles 43

Figure 3.1: A representation of the closed Moebius band as fiber bundle over S1

Example 3.3 Fix d ∈N and take E = B = S1 := {(cosθ ,sinθ)}⊂R2 and π : E → B defined
by

π (cosθ ,sinθ) = (cosdθ ,sindθ) .

This is a fibre bundle with fibre a discrete set of cardinality d.

Similarly the natural maps Sn → Pn
R are fibre bundles with fibre a discrete set of cardinality

2. The following interesting example is a complex analogous of that.

Example 3.4 — The Hopf fibration. Consider the sphere S3 as the subset of C2 of the pairs
(x0,x1) of complex numbers such that ||x0||2 + ||x1||2 = 1. The map π : S3 → P1

C defined by

π(x0,x1) = (x0 : x1)

is a fibre bundle with fibre S1.
Indeed, recall that the sets U j = {x j ̸= 0} define an open cover {U0,U1} of P1

C. Then,
identifying S1 with the subset of C of the complex numbers of norm 1 a trivialization is given
by the maps Φ j : π−1(U j)→U j ×S1 defined by

Φ j(x0,x1) =

(
(x0 : x1),

x j

||x j||

)
.

The stereographic projection of center p mapping S3 \ {p} to R3 sends every fibre of the
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Figure 3.2: A representation of the Hopf fibration through the stereographic projection of S3 to
R3

Hopf fibration not containing p to a circle in the 3-space. This gives a graphical representation
of the Hopf fibration as in figure 3.2.

Roughly speaking, a fibre bundle is locally a product as well as manifolds are locally affine
spaces. So, as for the theory of the manifolds, also the theory of the fibre bundles have its
transition functions as follows.

Definition 3.1.2 The transition functions of the fibre bundle area the maps, ∀α,β ∈ I,

φαβ := φα ◦φ
−1
β

: (Uα ∩Uβ )×F → (Uα ∩Uβ )×F.

They are, by (3.1), of the form φαβ (p, f ) = (p,gαβ (p)( f )) for some maps gαβ : Uα ∩Uβ →
Aut(F) where Aut(F) is the group of self-homeomorphisms of F . {gαβ} is a cocycle of the
bundle, and verifies the three cocycle conditions:

i) ∀α ∈ I, ∀p ∈Uα , gαα(p) = IdF ;
ii) ∀α,β ∈ I, ∀p ∈Uα ∩Uβ , gαβ (p) = gβα(p)−1;

iii) ∀α,β ,γ ∈ I, ∀p ∈Uα ∩Uβ ∩Uγ , gαβ (p)◦gβγ(p) = gαγ(p).

aNote the similarities with the transition functions of a differentiable structure

In the following we will often identify the bundle with its total space or its projection,
speaking about "a bundle E" or "a bundle π : E → B".

As in every category, once determined the objects, we have to choose which maps among
them we want to consider.

Definition 3.1.3 Consider two fibre bundles π : E → B, π ′ : E ′ → B′.
Let g : B → B′ be a continous map. A morphism of bundles covering ggg or morphism of

bundles over ggg is a continous map f : E → E ′ such that the diagram

E

π

��

f
// E ′

π ′

��

B
g
// B′
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commutes. In other words, such that g◦π = π ′ ◦ f .
If B = B′, i.e. if the two bundles have the same base, a morphism of bundles over BBB

f : E → E ′ is a morphism of bundles covering the identity IdB of B. Then a morphism of
bundles over B may be seen as a commutative diagram

E

π
��

f
// E ′

π ′
��

B

.

An isomorphism of bundles is a morphism f : E → E ′ of bundles over B that is also a
homeomorphism. If an isomorphism of bundles f : E → E ′ exists we say that E is isomorphic
to E ′. A bundle is trivial if it is isomorphic to the bundle π1 : B×F → B.

A first remark is that the cocycle determines the bundle up to isomorphisms; this follows
essentially by the same argument used in subsection 1.2.1 to show the analogous property of the
transition functions of a differentiable structure.

There are few more definitions we need.
Definition 3.1.4 Let π : E → B be a fibre bundle. A section of E is a continous map s : B → E
such that π ◦ s = IdB.

Definition 3.1.5 Let G be a subgroup of Aut(F). A GGG−bundle is a fibre bundle with fibre F
provided with a trivialization whose cocycle is contained in G:

∀α,β ∈ I,∀p ∈Uα ∩Uβ ,gαβ (p) ∈ G.

If E, B and F are all real (resp. complex) manifolds we will, unless differently specified,
consider all the above definitions moved to the corresponding category. So all continous map
will be implicitly supposed smooth (resp. holomorphic).

We conclude this section by an important construction, the base change, also known as fibre
product.

Definition 3.1.6 Consider two functions with the same codomain f : A →C, g : B →C.
The fibre product of f and g, usually denoted by A×C B is the subset of the product

A×B of the elements that "agree on C" in the following sense:

A×C B := {(a,b) ∈ A×B| f (a) = g(b)} .

We denote by g′, f ′ the restrictions to A×C B of the two natural projections A×B. This gives
a diagram

A×C B

g′

��

f ′
// B

g
��

A
f
// C

that is commutative by definition of A×C B.
Note that, for all p ∈ A, (g′)−1(p) = {(p,b)|g(b) = f (p)}= {p}×g−1( f (p)). In this sense

we can say that g′ and g (and similarly f ′ and f ) have the same fibres.
Indeed, it is not difficult to show that if B is a G−bundle over C with fibre F and projection

g, then also A×C B is a G−bundle over A with fibre F and projection g′.
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Definition 3.1.7 The pull-back bundle of a bundle g : B →C by a continous map f : A →C
is the bundle g′ : f−1B := A×C B → A. This is a base change in the sense that the pull-back
bundle is a bundle with the same fibre but different base.

If f is the inclusion of a subset A ⊂C, then A×C B is naturally homeomorphic to g−1(A).
Therefore in this case f−1B is called restriction of B to A, and denoted by B|A.

Complement 3.1.1 Prove that the cocycle determines the bundle up to isomorphism. In
other words, reconstruct E and π from (B,F,{Uα},{gαβ}).

Complement 3.1.2 Let E be a G−bundle and E ′ be a G′-bundle on the same base B (the
fibres may be different). Show that they admit two trivializations {φα} of E and {φ ′

α} of E ′

which share the same open cover {Uα}α∈I of B.

Exercise 3.1.1 Write a trivialization of the fibre bundle given by the natural map of the
Moebius band onto S1 and the corresponding cocycle.

Show that the smallest of order of a subgroup G of Aut(S1) for which this is aG−bundle
is respectively 2.

Exercise 3.1.2 Let S1 ⊂ C2 be the subset of the complex numbers z having norm ||z||= 1.
Note that for each λ ∈ S1 the map z 7→ λ z is an automorphism, so defining an injective map
S1 ↪→ Aut(S1). Set H ⊂ Aut(S1) for its image. Note that H is a subgroup of Aut(S1).

Show that the Hopf fibration is a H-bundle.

Exercise 3.1.3 Show that, if (E,π) is a trivial bundle, then f−1E is trivial for every continous
function f .

Exercise 3.1.4 Consider the Moebius band M as bundle on S1 as in the previous exercise.
Let f : S1 → S1 be defined by f (cosθ ,sinθ) = (cos2θ ,sin2θ). Show that f−1M is trivial as
fibre bundle over S1.

Exercise 3.1.5 Consider, for each fixed d ∈ N, the map S1 → S1 in Example 3.3.
Determine for which d ∈ N the pull-back of the Moebius band by it is a trivial bundle.

3.2 Vector bundles
Definition 3.2.1 A real (resp. complex) vector bundle over BBB of rank rrr is a G−bundle with
fibre Rr (resp. Cr) where G is the group of the invertible linear applications GL(Rr) (resp.
GL(Cr)). A line bundle is a vector bundle of rank 1.

Again, the simplest example of a vector bundle is the product B×V where V is a vector
space.

The following is more interesting

Example 3.5 — The tautological bundle over Pn. Let E be the subset of Pn
K×Kn+1 union
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of Pn
K×{0} with the points of the form

((x0 : · · · : xn),(x0, . . . ,xn)).

The restriction of the first projection to E is a map π : E → Pn
K such that the pair (E,π)

is a (real or complex according to the choice of K) line bundle.
Note that the fibre π−1(x0 : · · · : xn) is the line generated by (x0, . . . ,xn).

R Similarly there is a tautological rank k vector bundle over each Grassmannian Gr(k,n) (see
Example 1.10).

For all α , ∀p ∈ Uα , φα induces a bijection ϕα,p : Fp → Kr via φα(v) = (p,ϕα,p(v)). This
gives a structure of vector space on Fp via ∀v,w ∈ Fp, ∀c ∈K, v+w := ϕ−1

α,p (ϕα,p(v)+ϕα,p(w)),
cv := ϕ−1

α,p (cϕα,p(v)).
The given vector space structure on Fp does not depend on the choice of α . Indeed, if

p ∈ Uα ∩Uβ , since gαβ (p) = ϕα,p ◦ϕ
−1
β ,p ∈ GL(Kr), cϕα,p(v) = gαβ (p)

(
cϕβ ,p(v)

)
and then

ϕ−1
α,p (cϕα,p(v)) = ϕ

−1
β ,p

(
cϕβ ,p(v)

)
. Similarly one shows ∀v,w ∈ Fp, ϕ−1

α,p (ϕα,p(v)+ϕα,p(w)) =

ϕ
−1
β ,p

(
ϕβ ,p(v)+ϕβ ,p(w)

)
.

So we can see a vector bundle as a way to attach to each point of B a vector space of fixed
dimension r "in a continous way".

In particular we can consider the neutral element of the sum, 0p, on each Ep. This defines a
smooth section s0 : B → E, the zero section , by s0(p) = 0p.

The group GL(Rr) (resp. GL(Cr)) of the invertible operators on Rr (resp. Cr) is naturally
identified with the set of the square matrices GL(r,R) with real (resp. complex) coefficients
of order r whose determinant differs from zero. This gives a differentiable (resp. complex)
structure on GL(Rr) (resp. GL(Cr)) as open subset of Rr2

(resp. Cr2
). So if B is a real (resp.

complex) manifold one may inquire whether the maps gαβ : Uα ∩Uβ → GL(Rr)(resp. GL(Cr))
are smooth (resp. holomorphic); in other words that the vector space varies "in a smooth (resp.
holomorphic) way".

We have seen in Complement 3.1.1 that every fibre bundle is determined by its cocycle. The
same idea gives the following.

Proposition 3.2.2 Let B be a manifold, let U := {Uα}α∈I be an open cover of B, r ∈ N.
Assume we have ∀α,β ∈ I, a smooth (resp. holomorphic) map gαβ : Uα ∩Uβ → GL(Rr)
(resp. GL(Cr)) such that

i) ∀α ∈ I, ∀p ∈Uα , gαα(p) = Id;
ii) ∀α,β ∈ I, ∀p ∈Uα ∩Uβ , gαβ (p) = gβα(p)−1;

iii) ∀α,β ,γ ∈ I, ∀p ∈Uα ∩Uβ ∩Uγ , gαβ (p)gβγ(p) = gαγ(p).
Then there is a unique, up to isomorphisms, real (resp. complex) vector bundle E of rank

r over B having a trivialization with cocycle {gαβ}. Moreover E has a natural structure of
(complex) manifold such that the projection π : E → B and the zero section s0 : B → E are
smooth (resp. holomorphic).

Moreover dimE = dimB+ rkE = dimB+ r, the differential of π is surjective at every
point and the differential of s0 is injective at every point.

Proof. The total space E is defined, as topological space, as the quotient of the disjoint union
X of all products Uα ×Rr by the equivalence relation naturally induced by the gαβ : a point
(pα ,vα) ∈Uα ×Rr and a point (pβ ,vβ ) ∈Uβ ×Rr are equivalent if and only if pα = pβ (in B)
and gαβ (pα)(vβ ) = vα .
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The map π : E → B associating to the class of (pα ,vα) ∈Uα ×Rr its first component pα is
well defined and give a fibre bundle structure on E.

For fixed α , consider an open subset Ω ⊂ Uα ×Rr. For every β , consider the subset
Ωβ of Uβ ×Rr of the pairs (pβ ,vβ ) that are equivalent to some (pα ,vα) in Ω. Then the
function (p,v) 7→ (p,gαβ (p)(v)) maps Ωβ homeomorphically onto the intersection of Ω and(
Uα ∩Uβ

)
×Rr in Uα ×Rr. Then, considering the quotient map π̄ : X → E, π̄−1 (π̄(Ω)) is open

in X . This implies that π̄ is an open map.
Since B is a manifold, its topology has a countable basis of open subsets {U ′

n}n∈N. Without
loss of generality, we can assume1 that the covering {U ′

n}n∈N is a refinement of {Uα}α∈I . In
other words, for all n ∈ N ∃α(n) such that U ′

n ⊂Uα(n). Let {Vn}n∈N be a countable basis of Rr.
Then for all pairs of natural numbers i, j, U ′

i ×Vj is an open subset Ωi, j of Uα(i)×Rr. Since π̄ is
an open map, all subsets Ui, j := π̄ (Ωi, j) are open in E. It is easy to prove that Ui, j is a basis for
the topology of E. So E admits a countable basis of open subsets.

Now consider the equivalence relation as a subset R of X ×X :

R :=
{
((pα ,vα),(pβ ,vβ )) ∈ X ×X |(pα ,vα)∼ (pβ ,vβ )

}
We show that R is closed by proving that its complement is open. In fact if (pα ,vα) and (pβ ,vβ )
are not equivalent,

• either pα ̸= pβ in B
• or pα = pβ in B and gαβ (pα)(vβ ) ̸= vα .

In the first case we can find two disjoint open subsets U ′
α of Uα and U ′

β
of Uβ such that

pα ∈Uα and pβ ∈Uβ . Then (U ′
α ×Rr)×

(
U ′

β
×Rr

)
is an open subset of (Uα ×Rr)×

(
Uβ ×Rr

)
containing ((pα ,vα),(pβ ,vβ )) disjoint from R. In the second case we obtain the same result
by considering two disjoint open subsets Vα and Vβ of Rr containing respectively vα and
gαβ (pα)(vβ ) and considering the open subset

(
(Uα ∩Uβ )×Vα

)
×Ω of (Uα ×Rr)×

(
Uβ ×Rr

)
where Ω is the image of (Uα ∩Uβ )×Vβ via the obvious map.

So E is the quotient of a Hausdorff space via a closed equivalence relation such that the
quotient map is open. This implies that E is Hausdorff.

Set b for the dimension of B. We can assume, up to substitute U by a refinement of it, that
all open sets Uα come from charts. In other words, we can assume that for each α there is a
homeomorphism ϕα : Uα → Dα where Dα is an open subset of Rb

±. Denoting by Vα the open
subset π̄(Uα ×Rr), we obtain homeomorphisms ψα : Vα → Rr ×Dα ⊂ Rr+b

± .
Then {(Vα ,ψα)}α∈I gives a differentiable structure on E. Note that we need the assumption

of smoothness of the gαβ to ensure the smoothness of the transition functions ψα ◦ψ
−1
β

.
The projection π maps Vα onto Uα . In the local coordinates given by the charts (Vα ,ψα) and

(Uα ,ϕα), π(x1, . . . ,xr+b) = (xr+1, . . . ,xr+b) and s0(x1, . . . ,xb) = (0, . . . ,0,x1, . . . ,xb): it follows
that both maps are smooth, the differential of π is surjective at every point and the differential of
s0 is injective at every point. ■

This is the situation we are interested in. So, for sake of simplicity, from now on we are
implicitly assuming that B is a real (resp. complex) manifold, all maps gαβ : Uα ∩Uβ → GL(Rr)
(resp. GL(Cr)) are smooth (resp. holomorphic) and E has the differentiable (resp. complex)
structure in Proposition 3.2.2. Moreover all morphisms of bundles and sections are implicitely
assumed to be smooth (resp. holomorphic).

1Replacing {U ′
n} with the set of all the intersections {U ′

n ∩Uα} we obtain a new basis of the same topology that is
a refinement of {Uα} from which we can extract a countable subfamily that is also a basis for the given topology, see
John L. Kelley, General topology, Exercise F at page 57.
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Definition 3.2.3 Let E,E ′ two vector bundles on respective bases B and B′.
A morphism of vector bundles (over g resp. over B) is a morphism of fibre bundles

f : E → E ′ (over g resp. over B) such that ∀p ∈ B, the map f|Ep : Ep → E ′
g(p) is a linear

application.
An isomorphism of vector bundles is a morphism of vector bundles that is an isomor-

phism of fibre bundles. Two vector bundles are isomorphic as vector bundles if there is an
isomorphism of vector bundles among them.

A trivial vector bundle is a vector bundle isomorphic as vector bundle to the vector bundle
π1 : B×Kr → B.

The concepts of vector subspace and quotient vector space naturally extend to vector bun-
dles:

Definition 3.2.4 Let π ′ : E ′ → B be a vector bundle. A subbundle E of E ′ is the datum of a
vector bundle π : E → B with an injective morphism of vector bundles f : E → E ′ over B.

Let π : E → B be a subbundle of a vector bundle π ′ : E ′ → B. The quotient bundle
π : E ′/E → B is the vector bundle whose total space is the quotient of E ′ by the equivalence
relation

v1 ∼ v2 ⇔ π
′(v1) = π

′(v2) =: p and v1 − v2 ∈ Ep

Here the difference v1 − v2 is the difference in the vector space E ′
p.

Setting π̃ : E ′ → E ′/E for the projection on the quotient, then π is defined by π ′ = π ◦ π̃ .

So, if E is a subbundle of E ′, for all p ∈ B it is naturally to identify Ep with the subspace
f (Ep) of E ′

p and (E ′/E)p with the quotient of vector space E ′
p/Ep = E ′

p/ f (Ep).

To a Cartier divisor one associates naturally a line bundle

Definition 3.2.5 — Line bundle associated to a smooth Cartier divisor. Let X be a Cartier
divisor in M.

By definition, there is a family of open subsets {U j} of M whose union contains X and
smooth/holomorphic functions f j on U j such that X ∩U j is f−1

j (0) and 0 is a regular value.
By Proposition 2.4.5 we may then assume that U j is a chart with local coordinates

z j
1, . . . ,z

j
n−1,z

j
n

and f j = z j
n.

Without loss of generality we may assume that {U j} is an open cover of M by adding to
the family the open subset M \X with the constant function 1.

Now consider the ratio fi
f j

. This defines a smooth/holomorphic function on (Ui ∩U j)\X
that never vanishes. Choose any point in X ∩Ui ∩U j. Writing the Taylor expansion of fi with
respect to the variables z j

1, . . . ,z
j
n−1,z

j
n we notice that, since fi vanish along z j

n = 0, z j
n divides

fi. So the function fi/ f j extends to a smooth/holomorphic function on Ui ∩U j. Reversing the
role of i and j we deduce similarly that fi/ f j never vanishes on Ui ∩U j.

We have than a family of maps

gi j :=
fi

f j
: Ui ∩U j → GL1(K).

that obviously respects the cocycle conditions, so they define a (real respectively complex)
line bundle on M.
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Example 3.6 — The hyperplane bundle. The hyperplane bundle of Pn
K is the line bundle

associated to the smooth Cartier divisor H0.

Complement 3.2.1 Write the missing details of the proof of Proposition 3.2.2.

Exercise 3.2.1 Show that the tautological bundle over Pn
K is a line bundle by writing a

suitable trivialization and the corresponding cocycle.

Exercise 3.2.2 Show that a line bundle E over B is trivial if and only if it has a section
s : B → E which never vanishes: in other words ∀p ∈ B, s(p) ̸= 0 ∈ Ep.

Exercise 3.2.3 Show that every section of the tautological bundle over P1
R vanishes at least

at a point. In other words ∃p ∈ P1
R such that s(p) = 0 ∈ Ep. In particular, the tautological

bundle over P1
R is not trivial.

Exercise 3.2.4 Show that the tautological bundle over P1
R is homeomorphic to a Moebius

band.

Exercise 3.2.5 Show that the zero section is the only holomorphic section of the tautological
bundle over Pn

C.

Exercise 3.2.6 — Frames and triviality. Show that a vector bundle E of rank r over B is
trivial if and only if it has r sections s : B → E forming, ∀p ∈ B, a basis of Ep.

Such sections are sometimes called a frame.

Exercise 3.2.7 Show that the line bundle associated to a Cartier divisor X has a smooth (resp.
holomorphic) section vanishing exactly at X .

Exercise 3.2.8 Let H be a hyperplane of Pn
K, the locus

∑a jx j = 0

where the a j ∈K are not all zero. Show that
1. H is a smooth Cartier divisor;
2. the line bundle associated to H is isomorphic to the hyperplane bundle.

3.3 Tangent and normal bundles

We can now define the tangent bundle T M π→ M through its cocycle.

Definition 3.3.1 Let M be a manifold of dimension n. Choose an atlas {(Uα ,ϕα)}α∈I .
Then the tangent bundle T M π→ M is the vector bundle of rank n given by the cocycle.

gαβ (p) = J(ϕαβ )ϕβ (p). (3.2)

if M is a complex manifold, we may consider it as real manifolds, which gives two
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different definition of tangent bundle on it. When we will need to distinguish them we will
call them respectively holomorphic tangent bundle and real tangent bundle.

There is a natural way to identify each tangent space TpM to the fibre (T M)p.
The construction in Definition 3.3.1 gives a trivialization {φα}α∈I of T M.
Let p ∈ M, v ∈ (T M)p. Choose a chart (Uα ,ϕα) from the atlas used in Definition 3.3.1 such

that p ∈Uα . Then φα(v) = (p,(v1, . . . ,vn)) ∈Uα ×Kn. Set then x1, . . . ,xn for the induced local
coordinates near π(v). We associate to v the derivation ∑vi

(
∂

∂xi

)
p
∈ TpM.

This gives an isomorphism of vector spaces among (T M)p and TpM that, by Corollary 3.0.1,
does not depend on the choice of the chart containing p. Note that here the choice of the cocycle
(3.2) is crucial: no other cocycle would have worked!

By a similar argument one proves that the definition does not depend, up to isomorphisms,
on the choice of the atlas.

R Let F : M → N be a smooth function.
The differentials dFp : TpM → TF(p)N naturally glue to a morphism of vector bundles over
F

T M

��

dF // T N

��

M F // N

defined by dF(v) := dFπ(v)(v) ∈ TF(π(v))N ⊂ T N.

Moreover, if G is a further smooth function from N to another manifold, then d(G◦F) =
dG◦dF .

There is an important construction related to embeddings and tangent bundles, the normal bundle.
Let f : X → M be an embedding. Geometrically, if we think to X as a subset of M, to each point
of X we have associated the vector space TpM, and its subspace TpX , identifying every tangent
vector to X with its image by d f .

Then we can consider the quotient space (NX |M)p := TpM/TpX . This is the normal space of
X in M at p.

All these spaces naturally glue to a bundle on X : we start from the vector bundle T M|X :=
f−1T M, which is a vector bundle on X such that every fibre is canonically isomorphic to the
tangent space of M at that point. Then T X is naturally a subbundle of T M|X via d f and the
construction of the quotient bundle produces

Definition 3.3.2 The normal bundle of X in M is the quotient bundle NX |M := T M|X/T X .

For Cartier divisor it holds the following

Proposition 3.3.3 Let X be a smooth Cartier divisor in a manifold M. Then the normal bundle
of X in M is isomorphic to the restriction to X of the line bundle on M associated to X .

Proof. Choose on each Ui a coordinate system (zi
1, ...,z

i
n) such that Ui∩X is given by the equation

zi
n = 0, so that fi = zi

n . The normal bundle NX |M is then given by the cocycle{
ni j : Ui ∩U j ∩X → GL1(K)|ni j =

∂ zi
n

∂ z j
n

}
.
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The line bundle on M associated to X is defined by the cocycle{
gi j : Ui ∩U j → GL1(K)|gi j =

zi
n

z j
n

}
.

Taking partial derivatives with respect to z j
n of the equality zi

n = z j
ngi j yields ∂ zi

n

∂ z j
n
= gi j+z j

n.
∂gi j

∂ z j
n

.

Restricting this to X , recalling that z j
n = 0 on X ∩U j we get the cocycle

{
ni j
}

. This proves the
claim. ■

This has the following interesting consequence.

Corollary 3.3.4 Let M be a manifold, f ∈C∞(M), y ∈ Reg( f ), X = f−1(y). Then the normal
bundle of X in M is trivial.

Proof. The line bundle over M associated to X is trivial, and therefore so is its restriction to
X . ■

We will later need the following result, which we state without proof.

Theorem 3.3.5 — Tubular neighbourhood theorem. Let X , M be manifolds without
boundary, and let i : X ↪→ M be an embedding.

Then there is a neighbourhood W of i(X) in M and a diffeomorphism ν : NX |M →W , such
that i = ν ◦ s0.

Exercise 3.3.1 Show that the group quotienta Rn/Zn has a natural structure of manifold such
that the differential dπp of the quotient map π : Rn → Rn/Zn is invertible at each point.

Show that with this differentiable structure Rn/Zn is diffeomorphic to (S1)n.
Show that its tangent bundle is trivialb.

awith respect to the sum
bNotice that it follows that all Λq(T (S1)n)∗ are trivial for all q.

Exercise 3.3.2 A lattice Λ ⊂ Cn is a subgroup, with respect to the sum, generated by 2n
vectors that are linearly independent over R.

The group quotient Cn/Λ has a complex structure such that the differential of the quotient
map π : Cn → Cn/Λ is invertible at each point. These complex manifold are called complex
tori.

Show that the complex tangent bundle of a complex torus is trivial.

Exercise 3.3.3 Show that the holomorphic tangent bundle of P1
C is not trivial.

Exercise 3.3.4 Prove that ∑
k
i=1

(
u2i

∂

∂u2i−1
−u2i−1

∂

∂u2i

)
defines a smooth vector field on S2k−1

which never vanishes. We have combed flat all spheres of odd dimension.

Exercise 3.3.5 Show that the normal bundle of a Moebius band embedded in R3 is not trivial.
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3.4 Real and holomorphic tangent bundles
Let M be now a complex manifold of dimension n, p ∈ M. Then there is a tangent space TpM
which is a complex vector space of dimension n. Since M has an induced real structure of
dimension 2n, it has also a tangent space as real manifold, which we denote (to distinguish it
from the other one) by TR

p M, of dimension 2n.
We have then constructed two different tangent bundles for M, the one as complex manifold,

the holomorphic tangent bundle T M, a complex bundles of rank n, and the one as real manifold
(the real tangent bundle), say TRM, a real vector bundle of rank 2n . One is naturally tempted
to try to find some canonical isomorphism of real vector bundles among them.

Set local coordinates z j = x j + iy j, j = 1, . . . ,n at a point p ∈ M, so defined on a chart U ∋ p.

Then the real tangent space TR
p M is generated by the partial derivatives

(
∂

∂x j

)
p
,
(

∂

∂y j

)
p
.

Note that the action of the vectors in TR
p M on Ep may be naturally extended to complex

valued function f = g+ ih, g,h smooth, by setting

v(g+ ih) := v(g)+ iv(h) ∈ C.

Then define(
∂

∂ z j

)
p
=

1
2

((
∂

∂x j

)
p
+ i
(

∂

∂y j

)
p

)
.

Wait, this does not make any sense! We can’t multiply an element of a real vector space by i!
In fact this makes sense as an element of the complexification of TR

p M.

Definition 3.4.1 — Complexification. Let V be a real vector space. We define its complexi-
fication V ⊗RC (or just V ⊗C for short) as follows.

As real vector space, V ⊗RC is the abstract direct sum of two copies of V . A general
element of V ⊗RC is given by two vectors v1,v2 ∈V . We will write ita as v1 + iv2. This is
also summarized by the notation

V ⊗RC=V ⊕ iV

Please note that the notation induces a natural inclusion of V in V ⊗RC mapping each vector
v on... v.

V ⊗RC has a natural canonical structure of complex vector space induced by the multi-
plication

i · (v1 + iv2) =−v2 + iv1

Note that dimRV = dimC (V ⊗RC).
aWe will later see the notation v1 ⊗1+ v2 ⊗ i for v1 + iv2.

Then
(

∂

∂ z j

)
p

is an element of the complex vector space TR
p M⊗RC.

Note that(
∂

∂ z j

)
p
(g+ ih) =

1
2

((
∂g
∂x j

− ∂h
∂y j

)
+ i
(

∂h
∂x j

+
∂g
∂y j

))
(p).

Then, by definition2 of holomorphic function, g+ ih is holomorphic if and only if ∀ j,

∂ (g+ ih)
∂ z j

= 0.

2The reader that has not done any complex analysis in several variables should take this as definition of holomorphic
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Now define(
∂

∂ z j

)
p
=

1
2

((
∂

∂x j

)
p
− i
(

∂

∂y j

)
p

)
∈ TR

p M⊗RC.

If f = g+ ih is holomorphic then(
∂

∂ z j

)
p
(g+ ih) =

1
2

((
∂g
∂x j

+
∂h
∂y j

)
+ i
(

∂h
∂x j

− ∂g
∂y j

))
(p) =

(
∂g
∂x j

+ i
∂h
∂x j

)
(p)

showing that
(

∂

∂ z j

)
p

coincides with the complex derivative in the direction of the variable z j.

Indeed(
∂ zk

∂ z j

)
p
=

(
∂ (xk + iyk)

∂ z j

)
p
=

1
2

((
∂xk

∂x j
+

∂yk

∂y j

)
+ i
(

∂yk

∂x j
− ∂xk

∂y j

))
= δ jk.

The complexification, as most of the construction in linear algebra, may be extended to
bundles.

Definition 3.4.2 — Complexification of a real vector bundle. If E is a real vector bundle
with cocycle gαβ , then, since every matrix with real coefficients is also a matrix with complex
coefficients, the same cocycle gαβ gives also a complex vector bundlea EC.

aIn this case, even if E is a smooth manifold, we are not claiming that EC has any structure of complex
manifold.

Then, for every p ∈ B, the fibre (EC)p is canonically isomorphic to the complex vector space
Ep ⊗RC.

We define the complexified real tangent bundle (TRM)C as the complexification TRM⊗C
of the real tangent bundle TRM. Note that it naturally contains TRM as (real) subbundle.

It contains all
(

∂

∂ z j

)
p
,
(

∂

∂ z j

)
p
. This identifies the complex subbundle T ′ ⊂ (TRM)C gen-

erated pointwise by the
(

∂

∂ z j

)
p

with the holomorphic tangent bundle T M of M. The complex

conjugation is well defined on (TRM)C. Since
(

∂

∂ z j

)
p
=
(

∂

∂ z j

)
p
, T ′ ⊂ (TRM)C is pointwise

generated by the
(

∂

∂ z j

)
p
. T ′ is the antiholomorphic tangent bundle.

It follows

(TRM)C = T ′⊕T ′ (3.3)

in the sense that T ′ and T ′ are subbundles of (TRM)C such that, for all p ∈ M,
(
(TRM)C

)
p is

the direct sum of its vector subspaces T ′
p and T ′

p.
We deduce

function. The reader that has done complex analysis in one variable will recognize the Cauchy-Riemann relations{
∂g
∂x = ∂h

∂y
∂g
∂y =− ∂h

∂x

Note that(
∂ zk

∂ z j

)
p
=

(
∂ (xk + iyk)

∂ z j

)
p
=

1
2

((
∂xk

∂x j
− ∂yk

∂y j

)
+ i
(

∂yk

∂x j
+

∂xk

∂y j

))
= 0 :

the local coordinates are holomorphic functions.
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Proposition 3.4.3 The real tangent bundle, the holomorphic tangent bundle and the antiholo-
morphic tangent bundle of a complex manifold M are isomorphic as real vector bundles.

Proof. The decomposition (3.3) (TRM)C = T ′ ⊕ T ′ induces surjective morphisms of vector
bundles (TRM)C → T ′ and (TRM)C → T ′ whose restrictions to the real tangent bundle TRM,
since TRM∩T ′ = TRM∩T ′ = {0} are injective and therefore, by a dimension count, isomor-
phisms. ■

Complement 3.4.1 Prove that the definition of the tangent bundle does not depend, up to
automorphisms, on the choice of the atlas.

Exercise 3.4.1 Compute, ∀ j,k(
∂

∂ z j

)
(zk),

(
∂

∂ z j

)
(zk),

(
∂

∂ z j

)
(zk),

(
∂

∂ z j

)
(zk).

Deduce that
(

∂

∂ z j

)
,
(

∂

∂ z j

)
is the local frame (compare Exercise 3.2.6) dual to the functions

z j,z j.





Vector fields and flows
Lie brackets
Frobenius Theorem

4. Vector fields

To ease the notation we consider in this chapter only the real case.

4.1 Vector fields and flows
Definition 4.1.1 A vector field on a manifold M is a section v : M → T M of the tangent
bundle. A vector field is smooth if it is smooth as a map among manifolds. The smooth
vector fields form the vector space X(M).

We are only interested in smooth vector fields, so, unless differently specified, all vector
fields are from now on assumed to be smooth.

For every vector field v, every chart (U,ϕ) for M may be used to represent the vector field v
on U : v|U . If x1, . . . ,xn are the local coordinates given by the chart, there are functions vi : U →R
such that ∀p ∈U , v(p) = ∑vi(p)

(
∂

∂xi

)
p
. We will write v|U as ∑vi

∂

∂xi
.

Vector fields bring naturally to the definition of integral curve.
We first allow the vector fields to vary in time.

Definition 4.1.2 — Variable vector fields. Consider an open subset J ⊂ R with 0 ∈ J.
A smooth variable vector field is a function v : J → X(M) such that, given any chart

(U,ϕ), writing its local coordinates as x1, . . . ,xn, then for all p ∈U

v(t)p =
n

∑
i=1

vi(p, t)
(

∂

∂xi

)
p

with all functions vi : U × J → R smooth.

Vector fields can be seen as a special case of variable vector fields by taking constant
functions v. In other words, they correspond to functions vi that do not depend on t.

Definition 4.1.3 — Integral curves. Consider an open subset J ⊂ R containing 0 and a
smooth variable vector field v : J → X(M).
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We say that a smooth path γ : J → M is an integral curve of v if

∀t0 ∈ J dγt0

(
d
dt

)
t0

= v(t0)γ(t0)

The starting point of γ is γ(0).

In other words the velocity vector of the path γ at each time equals the value of the vector
field at the point where the path is at that same time.

The integral curves of a variable vector field are locally the solutions of a system of differential
equations. In fact, restricting to a chart and writing the definition of integral curve we obtain that
the integral curves are solutions of Cauchy problems, as follows.

Definition 4.1.4 — Cauchy problem. Consider two open subsets J ⊂ R, U ⊂ Rn and
assume 0 ∈ J. For all δ > 0 we denote by Jδ the open interval (−δ ,δ ). If δ is small, Jδ ⊂ J.

We consider a smooth function V : U ×J → Rn and write its components as v j as follows

V ((x1, . . . ,xn), t) = (v1((x1, . . . ,xn), t), . . . ,vn((x1, . . . ,xn), t))

Having fixed δ such that Jδ ⊂ J and a point p ∈ U we say that a function γ : Jδ → U
satisfies the Cauchy problem for V with initial point p if

γ(0) = p and
dγi

dt
= vi(γ(t), t) ∀i = 1, . . . ,n

The functions γ that satisfies the Cauchy problem for V are the integral curves of the vector
field v(t) = ∑

n
i=1 vi(·, t) ∂

∂xi
∈ X(U).

An important result in this framework is the following

Theorem 4.1.5 — Existence and uniqueness of solutions of Cauchy problems. For every
smooth function V : U × J → Rn and for every p ∈U there is a δ > 0, an open subset U ′ ⊂U
containing p and a smooth function g : U ′× Jδ → U such that for all q ∈ U ′ the following
holds: the function γ(t) = g(q, t) satisfies the Cauchy problem for V with initial point q.

The solution is unique in the sense that, if g : U ′× Jδ →U and g′ : U ′′× Jδ ′ →U are two
such functions, they coincide in the common domain (U ′× Jδ )∩ (U ′′× Jδ ′).

We explain the roles of U ′ and δ by an elementary example, which will illustrate in particular
that there is no hope of generalizing Theorem 4.1.5 with U ′ =U .

Example 4.1 Set J = (−1,1) and U = J×Rn−1 ⊂ Rn. So U = {(x1,x2, . . . ,xn)||x1|< 1}.
Choose as V the constant function (1,0,0, . . . ,0). Then we claim that the function

g(q, t) = q+(t,0, . . . ,0)

gives the unique solution of the Cauchy problem for V with initial point q.
This claim is "essentially" correct, as the reader can easily check by computing the right

derivatives.
However we haven’t specified the domain of g, since we haven’t specified neither δ nor

U ′. If we try to set U ′ =U then, doesn’t matter how small we choose δ , the image of g will
not be contained in U , and so the claim becomes wrong since V is defined only on its domain,
U × J.

To make our claim correct we ned to get a well defined g: we need then to fix δ > 0 and
choose U ′ ⊂ (−1,1−δ )×Rn−1.
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Different choices of δ and U ′ give formally different solutions, coinciding in the common
domains as stated in theorem 4.1.5.

Since all solutions coincide in the common domains, we may glue all of them to get a "main",
solution g, that we will denote as flow of V (resp. v). The domain Ω of the flow will no more be
of the product form U ′× Jδ .

Proposition 4.1.6 — Flows. Consider open subsets J ⊂ R, U ⊂ Rn and assume 0 ∈ J.
Consider a smooth function V : U × J → Rn and the corresponding variable vector field

v : J → X(U).
Let Ω ⊂U × J be the union of all possible open subsets U ′× Jδ arising in Theorem 4.1.5.

Then there is a unique function g : Ω →U such that for all p ∈U , g(p,0) = p and the curve
γ(t) = g(p, t) is integral for v.

Moreover g is smooth.

Note that Ω is open and it contains U ×{0}.
Lifting these results to manifolds, we get naturally the following definitions.
Let U be an open subset of M and let Ω be an open subset of U ×R containing U ×{0}.

Consider a smooth map

g : Ω → M

We induce, for all t ∈ R, for all p ∈U , smooth functions

gt : Ωt → M gp : Jp → M

by

gt(p) = gp(t) = g(t, p)

We haven’t specified the domains Ωt and Jp of the maps gt and gp yet. They are the biggest
possible domains for which the definition makes sense, defined by:

Ω∩ (U ×{t}) = Ωt ×{t} Ω∩ ({p}×R) = {p}× Jp

Note that the Ωt are open subsets of M whereas the Jp are open subsets of R containing 0.

Definition 4.1.7 — Local one parameter groups. Let U be an open subset of M and let Ω

be an open subset of U ×R containing U ×{0}. A smooth map

g : Ω → M

is a local one parameter group of smooth transformations of U into M if all maps
gt : Ωt → M are embeddings (so diffeomorphism with their image) and moreover

gs+t(p) = gs(gt(p))

whenever possible, so when (p,s+ t),(p, t),(gt(p),s) all belong to Ω.

We note that if g is a local one parameter group automatically g(p,0) = g0(p) equals p for
all p. In other words g0 is the identity of Ω0 =U .

We associate to every local one parameter group g of smooth transformations of U into M
a smooth vector field on U as follows: it is the unique vector field v ∈ X(U) such that, for all
p ∈U and f ∈C∞(U)

vp( f ) =
d( f ◦gp)

dt
(0)
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In other words, if x1, . . . ,xn are local coordinates at p for M, we consider natural induced local
coordinates x1, . . . ,xn, t at (p,0) for Ω and

vp =
n

∑
i=1

∂ (xi ◦g)
∂ t

(p,0)
(

∂

∂xi

)
p

Shortly, writing gi(x1, . . . ,xn, t) for the ith component of g,

v =
n

∑
i=1

∂gi

∂ t
(0)

∂

∂xi

In particular, the maps gp are integral curves of v with starting point p.
Now we see that conversely every vector field is induced as above by a local one parameter

group, and precisely by its flow.

Proposition 4.1.8 Let M be a manifold without boundary, and consider a point p ∈ M and a
vector field v ∈ X(M).

There is a neighborhood U of p, a δ > 0 and a local one parameter group g : U × Jδ → M
of smooth transformations of U into M such that v is induced by g as above.

If g,g′ are two local one parameter groups inducing the same vector field, then g = g′ in
the common domain.

Proof. The statement being local, we can restrict to a chart in p giving local coordinates x1, . . . ,xn.
In other words, we can assume M to be an open subset of Rn.

Then we can write

v =
n

∑
j=1

v j
∂

∂x j

By Theorem 4.1.5 there is δ > 0, a neighborhood U of p and a smooth map

g : U × Jδ → M

such that for all q ∈U , g(q,0) = q and

∂g
∂ t

(q, t) = (v1(g(q, t)), . . . ,vn(g(q, t))) .

We claim that g is a local one parameter group. For fixed s ∈ Jδ set g1(q, t) = g(q, t + s) and
g2(q, t) = g(gs(q), t). Then both g1 and g2 satisfy the same Cauchy problem

∂u(q, t)
∂ t

= (v1(u(q, t)), . . . ,vn(u(q, t))) u(q,0) = gs(q)

and then by the uniqueness assertion in Theorem 4.1.5 g1(q, t) = g2(q, t). So gt+s(q) = g1(q, t) =
g2(q, t) = gt ◦gs(q):

gt+s = gt ◦gs.

In particular, for all t ∈ Jδ , gt ◦g−t = g−t ◦gt = g0 is the identity, so all gt are embeddings.
It is obvious that g induces v. The uniqueness assertion follows by the uniqueness assertion

in Theorem 4.1.5. ■

It is natural to ask, if, given a vector field, one can obtain a "global" one parameter group, a
local parameter group with U = M and Ω = M×R.
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Definition 4.1.9 — One parameter groups. We say that a smooth map

g : M×R→ M

is a one parameter group of smooth transformations if all gt are diffeomorphisms of M and
moreover for all s, t ∈ R

gs+t = gs ◦gt

Note that in particular g0 is the identity of M and g−1
s = g−s. This leads to the natural interpreta-

tion of one parameter groups as maps t 7→ gt : group homomorphisms from R (seen as abelian
group with the operation +) and the group AutM of the diffeomorphisms of M into itself (seen
as a group with the operation ◦).

The example 4.1 shows that in general integrating a vector field does not give a (global) one
parameter group, but only a local one. However, if the support of the vector field is compact one
can prove the following.

Theorem 4.1.10 Let v be a smooth vector field and assume that its support

suppv = {p ∈ M|vp ̸= 0},

the closure of the complement of the vanishing locus of v, is compact.
Then there exists a unique one parameter group g : M×R→ M of transformations of M

which induces v. Moreover g(p, t) = p for all t when p does not belong to suppv.

Proof. Set K := suppv.
By Proposition 4.1.8, for any p ∈ K there is neighborhood Up of p, a positive number

δ (p)> 0 and a local one parameter group

g(p) : Up × Jδ (p) → M

inducing v on Up. Since K is compact, there are finitely many points p1, . . . , pr such that

K ⊂U :=
r⋃

j=1

Up j .

We set δ := minδ (p j) Then, by the uniqueness assertion in Proposition 4.1.8, g(p j) and g(pk)

coincide on
(
Up j ∩Upk

)
× Jδ . Hence we can define

g : U × Jδ → M

by

g(q, t) = g(p j)(q, t)

for any p j such that q ∈Up j .
We note that if q ∈ U \K, X vanishes in a neighborhood of q and then by the uniqueness

assertion in Proposition 4.1.8, g(q, t) = q for all t. Hence extending g to a function

g : M× Jδ → M

by setting g(q, t) = q for all q ̸∈ K we obtain a smooth function.
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Now recall that if t,s, t + s ∈ Jδ then gt+s = gt ◦gs. We use it to extend g to a one parameter
group

g : M×R→ M

by choosing, for arbitrary t ∈ R, a positive integer k such that |t|< kδ , and then define

gt = gt/k ◦gt/k ◦ · · · ◦gt/k = gk
t/k

It is immediately seen that g is a well defined1 one parameter group inducing v. ■

Exercise 4.1.1 Let v be a variable vector field and let g be its flow. Prove
1. dg(p,0)

(
∂

∂xi

)
(p,0)

=
(

∂

∂xi

)
p

2. dg(p,0)

(
∂

∂ t

)
(p,0)

= v(0)g(p,0)

Exercise 4.1.2 Consider the matrices

At :=
(

1 t
0 1

)
∈ GL1(R)

1. Show that

gt(x,y) = (u,v)⇔
(

u
v

)
= At

(
x
y

)
defines a map

gt : P1
R → P1

R

that is a diffeomorphism.
2. Show that the map g : M×R→ M defined by g(p, t) := gt(p) is a one parameter group.
3. Set v ∈ X

(
P1
R
)

for the vector field associated to g. Compute the locus{
p ∈ P1

R|vp = 0
}
⊂ P1

R

Exercise 4.1.3 Compute the one parameter groups g of the vector fields in Exercise 3.3.4.
Find all t ∈ R such that gt = IdS2k−1 .
Find all t ∈ R such that gt is the antipodal map p 7→ −p. In other words for which t is

gt(−p) = p for all p in S2k−1?

4.2 Lie brackets

The vector fields act on C∞(M): if v is a vector field and f ∈C∞(M), the function v( f ) is naturally
defined by

v( f )(p) = vp([ f ])

1It does not depend on the choice of k since different choices give solutions to the same Cauchy problem, so they
coincide in the common domain
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In local coordinates, if v|M = ∑vi
∂

∂xi
, then v( f )(p) = ∑vi(p)

(
∂

∂xi

)
p

f , which we shortly write

v( f ) = ∑vi
∂ f
∂xi

. (4.1)

If v ∈ X(U) then v( f ) is obviously smooth and therefore we have defined a map

X(U)×C∞(U) → C∞(U)

(v, f ) 7→ v( f )

This associates to each vector field a map from C∞(M) to itself. The image is the space of
derivations of C∞(M), special operators on C∞(M). If v : C∞(M)→C∞(M) is a derivation then

v( f g) = v( f )g+ f v(g) (4.2)

This map is obviously linear and injective since a non trivial vector field yields a nontrivial
derivation. So it gives an isomorphism among the space of vector fields and the space of
derivations. By abuse of notation we are going to use the same notation for a vector field
v ∈ X(M) and the corresponding derivation v : C∞(M)→C∞(M).

Given two derivations v and w we can consider the composition v◦w : C∞(M)→ C∞(M).
This is in general not a derivation. For example, if M = Rn and v = w = ∂

∂xi
then v◦w = ∂ 2

∂x2
i

is
not a derivation since it does not respect (4.2).

On the contrary, v◦w−w◦ v is a derivation!
To show that, we prove that, for all p ∈ M, v◦w−w◦ v acts on Ep as an element of TpM. So

let us choose local coordinates near p and compute v◦w−w◦ v in these coordinates. We write
v = ∑vi

∂

∂xi
, w = ∑w j

∂

∂x j
. Then

v◦w =

(
∑

i
vi

∂

∂xi

)
◦

(
∑

j
w j

∂

∂x j

)
= ∑

i, j
vi

∂w j

∂xi

∂

∂x j
+∑

i, j
viw j

∂ 2

∂xi∂x j

Since by Schwarz Theorem ∂ 2

∂xi∂x j
= ∂ 2

∂x j∂xi

v◦w−w◦ v = ∑
i, j

vi
∂w j

∂xi

∂

∂x j
+∑

i, j
viw j

∂ 2

∂xi∂x j
−∑

i, j
wi

∂v j

∂xi

∂

∂x j
−∑

i, j
wiv j

∂ 2

∂xi∂x j
=

= ∑
j

(
∑

i

(
vi

∂w j

∂xi
−wi

∂v j

∂xi

))
∂

∂x j
(4.3)

The second derivatives have canceled! The expression we have found shows that v◦w−w◦ v is
a vector field.

Definition 4.2.1 — Lie bracket of vector fields. Given two vector fields v,w ∈ X(M) we
denote by [v,w] their Lie bracket

[v,w] := v◦w−w◦ v ∈ X(M)

Consider now two manifolds M and N and a diffeomorphism F : M → N among them.
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Definition 4.2.2 Let v be a vector field on M. Then F induces a vector field F∗v ∈ X(N) by

F∗(v)p = dFF−1(p)(vF−1(p))

Note that it is crucial for the definition that F is supposed to be invertible.
If f ∈C∞(N) then F∗v( f ) = v( f ◦F)◦F−1.

Proposition 4.2.3 If F : M → N is a diffeomorphism then for each v,w ∈ X(M)

F∗[v,w] = [F∗v,F∗w]

Proof. For every open subset U ⊂ N, for every f ∈C∞(U)

[F∗v,F∗w]( f ) = F∗v(F∗w( f ))−F∗w(F∗v( f )) =

= F∗v(w( f ◦F)◦F−1)−F∗w(v( f ◦F)◦F−1) =

= (v(w( f ◦F)−w(v( f ◦F))◦F−1 = F∗([v,w])( f )

■

Now consider a manifold M and a local one parameter group g : U × Jδ → M induced by
a vector field v ∈ X(U). Consider a diffeomorphism F : U →U ′, an open relatively compact2

subset W ⊂ U and set W ′ = F(W ). By the same argument as in the first part of the proof of
Theorem 4.1.10, if ε > 0 is small enough g(W × Jε)⊂U and we obtain a local one parameter
group g′ : W ′× Jε →U ′ by

g′t = F ◦gt ◦F−1

For all f ∈C∞(W ′) and p ∈W ′

F∗v( f )(p) = v( f ◦F)◦F−1(p) =
d( f ◦F ◦gt ◦F−1(p))

dt
(0)

so that g′ induces F∗v on W ′.
In the special case when U and U ′ are both open subsets of M (e.g. F = gt) we get the

following

Proposition 4.2.4 Let F : M → M be a diffeomorphism. Consider a vector field v ∈ X(M)
and its induced local one parameter group g.

Assume that both W and F(W ) are open relatively compact subsets of M and set ε > 0 as
above.

Then we have

F ◦gt(p) = gt ◦F(p)

for all p in W , for all t ∈ Jε if and only if, for all p ∈W

dFp(vp) = vF(p).

This leads us to the following definition

2A subset of a topological space is relatively compact if its closure is compact.
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Definition 4.2.5 Let g : Ω → M be a local one parameter group of smooth transformations of
U into M and let v be a vector field on M.

We say that g leaves v invariant if for any (p, t) ∈ Ω

d(gt)p(vp) = vgt(p)

It is easy to show that any local one parameter group of smooth transformations of U into M,
g : Ω → M, leaves its associated vector field invariant.

Let U ′ be an open subset relatively compact in U and choose a vector field w ∈ X(U).
We can perturbate w using g as follows. For all small t we define vector field wt and dwt/dt

on U ′ by

wt = (gt)∗w
dwt

dt
( f ) =

dwt( f )
dt

This allows us to give the following geometrical interpretation of the Lie bracket as derivative
of one vector field with respect to the one parameter group of transformations induced by the
other vector field.

Proposition 4.2.6 For t small enough, on U ′, if v is the vector field induced by g, then

dwt

dt
= [wt ,v]

Proof. Set Zt := dwt
dt . We first show Z0 = [w,v].

Fix a point p ∈U ′. For small t, (wt)p describes a path in TpU ′ whose velocity at t = 0 is Z0.
Since (wt)p = d(gt)q(wq) for q = g−t(p) then

(Z0)p =
d(wt)p

dt
(0) = lim

t→0

(wt)p −wp

t
= lim

t→0

d(gt)g−t(p)(wg−t(p))−wp

t

Then, for every f ∈C∞(U) we have

(Z0)p( f ) = lim
t→0

d(gt)g−t(p)(wg−t(p))−wp

t
( f ) = lim

t→0

(wg−t(p))( f ◦gt)−wp( f )
t

so

Z0( f ) = lim
t→0

w( f ◦gt)◦g−t −w( f )
t

= lim
t→0

(w( f ◦gt)−w( f )◦gt)◦g−t

t

= lim
t→0

w( f ◦gt)−w( f )◦gt

t

= lim
t→0

w( f ◦gt)−w( f )−w( f )◦gt +w( f )
t

= lim
t→0

w( f ◦gt)−w( f )
t

− lim
t→0

w( f )◦gt −w( f )
t

if the last two limits exist uniformly on U ′.
The second limit is easy. By definition of v

vp(w( f )) = dgp

(
d
dt

)
0
(w( f )) =

d(w( f )◦gp)

dt
(0)
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so

v(w( f )) = lim
t→0

w( f )◦gt −w( f )
t

uniformly on U ′.
For the first limit consider the smooth function h = f ◦g. Then h ∈C∞(U ′× Jδ ) for δ small

enough.
Hence the function

H(p, t) =

{
f◦gt− f

t = h(p,t)−h(p,0)
t for t ̸= 0

∂h
∂ t (p,0) = vp( f ) for t = 0

belongs to C∞(U ′× Jδ ). Hence

lim
t→0

w( f ◦gt)−w( f )
t

= w
(

lim
t→0

f ◦gt − f
t

)
= w(v( f ))

This implies then

Z0 = [w,v] = [w0,v]

on U ′.
Finally, since g leaves v invariant, by definition of wt it follows (gt)∗Z0 = Zt and then

(gt)∗[w,v] = [(gt)∗w,(gt)∗v] = [wt ,v]

on U ′. ■

Exercise 4.2.1 — Properties of the Lie bracket. Let a,b ∈ R, f ∈C∞(U), u,v,w ∈ X(U)
Prove

1. [v,w] =−[w,v]
2. [v, [w,u]]+ [w, [u,v]]+ [u, [v,w]] = 0 [Jacobi identity]
3. [au+bv,w] = a[u,w]+b[v,w]
4. [ f v,w] = f [v,w]−w( f )v
The first three properties give a structure of Lie algebra to X(U).

Exercise 4.2.2 Prove that any local one parameter group of smooth transformations leaves
its associated vector field invariant.

Exercise 4.2.3 — The bracket measures if local one parameter groups commute.
Consider two local one parameter groups g,h of smooth transformations of U in M inducing
respectively vector fields v,w ∈ X(U). Show that [v,w] = 0 if and only if for every open
subset U ′ relatively compact in U , for all p ∈U ′, for small enough t,s

gt(hs(p)) = gs(ht(p))

4.3 Frobenius Theorem
Consider a smooth vector field v on a manifold M and a point p ∈ M such that vp ̸= 0. Then, in
a neighborhood U of p, v does not vanish. Its local one parameter group produces a family of
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integral curves gp : J → M, embedded submanifolds of dimension 1 covering U (a foliation in
curves) whose tangent spaces as subspaces of TqM are generated by vq for all q ∈U .

We will in fact see that one can always choose as U a chart in p with local coordinates
x1, . . . ,xn such that v = ∂

∂x1
and the foliation is given by the lines obtained fixing the values of all

variables x j, j ≥ 2.

R So our foliation gives locally a partition of M in submanifold of dimension 1. This does not
mean that we have a (global) partition of M in submanifolds of dimension 1. See Exercise
4.3.1 for an example.

Can we do this simultaneously for two vector fields v1 and v2? We note that, if there are
local coordinates such that v1 = ∂

∂x1
and v2 = ∂

∂x2
,then their Lie bracket vanish: [v1,v2] = 0

on U . So, if for example we have local coordinates such that v1 =
∂

∂x1
and v2 = ex1 ∂

∂x1
, since

[v1,v2] = ex1 ∂

∂x2
̸= 0, then we have no hope to find coordinates y1, . . . ,yn such that simultaneously

v j =
∂

∂y j
, j = 1,2. Still, if we consider the foliation given by the surfaces obtained fixing the

values of all variables x j, j ≥ 3 their tangent spaces, as subspaces of TqM are generated by v1(q)
and v2(q).

Now consider local vector fields v1 =
∂

∂x1
and v2 = ex1 ∂

∂x2
+ ∂

∂x3
. We compute v3 := [v1,v2] =

ex1 ∂

∂x2
and note that w3(p) is not in the subspace of TpM generated by w1(p) and w2(p). This

implies that there is no embedded surface S in M such that w1(p) and w2(p) lie both in TpS!
In fact, if such a surface S would exist, then w1 and w2 would define vector fields on S whose
bracket at any p ∈ S would coincide, see the forthcoming proposition 4.3.2, with w3(p), so
w1(p), w2(p) and w3(p) would stay in the plane TpS, a contradiction.

To be more precise we need to introduce some definitions.

Definition 4.3.1 Let M be a manifold.
A distribution D of rank r on M is an embedded subbundle of TpM of rank r.
In particular a distribution D of rank r gives, for all p ∈ M, a vector subspace Dp of M of

dimension r. Since subbundles are locally trivial, for each p ∈ M there is a neighborhood U
of p and smooth vector fields v1, . . . ,vr ∈ X(U) generating Dq at each q ∈U .

We say that a vector field v ∈ X(M) lies on D if vp ∈ Dp for all p ∈ M.
A distribution D is involutive if for every pair of vector fields v1,v2 lying on D , their Lie

bracket [v1,v2] lies on D as well.
An embedded subvariety ι : S ↪→ M is an integral submanifold of D if for all p ∈ S,

dιp (TpS) = Dp.
A distribution is integrable if all points of M are contained in an integral submanifold.
A chart (U,ϕ) inducing local coordinates x1, . . . ,xn is flat for a distribution D of rank r

if Dp is generated by
(

∂

∂x1

)
p
, . . . ,

(
∂

∂xr

)
p

at all points p ∈U .

A distribution D is completely integrable if for each point p ∈ M there is chart at p flat
for D .

It is easy to see that

completely integrable ⇒ integrable ⇒ involutive

The first implication is obvious, the second is following

Proposition 4.3.2 If a distribution is integrable, then for any two vector fields lying on it their
Lie bracket lies on it too.
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Proof. Let S ⊂ M be an integral manifold of D . Suppose that v,w are vector fields lying on D .
The restrictions v|S, w|S as section of TS|N are sections of the subbundle TS and then they define
vector fields on S.

By definition, the restriction of the Lie Bracket [v,w] to S, as section of TS|N , equals the Lie
Bracket [v|S,w|S] of vector fields on S, and therefore it lies on D as well. ■

The main result of this section, the Frobenius Theorem 4.3.6, says that these three properties
are equivalent.

R This is related with the problem of solving the following type of differential equations.
Consider an open subset U ⊂ Rn, and look for functions u ∈C∞(U) solving a system of r
differential equations of the form

n

∑
k=1

vk
i (x)

∂u
∂xk

(x) = 0 i = 1, . . . ,r

Consider the r vector fields v1, . . . ,vr ∈ X(U) defined as vi = ∑k vk
i

∂

∂xk
, and assume that

they are all contained in a completely integrable distribution D of rank h ̸= n. Then we have
local coordinates y1, . . . ,yh,yh+1, . . . ,yn such that all vk belong to the subspace generated
by ∂

∂y1
, . . . , ∂

∂yh
and every function depending only on the last coordinates yh+1, . . . ,yn

solve the given differential equations. One can in fact prove that every solution is of this
form, and therefore that if the only involutive distribution containing our vector fields is
the whole tangent bundle, then no non trivial solution exists.

To prove Frobenius Theorem 4.3.6 we need a more general version of Theorem 4.1.5,
considering, roughly speaking, Cauchy problems depending on m parameters. The following
propositions 4.3.3 and 4.3.4 are proven in the book of Narasimhan Analysis on real and complex
manifolds, Chapter 1, Section 8.

Proposition 4.3.3 Consider open subsets J ⊂ R, V ⊂ Rm and U ⊂ Rn.
Consider a smooth map F : U × J×V → Rn.
Then for all t0 ∈ J, p ∈U , for each relatively compact open subset V ′ ⊂V , there exists a

δ > 0 and a smooth function

u : Jδ ×V ′ →U

such that

u(t0,y) = p F(u(t,y), t,y) =
∂u
∂ t

(t,y)

Moreover two such functions coincide in the common domain.

The "solution" u depends on "starting point" p. In fact u is smooth also as a function of the
starting point. Namely Narasimhan proves

Proposition 4.3.4 Consider J,V,U,F as in Proposition 4.3.3.
Then for every t0 ∈ J, p ∈ U , y0 ∈ V there are open subsets t0 ∈ J′ ⊂ J, p ∈ U ′ ⊂ U ,

y0 ∈V ′ ⊂V and a smooth function

ũ : U ′× J′× J′×V ′ →U
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such that, for all q ∈U ′, for all y ∈V ′, for all t,s ∈ J′,

ũ(q,s,s,y) = q F(ũ(q, t,s,y), t,y) =
∂ ũ
∂ t

(q, t,s,y)

Proposition 4.3.3 may be seen as a special case of Proposition 4.3.4 by setting

u(t,y) := ũ(p, t, t0,y)

In fact Proposition 4.3.4 may be seen as a generalization of Proposition 4.3.3 obtained replacing
the "fixed" point p ∈U by a smooth function p : V →U . In other words, if we let the starting
point to vary with the parameters. In fact, in that case, setting

u(t,y) = ũ(p(y), t, t0,y)

we obtain

u(t0,y) = p(y) F(u(t,y), t,y) =
∂u
∂ t

(t,y)

We can now prove the following lemma.

Lemma 4.3.5 Consider open subsets V ⊂ Rm and U ⊂ Rn with respective coordinates
x1, . . . ,xm and y1, . . . ,yn.

Consider smooth functions vi : V ×U → Rn, i = 1, . . . ,m and set vk
i for the kth component

yk ◦ vi of vi.
Then, for each x̄ ∈ V and ȳ ∈ U there exists an open subset W ⊂ V containing x̄ and a

smooth function u : W →U such that{
u(x̄) = ȳ
∂u
∂xi

(x) = vi(x,u(x)) for all x ∈W and i = 1, . . . ,m
(4.4)

if and only if

∂vi

∂x j
+

n

∑
k=1

∂vi

∂yk
vk

j =
∂v j

∂xi
+

n

∑
k=1

∂v j

∂yk
vk

i for all i, j ∈ {1, . . . ,m} (4.5)

in V ×U .
If u : W → U and u′ : W ′ → U are two functions as above, then they coincide on the

connected component of W ∩W ′ containing x̄.

Proof. Assume that there exists a function u solving Problem (4.4). Then

∂ 2u
∂x j∂xi

(x) =
∂

∂x j
vi (x,u(x)) =

∂vi

∂x j
+

n

∑
k=1

∂vi

∂yk
vk

j

The conditions (4.5) follow immediately by Schwarz Theorem.
Conversely assume (4.5). We assume moreover for sake of simplicity x̄ = 0.
Several arguments of the forthcoming proof hold only up to shrinking V , up to substituting

V with a smaller open neighborhood of x̄. After all these shrinkings we obtain the open subset
W of V in the statement of the Lemma. We are going to deliberately ignore this technical point
of the proof to make more evident the idea behind the proof.

We first construct u on the curve x2 = · · ·= xm = 0.
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We consider the Cauchy problem{
y(0) = ȳ
dy
dt (t) = v1(t,0, . . . ,0,y(t)).

By Theorem 4.1.5 we get a unique smooth solution β1 for |t|< δ1. We want to extend it to u in
the sense that u(x1,0, · · · ,0) = β1(x1): we notice that for any such extension (4.4) would hold
for i = 1 on x2 = · · ·= xm = 0.

Now we proceed inductively on m. Assume that we have a smooth function βk−1 on
xk = · · ·= xm = 0. By Proposition 4.3.3 in the generalized form discussed in the remark after
Proposition 4.3.4 there is a unique solution βk of the system of differential equations{

y(0;x1, . . . ,xk−1) = βk−1(x1, . . . ,xk−1)
∂y
∂ t (t;x1, . . . ,xk−1) = vk(x1, . . . ,xk−1, t,0, . . . ,0,y(t;x1, . . . ,xk−1))

We want to extend u on xk+1 = · · ·= xm = 0 by u(x1, . . . ,xk,0, . . . ,0) = βk(xk;x1, . . . ,xk−1). We
notice that for any such extension (4.4) would hold for i = k on xk+1 = · · ·= xm = 0:

∂u
∂xk

(x1, . . . ,xk,0, . . . ,0) = vk((x1, . . . ,xk,0, . . . ,0),u((x1, . . . ,xk,0, . . . ,0)))

However, we need to prove that (4.4) holds also for i < k on xk+1 = · · ·= xm = 0; in other words
we need to prove the analogous equality ∂u

∂xi
= vi holds, even when xk ̸= 0.

To a fixed such i we associate the function h

h(t;x1, . . . ,xk−1) :=

=
∂u
∂xi

(x1, . . . ,xk−1, t,0, . . . ,0)− vi(x1, . . . ,xk−1, t,0, . . . ,0,u(x1, . . . ,xk−1, t,0, . . . ,0))

By Schwarz Theorem and (4.5)

d
dt

h(t;x1, . . . ,xk−1) =
∂ 2u

∂xk∂xi
− ∂vi

∂xk
−∑

l

∂ul

∂xk

∂vi

∂yl

=
∂ 2u

∂xi∂xk
− ∂vi

∂xk
−∑

l
vl

k
∂vi

∂yl

=
∂vk

∂xi
+∑

l

∂ul

∂xi

∂vk

∂yl
− ∂vi

∂xk
−∑

l

∂vi

∂yl
vl

k

=
∂vk

∂xi
+∑

l

(
hl + vl

i

)
∂vk

∂yl
− ∂vi

∂xk
−∑

l

∂vi

∂yl
vl

k

=∑
l

hl(t;x1, . . . ,xk−1)
∂vk

∂yl

exhibiting h as solution of an ordinary differential equation. Moreover, by the inductive assump-
tion h(0;x1, . . . ,xk−1) = 0.

We can deduce by Proposition 4.3.3 that h(t;x1, . . . ,xk−1) = 0, since both h and the zero
function solve the same differential equations with the same data. This proves the claim that
(4.4) holds also for i < k on xk+1 = · · ·= xm = 0.

Then by induction we obtain a function u as required. The uniqueness follows again by the
uniqueness assertion in Proposition 4.3.3. ■

We can now use it to prove Frobenius Theorem
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Theorem 4.3.6 — Frobenius Theorem. A distribution is completely integrable if and only if
it is involutive.

Proof. We have only to prove that every involutive distribution D is completely integrable.
So let D be an involutive distribution on M. We fix a point p in M. We will construct a chart

in p flat for D .
Let r be the rank of D . Then there are, for a suitable open neighborhood U of p in M, r vector

fields ṽ1, . . . , ṽr generating D on each point q ∈U . Shrinking U we can take local coordinates
x1, . . . ,xn on it and write

ṽi =
n

∑
j=1

ṽ j
i

∂

∂x j

The smooth functions ṽ j
i are naturally arranged in a matrix with r rows and n columns, r ≤ n, of

rank r at each point q ∈U . Permuting the coordinates, we ensure that the left r× r minor does
not vanish at p; in other words

det
(

ṽ j
i (p)

)
1≤i, j≤r

̸= 0

Shrinking Ω if necessary, we can assume that det
(

ṽ j
i

)
1≤i, j≤r

never vanishes. So there is a r× r

matrix A = (ai j) of smooth functions ai j ∈C∞(U) such that

A
(

ṽ j
i

)
1≤i, j≤r

=
(

ṽ j
i

)
1≤i, j≤r

A = Ir

Define v̄i := ∑ j ai jṽ j. Since A is invertible, v̄1, . . . , v̄r generate D at each point. We rename
the coordinates, setting y j := xr+ j. So the local coordinates are from now on named x1, · · · ,xr,
y1, · · · ,yn−r. Then, by definition of A

v̄i =
∂

∂xi
+

n−r

∑
h=1

vh
i

∂

∂yh

Note that this implies that, for all q ∈U , Dq ∩
〈(

∂

∂y j

)
q

〉
= 0. We compute

[v̄i, v̄ j] =
n−r

∑
s=1

(
∂vs

j

∂xi
+

n−r

∑
h=1

∂vs
j

∂yh
vh

i −
∂vs

i
∂x j

−
n−r

∑
h=1

∂vs
i

∂yh
vh

j

)
∂

∂ys
.

Since D is involutive and Dq ∩
〈(

∂

∂y j

)
q

〉
= 0, we deduce that [v̄i, v̄ j] = 0.

In other words for all s

∂vs
j

∂xi
+

n−r

∑
h=1

∂vs
j

∂yh
vh

i −
∂vs

i
∂x j

−
n−r

∑
h=1

∂vs
i

∂yh
vh

j = 0

Writing vi :=
(
v1

i , . . . ,v
n−r
i

)
, we obtain

∂v j

∂xi
+

n−r

∑
h=1

∂v j

∂yh
vh

i =
∂vi

∂x j
+

n−r

∑
h=1

∂vi

∂yh
vh

j

that is exactly (4.5).
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To apply Lemma 4.3.5, we shrink U to a product V ×U ′ where V has dimension r, corre-
sponding to the coordinates x j, and U ′ has dimension n− r, corresponding to the coordinates y j.
Accordingly we write p = (x̄, ȳ). Then, up to further shrinking V , there is a function u : V →U ′

such that{
u(x̄) = ȳ
∂u
∂xi

(x) = vi(x,u(x))

Without loss of generality we can assume xi(p) = y j(p) = 0 for all i, j, so x̄ = 0, ȳ = 0. Then
we consider the map ϕ(x,y) = (x,y−u(x)). Its differential dϕp at p is invertible and a direct
straightforward computation shows

dϕp(v̄i) =
∂

∂xi
.

Then, composing the original chart with ϕ we obtain a chart in p flat for D . ■

Exercise 4.3.1 Consider the lines la,b,c in Exercise 2.3.1 and their image π(la,b,c) in the torus
T .

Prove that for every fixed a,b ∈ R there is a distribution Da,b on T such that the π(la,b,c)
locally describe integral submanifolds of Da,b.

Recall that, as seen in Exercise 2.3.1, if a
b ̸∈Q, then π(la,b,c) is not a submanifold of T

because it is dense in T .
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5. Differential forms

5.1 Multilinear algebra

In this section we develop some tools in advanced linear algebra.

Let V1, . . . ,Vq be finite dimensional vector spaces over a field K. For sake of simplicity we
will always assume that K has characteristic zero; this includes R and C.

Definition 5.1.1 A map

ω : V1 ×V2 ×·· ·×Vq →K

is multilinear or qqq-linear or a tensor of degree qqq if the following holds: ∀i ∈ {1, . . . ,q} and
for every choice, ∀ j ̸= i, of vectors v j ∈Vj, the induced map

ψ : Vi →K

defined by, ∀v ∈Vi, ψ(v) = ω(v1, . . . ,vi−1,v,vi+1, . . . ,vq), is linear.

Example 5.1 The tensors of degree 1 form the dual space V ∗
1 of V1.

Example 5.2 The tensors of degree 2 are bilinear maps as, e.g., the standard scalar product
on R2 or R3 (in which case V1 =V2).

Indeed, q−linearity is the natural generalization of the idea of bilinearity to the case of more
than two (but still finitely many) factors.

Example 5.3 If you know the cross product × in R3 you may prove that the map

(v1,v2,v3) 7→ (v1 × v2) · v3

defines a tensor of degree 3.

Example 5.4 For every n ≥ 1 the map det : (Rn)n → R associating, to each ordered list of n
vectors in Rn, the determinant of the matrix whose columns are them, in the same order is a
tensor of degree n.
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Definition 5.1.2 The space of multilinear maps from V1 ×V2 ×·· ·×Vq to K is a vector space
(see Complement 5.1.2), which is the tensor product of V ∗

1 , V ∗
2 , . . ., V ∗

q and is denoted by

V ∗
1 ⊗V ∗

2 ⊗·· ·⊗V ∗
q

R Definition 5.1.2, in the case q = 1, gives the vector space V ∗
1 of all linear maps from V1 to

K: the dual space of V1.

R The expression, ∀v ∈V and ∀ϕ ∈V ∗,

v(ϕ) := ϕ(v)

defines a map V → V ∗∗, which is in general (not assuming finite dimensionality) not
surjective.
We are assuming V finite dimensional. For each basis {e1, . . . ,en} of V , the set of the
elements {ε1, . . . ,εn} of V ∗ determined by the formula εi(e j) = δi j is easily shown to be
a basis of V ∗, the dual basis of {e1, . . . ,en}. In particular, if the dimension of V is finite,
then V has the same dimension of V ∗ and therefore of V ∗∗.
Moreover, the map V → V ∗∗ at the beginning of this remark is obviously injective and
therefore an isomorphism. So we may and will use this map to canonically identify V with
V ∗∗.

Definition 5.1.3 We define then

V1 ⊗V2 ⊗·· ·⊗Vq :=V ∗∗
1 ⊗V ∗∗

2 ⊗·· ·⊗V ∗∗
q

There are some very special elements in V ∗
1 ⊗V ∗

2 ⊗·· ·⊗V ∗
q .

Definition 5.1.4 Choose ∀1 ≤ i ≤ q, an element ϕi ∈V ∗
i .

Then define ϕ1 ⊗·· ·⊗ϕq by

ϕ1 ⊗·· ·⊗ϕq(v1, . . . ,vq) = ϕ1(v1) ·ϕ2(v2) · · · · ·ϕq(vq).

These are the decomposable tensors in V ∗
1 ⊗V ∗

2 · · ·⊗V ∗
q .

Note that
(
∑ j1 a1 j1ϕ1 j1

)
⊗·· ·⊗

(
∑ jq aq jqϕq jq

)
= ∑a1 j1 · · ·aq jqϕ1 j1 ⊗·· ·⊗ϕq jq .

We fix bases {ei1, . . . ,eini} of each space Vi, and we consider the corresponding dual basis
{εi1, . . . ,εini} of V ∗

i . They are uniquely determined by the formula εi j(ei j′) = δ j j′ .

Theorem 5.1.5 The set of decomposable tensors

{ε1i1 ⊗ ε2i2 ⊗·· ·⊗ εqiq}

form a basis of V ∗
1 ⊗V ∗

2 · · ·⊗V ∗
q . In particular

dim
(
V ∗

1 ⊗V ∗
2 · · ·⊗V ∗

q
)
= (dimV1)(dimV2) · · ·(dimVq).

Proof. We skip this proof as it is very similar to the proof of the forthcoming Theorem 5.1.12. ■

A special case is the complexification of a finitely dimensional real vector space V , as defined
in Definition 3.4.1.
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Then V ⊗RC is the real vector space obtained as in Definition 5.1.3 considering C as vector
space of dimension 2 over R.

It has a natural structure of complex vector space with scalar multiplication by complex
numbers defined1 on the decomposable tensors by

∀λ ,µ ∈ C ∀v ∈V λ (v⊗µ) = v⊗ (λ µ).

If {e j} is a basis of V (over R), then {e j ⊗1} is a basis of V ⊗RC over C and {e j ⊗1}∪
{e j ⊗ i} is a basis2 of V ⊗RC over R.

It is natural to consider V embedded in V ⊗RC via v 7→ v⊗1 writing µv for v⊗µ . So {e j}
is at the same time a basis of V over R and V ⊗RC over C whereas a basis of V ⊗RC over R is
the set {e j, ie j}.

The following construction will be useful in the next chapters.

Definition 5.1.6 Consider vector spaces V1, V2, W1, W2, and linear applications L j : Vj →Wj,
j ∈ {1,2}. Then there is a unique linear application

L1 ⊗L2 : V1 ⊗V2 →W1 ⊗W2

such that ∀v1 ∈V1, ∀v2 ∈V2,

(L1 ⊗L2)(v1 ⊗ v2) = L1(v1)⊗L2(v2). (5.1)

Definition 5.1.6 requires the following proof of existence and uniqueness.

Proof. Fix respective bases {v1 j} of V1 and {v2k} of V2. By Theorem 5.1.5, {v1 j ⊗v2k} is a basis
of V1 ⊗V2 so, if L1 ⊗L2 exists, it is the unique linear application L : V1 ⊗V2 →W1 ⊗W2 such that
L(v1 j ⊗ v2k) = L1(v1 j)⊗L2(v2k). This shows uniqueness.

The existence follows since (see Complement 5.1.4)

L

((
∑

j
a1 jv1 j

)
⊗

(
∑
k

a2kv2k

))
= L

(
∑
j,k

a1 ja2kv1 j ⊗ v2k

)
= ∑

j,k
a1 ja2kL(v1 j ⊗ v2k)

= ∑
j,k

a1 ja2kL1(v1 j)⊗L2(v2k)

=

(
∑

j
a1 jL1 (v1 j)

)
⊗

(
∑
k

a2kL2 (v2k)

)

= L1

(
∑

j
a1 jv1 j

)
⊗L2

(
∑
k

a2kv2k

)
. ■

The space of the linear applications among two fixed vector spaces can be interpreted as a
tensor product as follows.

Proposition 5.1.7 Consider two finitely dimensional vector spaces V and W on the same field.
Then there is a canonical isomorphism of vector spaces W ⊗V ∗ → HomK(V,W ) such that

1This extends to the complex numbers the scalar multiplication by real numbers of the real vector space V ⊗RC.
Indeed, for λ real, the equality holds by Definition 5.1.4.

2Here i ∈ C denotes, as usual, a square root of −1.
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every decomposable tensor w⊗ϕ is mapped on the homomorphism

v 7→ ϕ(v)w.

Proof. The proof of the existence and uniqueness of a linear application as stated follows the
same strategy of the proof that the Definition 5.1.6 is well posed. Its injectivity is trivial while its
surjectivity follows by a dimension count using Theorem 5.1.5.

The reader can easily complete the proof writing the missing details. ■

The most important case for our purposes is the case

V1 = · · ·=Vq =: V.

In this case we use the shorter form (V ∗)⊗q for V ∗⊗·· ·⊗V ∗.

Definition 5.1.8 A tensor ω ∈ (V ∗)⊗q is symmetric if its value does not depend on the order
of the vectors. In other words, if ∀i ̸= j,

ω(. . . ,vi, . . . ,v j, . . .) = ω(. . . ,v j, . . . ,vi, . . .).

Similarly, ω ∈ (V ∗)⊗q is an alternating tensor or a skew tensor or a skew form if, ∀i ̸= j,

ω(. . . ,vi, . . . ,v j, . . .) =−ω(. . . ,v j, . . . ,vi, . . .).

The symmetric tensors form a vector subspace of (V ∗)⊗q usually denoted SymqV ∗. The
skew tensors form a vector subspace of it usually denoted ΛqV ∗.

For later convenience we define conventionally (V ∗)⊗0 = Sym0V ∗ = Λ0V ∗ =K.
If dimV is finite, dualizing twice as in Definition 5.1.3 we obtain SymqV and ΛqV .

We are mostly interested in ΛqV ∗. Note Λ0V ∗ = K and Λ1V ∗ = V ∗. In higher degree an
important example of skew tensor is the determinant, seen as tensor of degree dimV in Example
5.4.

Let’s construct some elements in Λ2V ∗. For general ϕ1,ϕ2 ∈V ∗, ϕ1 ⊗ϕ2 is not skew since
there is no reason for ϕ1(v1)ϕ2(v2) to be equal to −ϕ2(v1)ϕ1(v2). Then we use an averaging
procedure.

Definition 5.1.9 ∀ϕ1,ϕ2 ∈V ∗ we definea ϕ1 ∧ϕ2 =
1
2 (ϕ1 ⊗ϕ2 −ϕ2 ⊗ϕ1) ∈ Λ2V ∗.

We can equivalently write ϕ1 ∧ϕ2 in the form

ϕ1 ∧ϕ2 : V ×V → K

(v1,v2) 7→ 1
2 det

(
ϕ1(v1) ϕ1(v2)
ϕ2(v1) ϕ2(v2)

)
aSome author use the alternative definition ϕ1 ∧ϕ2 = ϕ1 ⊗ϕ2 −ϕ2 ⊗ϕ1. That choice forces a series of small

changes in several of the forthcoming definitions to ensure that the Grassmann algebra is a graded algebra. The
two resulting algebras are isomorphic.

This is the wedge product of ϕ1 and ϕ2 and may be seen as a map

∧ : Λ1V ∗×Λ1V ∗ → Λ2V ∗

(ϕ1,ϕ2) 7→ ϕ1 ∧ϕ2

There is a natural extension of this idea to the ΛqV ∗.
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Definition 5.1.10 We define the wedge product

∧ : Λq1V ∗×Λq2V ∗ → Λq1+q2V ∗

(ω1,ω2) 7→ ω1 ∧ω2

as followsa:

ω1 ∧ω2(v1, . . . ,vq1+q2) =

=
1

(q1 +q2)!
∑

σ∈Σq1+q2

ε(σ)ω1(vσ(1), . . . ,vσ(q1))ω2(vσ(q1+1), . . . ,vσ(q1+q2))

where Σk is the group of the permutations of {1, . . . ,k}.

aε(σ) ∈ {±1} is the sign of the permutation σ . If σ is the product of l transpositions, ε(σ) = (−1)l . Every
permutation σ can be written in many different ways as product of transpositions, and the number l of these
transpositions may vary. However ε(σ) is well defined since the parity of l only depends on σ : the reader can
find a proof of it in any basic book of group theory.

Note that Definition 5.1.10 makes sense also when q1 = 0 (and/or q2 = 0), in which case
ω1 = λ ∈K and ω1 ∧ω2 = λω2.

The wedge product has useful properties (see Complement 5.1.12). For example, it is
associative, (kω1)∧ω2 = k(ω1 ∧ω2) = ω1 ∧ kω2, ω1 ∧ω2 = (−1)q1q2ω2 ∧ω1. In particular
we can write kω1 ∧ ·· · ∧ω j without ambiguity. When all the ωi are 1−forms this has a nice
expression.

Proposition 5.1.11 Assume ϕ1, · · · ,ϕq ∈V ∗.
Then

ϕ1 ∧·· ·∧ϕq(v1, . . . ,vq) =
1
q! ∑

σ∈Σq

ε(σ)
q

∏
i=1

ϕi(vσ(i)) =
1
q!

det(ϕi(v j)).

where (ϕi(v j)) denotes the matrixϕ1(v1) · · · ϕ1(vq)
...

. . .
...

ϕq(v1) · · · ϕq(vq)

 .

Proof. The second equality is just the Laplace expansion of the determinant.
We prove the first equality by induction on q. If q = 1 the equality becomes the tautology

ϕ1(v1) = ϕ1(v1): there is nothing to prove.
We may then assume the formula true for q−1: ∀w1, . . . ,wq−1 ∈V

ϕ1 ∧·· ·∧ϕq−1(w1, . . . ,wq−1) =
1

(q−1)! ∑
η ′∈Σq−1

ε(η ′)
q−1

∏
i=1

ϕi(wη ′(i)). (5.2)

We compute the wedge product of ϕ1 ∧·· ·∧ϕq−1 and ϕq by Definition 5.1.10.

(ϕ1 ∧·· ·∧ϕq−1)∧ϕq(v1, . . . ,vq) =

=
1
q! ∑

η∈Σq

ε(η)ϕ1 ∧ ·· ·∧ϕq−1(vη(1), . . . ,vη(q−1))ϕq(vη(q))
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We then apply the inductive assumption (5.2) for (w1, . . . ,wq−1) = (vη(1), . . . ,vη(q−1)). Note
that, for each i, wi = vη(i) and then, for all η ′ ∈ Σq−1, wη ′(i) = vη(η ′(i)). So

(ϕ1 ∧·· ·∧ϕq−1)∧ϕq(v1, . . . ,vq) =

=
1
q! ∑

η∈Σq

ε(η)

(
1

(q−1)! ∑
η ′∈Σq−1

ε(η ′)
q−1

∏
i=1

ϕi(vη(η ′(i)))

)
ϕq(vη(q)) =

=
1

q!(q−1)! ∑
η∈Σq, η ′∈Σq−1

ε(η)ε(η ′)

(
q−1

∏
i=1

ϕi(vη◦η ′(i))

)
ϕq(vη(q)). (5.3)

We consider each permutation η ′ ∈ Σq−1 as a member of Σq which fixes q. Then η ◦η ′ ∈ Σq

and (5.3) may be written as

ϕ1 ∧·· ·∧ϕq(v1, . . . ,vq) =
1

q!(q−1)! ∑
η∈Σq, η ′∈Σq−1

ε(η ◦η
′)

(
q

∏
i=1

ϕi(vη◦η ′(i))

)
.

Each summand in the right-hand term do not really depend on η and η ′, but just on σ :=
η ◦η ′. Varying (η ,η ′) ∈ Σq ×Σq−1 we obtain each σ ∈ Σq exactly (q−1)! times, and therefore

ϕ1 ∧·· ·∧ϕq(v1, . . . ,vq) =
1

q!(q−1)! ∑
σ∈Σq

(q−1)!ε(σ)

(
q

∏
i=1

ϕi(vσ(i))

)

=
1
q! ∑

σ∈Σq

ε(σ)

(
q

∏
i=1

ϕi(vσ(i))

)
■

From now on we fix a basis e1, . . . ,en of V , and we denote by ε1, . . . ,εn the dual basis of V ∗:
then εi(e j) = δi j. Since V ∗ = Λ1(V ∗) the εi are 1-forms.

From the properties in Complement 5.1.12 follow few very useful rules:
• εi ∧ ε j =−ε j ∧ εi;

• εi ∧ εi = 0;

• εi1 ∧·· ·∧ εiq ∧ ε j = (−1)qε j ∧ εi1 ∧·· ·∧ εiq .
Similarly
• εk1 ∧·· ·∧ εkq = 0 when two indices coincide, i.e. ∃i ̸= j ki = k j;

• if we exchange two indices the form εk1 ∧·· ·∧ εkq is multiplied by −1.
Consider vectors v1, . . . ,vq ∈V , vi = ∑k vikek. Then εk(vi) = vik and

ε1 ∧·· ·∧ εq(v1, . . . ,vq) =
1
q!

det(εi(v j)) =
1
q!

det(v ji).

εk1 ∧·· ·∧ εkq(v1, . . . ,vq) =
1
q!

det(εki(v j)) =
1
q!

det(v jki)).

So the functions q!εk1 ∧ ·· · ∧ εkq with increasing indices (1 ≤ k1 < k2 < · · · < kq ≤ n) are the
determinants of the minors of the matrix (vi j).

The next theorem shows that all skew forms may be expressed by using determinants.

Theorem 5.1.12 Let q > 0. The set

{εk1 ∧·· ·∧ εkq |1 ≤ k1 ≨ · · ·≨ kq ≤ n}
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form a basis of Λq(V ∗). In particular

dimΛ
q(V ∗) =

{ (n
q

)
i f q ≤ n

0 i f q > n
.

Proof. We first show that it is a set of linearly independent forms. Take constants a j1··· jq ∈ R
such that

∑
1≤ j1≨···≨ jq≤n

a j1··· jqε j1 ∧·· ·∧ ε jq = 0.

Let us fix i1, . . . , iq with 1 ≤ i1 ≨ · · ·≨ iq ≤ n. From the remark above

0 = q!

(
∑

1≤ j1≨···≨ jq≤n
a j1··· jqε j1 ∧·· ·∧ ε jq

)
(ei1 , . . . ,eiq) = ai1···iq .

To prove that it is a set of generators we need to show that each ω ∈ Λq(V ∗) is a linear
combination of the forms ε j1 ∧·· ·∧ ε jq .

We define

η := ω −q!

(
∑

1≤ j1≨···≨ jq≤n
ω(e j1 , . . . ,e jq)ε j1 ∧·· ·∧ ε jq

)

and conclude the proof by showing η = 0.
By definition of η (still using the formulas of the remark above) i1 ≨ i2 ≨ · · · ≨ iq ⇒

η(ei1 , . . . ,eiq) = 0. Since η is alternating, it follows that η(ei1 , . . . ,eiq) = 0 when the eil are
pairwise distinct. Moreover (Complement 5.1.9) η(ei1 , . . . ,eiq) = 0 when two of the vectors
coincide. So η(ei1 , . . . ,eiq) vanishes always.

Finally, since η is linear in all factors, ∀v1, . . . ,vq ∈V , η(v1, . . . ,vq) is a linear combination
of the η(ei1 , . . . ,eiq). It follows η = 0. ■

Definition 5.1.13 A graded vector space V • is a vector space containing subspacesa V q,
q ∈ Z such that V • =

⊕
qV q. An element v ∈V q is a homogeneous element of degree q.

The Hilbert function of the graded vector space V • is the function HF(V •) : Z →
N∪{∞} associating to each integer q the dimension of V q.

A linear application among two graded vector spaces L : V • →W • has degree d if ∀q ∈Z,
L(V q)⊂W q+d .

An isomorphism of graded vector spaces is an isomorphism of vector spaces of degree
zero.

aThere are books in literature writing the definition of graded vector space with grading q in N instead of Z.
That definition can be seen as a special case of our definition, the case when V q = {0} for all q < 0. In fact we
will be in that situation for almost all the graded vector spaces considered in these notes. However it is more usual
nowadays to introduce this notion with gradings in Z because graded vector spaces with negative gradings are
important for several applications.

Isomorphic graded vector spaces have the same Hilbert function and, conversely, two graded
vector spaces having the same Hilbert function, if their Hilbert function has values in N (so never
∞), are isomorphic.

Note that every element v ∈V • can be uniquelly decomposed as v := ∑vq with vq homoge-
neous of degree q.



80 Chapter 5. Differential forms

Definition 5.1.14 A graded algebra V • is a graded vector space provided with an inter-
nal product × : V •×V • → V • giving a structure of algebra on it such that if v and w are
homogeneous elements of respective degree p and q then v×w is homogeneous of degree
p+q.

A homomorphism of graded algebras L : V • →W • is a linear application of degree 0
such that ∀v,w ∈V •, L(v×w) = L(v)×L(w).

An invertible homomorphism of graded algebras is an isomorphism of graded algebras.

Definition 5.1.15 The exterior algebra or Grassmann algebra is the graded algebra
Λ•V ∗ :=

⊕
q≥0 ΛqV ∗ considered with the internal product given by the wedge product.

So an element of the exterior algebra is a formal sum of q−forms. From Theorem 5.1.12
dimΛ•V ∗ = ∑

dimV
q=0

(dimV
q

)
= (1+1)dimV = 2dimV .

Linear applications between vector spaces induce naturally linear applications among their
spaces of tensors, mapping symmetric tensors to symmetric tensors and skew tensors in skew
tensors. Since we are mostly interested in skew tensors, we consider only the latter.

Definition 5.1.16 Let L : V →W be a linear application. It naturally induces linear applica-
tions (pull-backs)

L∗ : Λ
qW ∗ → Λ

qV ∗

defined by (L∗ω)(v1, . . . ,vq) = ω(L(v1), . . . ,L(vq)), defining a linear application of degree
zero

L∗ : Λ
•W ∗ → Λ

•V ∗.

R To ease the notation we have done an abuse of notation attributing the same symbol, L∗,
to many different maps. Several similar abuses will follow. This is a standard choice in
differential geometry: the student should try to get used to it.

R If q = 1, L∗ is the usual dual map .

R By definition (L1 ◦L2)
∗ = L∗

2 ◦L∗
1.

By the complements 5.1.13 and 5.1.14 and by Theorem 5.1.12 we can express each L∗

(for every q) in terms of the linear application dual to L. The most interesting case is the case
when V = W and q = dimV . The next theorem shows that in this case L∗ coincides with the
multiplication by the determinant of L.

Proposition 5.1.17 Let L : V →V linear, ω ∈ ΛdimVV ∗. Then

L∗
ω = (detL)ω.

Proof. Setting n := dimV , by Theorem 5.1.12 dimΛnV ∗ = 1 and therefore the linear application
L∗ : ΛnV ∗ →ΛnV ∗ is the multiplication by a constant c∈K. Since (ε1∧·· ·∧εn)(e1, . . . ,en) =

1
n! ,

then L∗(ε1 ∧·· ·∧εn)(e1, . . . ,en) =
c
n! . It is then enough to show n!L∗(ε1 ∧·· ·∧εn)(e1, . . . ,en) =

detL.
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Indeed, by Definition 5.1.16 and Proposition 5.1.11

n!L∗(ε1 ∧·· ·∧ εn)(e1, . . . ,en) = n!ε1 ∧·· ·∧ εn(L(e1), . . . ,L(en))

= det

ε1(L(e1)) · · ·ε1(L(en))
...

. . .
...

εn(L(e1)) · · ·εn(L(en))


= detL. ■

Complement 5.1.1 — The dual basis. Let {e1, . . . ,en} be a basis of a vector space V .
Prove that ∀1 ≤ j ≤ n there is a unique ε j ∈V ∗ such that ∀1 ≤ i ≤ n, ε j(ei) = δi j.
Show that {ε1, . . . ,εn} is a basis of V ∗.

Complement 5.1.2 Let V1, . . . ,Vq finitely dimensional vector spaces over K.
Show that the following operations give to V ∗

1 ⊗·· ·⊗V ∗
q a structure of vector space over

K.
+:

∀ω1,ω2 ∈V ∗
1 ⊗·· ·⊗V ∗

q , ∀vi ∈Vi, (ω1+ω2)(v1, · · · ,vq) =ω1(v1, · · · ,vq)+ω2(v1, · · · ,vq)

·:

∀λ ∈K,∀ω ∈V ∗
1 ⊗V ∗

2 ⊗·· ·⊗V ∗
q , ∀vi ∈Vi, (λω)(v1, · · · ,vq) = λω(v1, · · · ,vq)

Complement 5.1.3 — Decomposable tensors. Check that the functions ϕ1 ⊗·· ·⊗ϕq in
Definition 5.1.4 are tensors in V ∗

1 ⊗V ∗
2 ⊗·· ·⊗V ∗

q by showing their multilinearity.

Complement 5.1.4 Let V1, . . . ,Vq be vector spaces over K.
Prove the following equalities.
• Let i ∈ {1, . . . ,q}. Then for every choice of q elements ϕ j ∈Vj, for all 1 ≤ j ≤ q, and

of a further ϕ ′
i ∈Vi, it holds

ϕ1⊗·· ·⊗ (ϕi+ϕ
′
i )⊗·· ·⊗ϕq = ϕ1⊗·· ·⊗ϕi⊗·· ·⊗ϕq+ϕ1⊗·· ·⊗ϕ

′
i ⊗·· ·⊗ϕq.

• Let i ∈ {1, . . . ,q}. Then for every choice of q elements ϕ j ∈Vj, for all 1 ≤ j ≤ q, and
of a scalar λ ∈K, it holds

ϕ1 ⊗·· ·⊗ (λϕi)⊗·· ·⊗ϕq = λ (ϕ1 ⊗·· ·⊗ϕi ⊗·· ·⊗ϕq)

Let {ei j} be respective bases of Vi. Deduce from the previous equalities that for each
choice of scalars λi j ∈K(

dimV1

∑
j=1

λ1 je1 j

)
⊗·· ·⊗

(
dimVq

∑
j=1

λq jeq j

)
=

dimV1

∑
j1=1

· · ·
dimVq

∑
jq=1

((
q

∏
i=1

λi ji

)
e1 j1 ⊗·· ·⊗ eq jq

)
.

Complement 5.1.5 Write the details of the proof of Proposition 5.1.7.
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Complement 5.1.6 Prove Theorem 5.1.5.

Complement 5.1.7 Prove that SymqV ∗ and ΛqV ∗ are vector subspaces of (V ∗)⊗q.

Complement 5.1.8 Show that map det defined in Example 5.4 is a tensor in ((Rn)∗)⊗n and
that it is decomposable if and only if n = 1.

Show that det ∈ Λn(Rn)∗.

Complement 5.1.9 Let ω be a skew tensor.
Prove that if ω(v1, . . . ,vq) ̸= 0, then the vi are pairwise distinct.

Complement 5.1.10 Let V be a vector space over K.
Prove that, for all ϕ,ϕ1,ϕ2 ∈V ∗, λ1,λ2 ∈K,
• ϕ ∧ϕ = 0.

• ϕ1 ∧ϕ2 =−ϕ2 ∧ϕ1.

• (λ1ϕ1 +λ2ϕ2)∧ϕ = λ1(ϕ1 ∧ϕ)+λ2(ϕ2 ∧ϕ).

• ϕ ∧ (λ1ϕ1 +λ2ϕ2) = λ1(ϕ ∧ϕ1)+λ2(ϕ ∧ϕ2).

Complement 5.1.11 Let V be a vector space over K.
Prove that, for all ϕ1,ϕ2 ∈V ∗, λ1,λ2 ∈K, v,v1,v2 ∈V
• ϕ1 ∧ϕ2(v,v) = 0.

• ϕ1 ∧ϕ2(v1,v2) =−ϕ1 ∧ϕ2(v2,v1)

• ϕ1 ∧ϕ2(λ1v1 +λ2v2,v) = λ1ϕ1 ∧ϕ2(v1,v)+λ2ϕ1 ∧ϕ2(v2,v).

• ϕ1 ∧ϕ2(v,λ1v1 +λ2v2) = λ1ϕ1 ∧ϕ2(v,v1)+λ2ϕ1 ∧ϕ2(v,v2).

Complement 5.1.12 Let V be a vector space over K.
Prove that, for all q1,q2,q3 ∈ N, ω1,η1 ∈ Λq1V ∗, ω2 ∈ Λq2(V ∗), ω3 ∈ Λq3(V ∗), k ∈K,
• ω1 ∧ω2 ∈ Λq1+q2(V ∗);

• (ω1 +η1)∧ω2 = ω1 ∧ω2 +η1 ∧ω2; ω2 ∧ (ω1 +η1) = ω2 ∧ω1 +ω2 ∧η1;

• (kω1)∧ω2 = k(ω1 ∧ω2) = ω1 ∧ (kω2);

• (ω1 ∧ω2)∧ω3 = ω1 ∧ (ω2 ∧ω3).

• ω1 ∧ω2 = (−1)q1q2ω2 ∧ω1;

Complement 5.1.13 — Pull-back. Let V,W be vector spaces over the same field and let
L : V →W be a linear application.

Prove that all maps L∗ : ΛqW ∗ → ΛqV ∗ in Definition 5.1.16 are linear.

Complement 5.1.14 — Pull-back and wedge product commute. Let V,W be vector
spaces over the same field K and let L : V →W be a linear application.

Show that ∀ω,η ∈ Λ•V ∗, L∗(ω ∧η) = L∗ω ∧L∗η .
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Exercise 5.1.1 Set V = R3 and consider the map ω : V 3 → R defined by ω(v1,v2,v3) =
(v1 × v2) · v3,

Show that ω ∈ (V ∗)⊗3.
Show that ω is skew.
Deduce that ω is a generator of Λ3V ∗.

Exercise 5.1.2 Show that, if ∀1 ≤ i ≤ q dimVi = 1, all tensors in V ∗
1 ⊗·· ·⊗V ∗

q are decom-
posable.

Exercise 5.1.3 Show that, for each decomposable tensor ω ∈ (V ∗)⊗q different from 0, the
set

{v ∈V |ω(v,v, . . . ,v) = 0}

is a union of finitely many hyperplanes of V .

Exercise 5.1.4 Prove that, ∀q ≥ 2, there is a tensor in
(
R2
)⊗q not decomposable.

Exercise 5.1.5 Consider, for each bilinear form ω ∈ (Kn)∗ ⊗ (Kn)∗, the unique square
matrix A ∈ Mn(K) such that ω(v,w) = wT Av. Show that this gives an isomorphism among
(Kn)∗⊗ (Kn)∗ and Mn(K). Show that this induces two isomorphisms

• among Sym2(Kn)∗ and the space of the symmetric n×n matrices;
• among Λ2(Kn)∗ and the space of the skewsymmetric n×n matrices.

Exercise 5.1.6 Assume dimV ≥ 1. Show that Symq(V ∗)∩Λq(V ∗) ̸= {0}⇔ q ≤ 1.

Exercise 5.1.7 Show that (V ∗)⊗2 = Sym2(V ∗)⊕Λ2V ∗. Is there a similar relation when
q ≥ 3?

Exercise 5.1.8 Show that there is a canonical (so you are not allowed to use a basis to
construct it) isomorphism V ∗⊕W ∗ ∼= (V ⊕W )∗.

Exercise 5.1.9 Show that there is a canonical isomorphism Λ2(V ⊕W )∗ ∼= Λ2V ∗⊕Λ2W ∗⊕
(V ∗⊗W ∗).

Exercise 5.1.10 Let ϕ1,ϕ2 ∈ (Rn)∗. Prove that 2|ϕ1 ∧ϕ2(v1,v2)| is the area of the parallelo-
gram in R2 spanned by the vectors (ϕ1,ϕ2)(v1) and (ϕ1,ϕ2)(v2).

Exercise 5.1.11 Show that ω ∈ Λ2q+1(V ∗)⇒ ω ∧ω = 0.

Exercise 5.1.12 Show that ω ∈ Λq(V ∗), q > 0, dimV ≤ 3 ⇒ ω ∧ω = 0.
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Exercise 5.1.13 Find an alternating form ω ∈ Λq(V ∗), q > 0 with ω ∧ω ̸= 0.

Exercise 5.1.14 Let v1, . . . ,vm and w1, . . . ,wm two sets of linearly independent vectors in the
same vector space V . Show that

⟨v1, . . . ,vm⟩= ⟨w1, . . . ,wm⟩

if and only if there is λ ∈K\{0} such that

v1 ∧·· ·∧ vm = λw1 ∧·· ·∧wm.

Exercise 5.1.15 Assume V = R3. Compute explicitly the wedge product of two general
1-forms. Compare the result with the usual definition of cross product on R3.

5.2 Operations on vector bundles

All standard constructions in linear algebra have a relative version in the category of vector
bundles. We give here some of them.

Direct sum. Consider two vector bundles E and E ′ of respective ranks r and r′ on the same
base B.

The fibre product E ×B E ′ has a natural structure of vector bundle of rank r+ r′ over B given
by the induced map π ⊕π ′ : E ×B E ′ → B defined by the commutative diagram below.

E ×B E ′

π⊕π ′

##
��

// E

π

��

E ′ π ′
// B

We note that by definition there is a canonical isomorphism, for each p ∈ B

Ep ⊕E ′
p
∼= (E ×B E ′)p.

Indeed, we define the direct sum E ⊕E ′ of the vector bundles E and E ′ to be the vector bundle
whose total space is E ⊕E ′ := E ×B E ′ and whose map is π ⊕π ′.

Let us have a look to the cocycles of these bundles. We take trivializations of E and E ′

relative to the same open cover {Uα} of B (see Complement 3.1.2); they induce a trivialization
of E ⊕E ′ in a natural way.

Consider the corresponding cocycles {gαβ} for E and {g′
αβ

} for E ′. Then the cocycle of
E ⊕E ′ is {gαβ ⊕g′

αβ
} where

gαβ ⊕g′
αβ

:=
(

gαβ 0
0 g′

αβ

)
∈ GL(r+ r′,K). (5.4)

Then E ⊕E ′ is a vector bundle of rank equal to the sum of the ranks of E and of E ′.
By Proposition 3.2.2 we could use (5.4) as definition of the direct sum (E ⊕E ′,π ⊕π ′) (up

to isomorphisms). Indeed, we will do the next constructions with the last method, by producing
cocycles, since it is more convenient in those cases.

Tensor product. For every two vector bundles E and E ′ of respective ranks r and r′ on the
same base B, we define the vector bundle E ⊗E ′ as the vector bundle of rank rr′ on B given as



5.3 The algebra of the differential forms 85

follows: given cocycles {gαβ} of E and {g′
αβ

} of E ′ relative to the same cover of B, we define
E ⊗E ′ through the cocycle {gαβ ⊗g′

αβ
} (see Definition 5.1.6).

Then, for every p ∈ B, the fibre (E ⊗E ′)p is canonically isomorphic to Ep ⊗E ′
p.

Similarly we define, for every vector bundle E of rank r and for all q ∈ N, the vector bundles
E⊗q and (E∗)⊗q of rank rq.

Dual. Let E be a vector bundle on a base B with cocycle {gαβ}. Then we define E∗ to
be the bundle with cocycle {t(g−1

αβ
)} (here t stands for "transpose"). Then we have canonical

isomorphisms among each fibre E∗
p and the dual of Ep.

Exterior powers. We define ΛqE∗ as the subbundle of (E∗)⊗q given, as subset, by all
elements that are skew as q−linear application on the corresponding fibre Ep of E.

Complexification.3 If E is a real vector bundle with cocycle gαβ , then, since every matrix
with real coefficients is also a matrix with complex coefficients, the same cocycle gαβ gives also
a complex vector bundle4 EC. Indeed, for every p ∈ B, the fibre (EC)p is canonically isomorphic
to the complex vector space Ep ⊗RC.

Hom. For each pair of vector bundles E and E ′ over the same B, we define the vector bundle
Hom(E,E ′) as E ′⊗E∗. The canonical isomorphisms Hom(E,E ′)p ∼= Hom(Ep,E ′

p) follows by
Proposition 5.1.7.

Complement 5.2.1 Show that E ⊕E ′ is well defined up to isomorphisms by showing that if
we choose different cocycles for E and E ′ we obtain an isomorphic vector bundle.

Exercise 5.2.1 Show that, if E is any line bundle, then E ⊗E∗ is trivial.

Exercise 5.2.2 — The Picard group. Prove that the tensor product ⊗ defines a structure of
abelian group on the set of line bundles over a fixed base B modulo isomorphisms.

Exercise 5.2.3 Show that the hyperplane bundle of P1
K is dual to the tautological bundle.

Exercise 5.2.4 Let H be a hyperplane of Pn
C, the locus{

n

∑
0

aixi = 0

}

where the ai are complex numbers not all equal to zero.
Show that there is a holomorphic section of the hyperplane bundle vanishing exactly

along H.

Exercise 5.2.5 Note that every complex vector bundle is also a real vector bundle.
Prove that EC, as real vector bundle, is isomorphic to E ⊕E.

5.3 The algebra of the differential forms

We define the differential forms as sections of suitable vector bundles.

3Note that this definition is equivalent to Definition 3.4.2
4In this case, even if E is a smooth manifold, we are not claiming that EC has any structure of complex manifold.
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Indeed we have defined, for every real manifold M, the tangent bundle T M, which induces
∀1 ≤ q ≤ dimM, by the theory of the vector bundles, a bundle ΛqT ∗M := Λq(T M)∗. Conven-
tionally we set Λ0T ∗M to be the trivial bundle of rank 1. The bundle Λ1T ∗M is the cotangent
bundle. The bundle ΛdimMT ∗M is the real canonical5 bundle.

Definition 5.3.1 A (smooth)a differential q-form or differential form of degree q on a
manifold M is smooth section ω of the vector bundle ΛqT ∗M → M.

The form ω is smooth if it is smooth as a map among manifolds. The smooth q-forms
form the vector space Ωq(M).

Conventionally,

Ω
q(M) = {0} for q < 0 Ω

0(M) =C∞(M) Ω
•(M) =⊕q∈ZΩ

q(M)

aWe will only consider smooth sections in this notes, so we will often drop the word smooth for sake of
brevity.

Note that, since for all q > dimM the vector bundle ΛqT ∗M has rank zero, then Ωq(M) = {0}
and we can equivalently write

Ω
•(M) =⊕dimM

q=0 Ω
q(M)

The smooth q-forms act naturally on X(M)q; that is we can see every q-form ω as a map

ω : X(M)q →C∞(M)

as follows. For every choice of q smooth vector fields v1, . . . ,vq, ω(v1, . . . ,vq) is the function
defined by

∀p ω(v1, . . . ,vq)(p) := ωp(v1(p), . . . ,vq(p)).

We have then a natural map

Ω
q(U)× (X(U))q →C∞(U).

For every q-form ω , charts (U,ϕ) for M may be used to represent locally the form, that is to
write the restriction of ω to U ω|U , as follows. Let x1, . . . ,xn be the local coordinates induced by

the chart. ∀p ∈U we have an induced basis
{(

∂

∂xi

)
p

}
of TpM.

Definition 5.3.2 We denote by {(dx1)p, . . . ,(dxn)p} the basis of (TpM)∗ dual to the basis{(
∂

∂x1

)
p
, . . . ,

(
∂

∂xn

)
p

}
of TpM.

In other words (dxi)p

(
∂

∂x j

)
p
= δi j.

This let us write locally in a simple way the 1− forms, since for every ω ∈ Ω1(M) locally
there are unique smooth functions ω1, . . . ,ωn such that, for all p,

ωp =
n

∑
1

ωi(p)(dxi)p

5To the knowledge of the author the word “canonical bundle” in literature is usually reserved to the complex case.
People refers to the canonical bundle for the bundle of the holomorphic n−forms, the bundle of the (n,0)-forms
discussed at the end of this section.

We find it natural to use the same word for the analogous real case, but we want to inform the student that this
notation is not common in the literature.
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Note ωi = ω

(
∂

∂xi

)
. We will write

ω = ∑
i

ωidxi

To write similarly the q−forms we introduce the following notation.

Notation 5.1. A multiindex I = (i1, . . . , iq) of positive integers, is an ordered sequence such that
∀ j, i j ∈ N.

We will say that I has length q, and we will denote by dxI the element dxi1 ∧ ·· · ∧ dxiq ∈
Ωq(U). Similarly (dxI)p = (dxi1)p ∧·· ·∧ (dxiq)p for all p.

If q = 0, I = /0, in which case dx /0 := 1.

Locally, by Theorem 5.1.12, for every smooth differential q−form ω , there are smooth
functions ωI = ωi1···iq : U → R where I runs along all multiindices I = (i1, . . . , iq) with 1 ≨ i1 ≤
·· ·≨ iq ≤ n, such that

ωp = ∑
1≨i1≤···≨iq≤n

ωi1···iq(p)(dxi1)p ∧·· ·∧ (dxiq)p = ∑
I

ωI(p)(dxI)p

In fact ωi1···iq = q!ω
(

∂

∂xi1
, . . . , ∂

∂xiq

)
. We will write

ω|U = ∑
1≨i1≤···≨iq≤n

ωi1···iqdxi1 ∧·· ·∧dxiq = ∑
I

ωIdxI.

Also the action of ω on X(M)q can be described in local coordinates. If ω|U = ∑ωIdxI , then

ω(v1, . . . ,vq)(p) = ∑ωI(p)(dxI)p(v1(p), . . . ,vq(p)).

The graded vector space Ω•(M) :=⊕qΩq(M) is called algebra of the differential forms
analogous to the exterior algebra Λ•V ∗ of a vector space. The internal product defining its
algebra structure is the wedge product, defined intrinsecally using Definition 5.1.10 of the wedge
product of alternating forms as follows.

Definition 5.3.3 Let ω1 be a differential q1-form on M, ω2 be a differential q2-form on M.
Then we define ω1 ∧ω2 as the (q1 +q2)-form such that ∀p ∈U , (ω1 ∧ω2)p = (ω1)p ∧ (ω2)p.

The wedge product of smooth forms is smooth, since sums of products of smooth functions
are smooth. So we get bilinear maps

∧ : Ω
q1(M)×Ω

q2(M)→ Ω
q1+q2(M)

which inherits all the properties of the wedge product of alternating forms. Namely (see
Complement 5.1.12)

• Let ω1,η1 ∈ Ωq1(M), ω2 ∈ Ωq2(M); then (ω1 +η1)∧ω2 = ω1 ∧ω2 +η1 ∧ω2; ω2 ∧ (ω1 +
η1) = ω2 ∧ω1 +ω2 ∧η1.

• Let ω1 ∈ Ωq1(M), ω2 ∈ Ωq2(M), f ∈ C∞(M). Then ( f ω1)∧ω2 = f (ω1 ∧ω2) = ω1 ∧
( f ω2).

• Let ω1 ∈ Ωq1(M), ω2 ∈ Ωq2(M), ω3 ∈ Ωq3(M), then (ω1 ∧ω2)∧ω3 = ω1 ∧ (ω2 ∧ω3).

• Let ω1 ∈ Ωq1(M), ω2 ∈ Ωq2(M), then ω1 ∧ω2 = (−1)q1q2ω2 ∧ω1.
Note that this applies also to 0−forms. Namely, if f ∈ Ω0(M) =C∞(M), then

f ∧ω = f ω

Then Ω•(M), with the three given operations (multiplication by scalar, sum, wedge product),
is a graded R−algebra.



88 Chapter 5. Differential forms

Example 5.5 ω := x1dx2 is a 1-form; ω ∈ Ω1(M), degω = 1.
τ := x2dx1 ∧dx2 +dx3 ∧dx1 is a 2-form; τ ∈ Ω2(M), degτ = 2.
ω + τ is a form, ω + τ ∈ Ω•(M) but ω + τ is not a q-form. Indeed, ω ̸∈

⋃
q Ωq(M).

In contrast ω ∧ τ is a 3-form:

ω ∧ τ = x1dx2 ∧ (x2dx1 ∧dx2 +dx3 ∧dx1)

= x1dx2 ∧ (x2dx1)∧dx2 + x1dx2 ∧dx3 ∧dx1

= x1x2dx2 ∧dx1 ∧dx2 − x1dx2 ∧dx1 ∧dx3

=−x1x2dx1 ∧dx2 ∧dx2 + x1dx1 ∧dx2 ∧dx3

= x1dx1 ∧dx2 ∧dx3.

Now let us consider the real canonical bundle. It is a line bundle.
Definition 5.3.4 Let M be a manifold of dimension n. A volume form on M is a form
ω ∈ Ωn(M) such that ∀p ∈ M, ωp ̸= 0.

By Exercise 3.2.2 the real canonical bundle of M is trivial if and only if there is a volume
form on M.

The real canonical bundle of S1 is the dual of its tangent bundle, which is trivial by Exercise
3.3.4. So its real canonical bundle is trivial as well and we may conclude that there is a volume
form on S1. Note however that this argument does not allow us to conclude anything about the
triviality of the real canonical bundle of any other sphere (including the odd dimensional ones).

5.3.1 The holomorphic q−forms
Let us consider a complex manifold M of dimension n. Then we have:

• the real cotangent bundle Λ1
RT ∗M, which is the cotangent bundle of M as real manifold;

• its complexification: the complexified real cotangent bundle Λ1
CT ∗M;

• the holomorphic cotangent bundle Λ1,0T ∗M: this is the cotangent bundle as complex
manifold, and it is naturally embedded as subbundle of the complexified real cotangent
bundle;

• the antiholomorphic cotangent bundle Λ0,1T ∗M = Λ1,0T ∗M: this is the conjugated of
the holomorphic cotangent bundle in the complexified real cotangent bundle.

If z j = x j + iy j are local coordinates then locally
• the real cotangent bundle is generated by the dx j, dy j (on the real numbers);

• the complexified real cotangent bundle is generated by the dx j, dy j (on the complex
numbers);

• the holomorphic cotangent bundle is generated by the dz j = (dx j + idy j);

• the antiholomorphic cotangent bundle is generated by the dz j = (dx j − idy j).
It follows immediately

Λ
1
CT ∗M = Λ

1,0T ∗M⊕Λ
0,1T ∗M

Please note

dz j

(
∂

∂ zk

)
= δ jk, dz j

(
∂

∂ zk

)
= 0, dz j

(
∂

∂ zk

)
= 0, dz j

(
∂

∂ zk

)
= δ jk.

Something similar happens for higher forms. We have
• the real higher cotangent bundles Λ

q
RT ∗M, the bundle of q−forms as real manifold;
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• their complexification: the complexified real higher cotangent bundles Λ
q
CT ∗M;

• the holomorphic higher cotangent bundles Λq,0T ∗M: this is the holomorphic analog
of the bundle of q−forms, and it is naturally embedded in the complexified real higher
cotangent bundle Λ

q
CT ∗M as subbundle generated by the dzi1 ∧·· ·∧dziq ;

• the (((ppp,,,qqq)))-cotangent bundles Λp,qT ∗M: this is the subbundle of Λ
p+q
C T ∗M locally gener-

ated by the dzi1 ∧·· ·∧dzip ∧dz j1 ∧·· ·∧dz jq .
The reader can easily prove the following properties, and namely
• the (((p,q)-cotangent bundle are interesting only for p,q both not bigger than dimM since

∀P ∈ M if max(p,q)≥ 1+dimM then (Λp,qT ∗M)P = {0};

• the (p,q)-cotangent bundles split the complexified real higher cotangent bundles as direct
sum:

Λ
k
CT ∗M =⊕p+q=kΛ

p,qT ∗M;

• the complex conjugation on Λk
CT ∗M acts on them exchanging p and q:

Λ
p,qT ∗M = Λq,pT ∗M.

It is natural then to write Ωq(M) for the q−forms as real manifolds, Ωp,0(M) for the p−forms
as complex manifolds, so holomorphic sections of the complexified real higher cotangent bundle
Λp,0T ∗M, and finally Ωp,q(M) for the holomorphic sections of Λp,qT ∗M, the holomorphic
(((p,q)-forms. The usual notation for the bigger space of the smooth sections of Λp,qT ∗M is
Ap,q(M).

For example, both z1dz1 ∧ dz2 and z1dz1 ∧ dz2 belong to A1,1(C2) but the latter does not
belong to Ω1,1(C2).

Exercise 5.3.1 Show that Ωq(U) = {0}⇔ q > n or q < 0.

Exercise 5.3.2 Check that (x2dx1 ∧dx2)
(

x1
∂

∂x1
,x2

∂

∂x2

)
=

x1x2
2

2 .

Exercise 5.3.3 Compute
• (x2dx1 ∧dx2)

(
x1

∂

∂x1
,x1

∂

∂x1

)
• (x2dx1 ∧dx1)

(
x1

∂

∂x1
,x2

∂

∂x2

)
• (x2dx1 ∧dx2)

(
x2

∂

∂x2
,x1

∂

∂x1

)
• (x2dx2 ∧dx1)

(
x1

∂

∂x1
,x2

∂

∂x2

)
.

• (x2dx1 ∧dx2 + x2dx2 ∧dx1)
(

x1
∂

∂x1
,x2

∂

∂x2

)
.

• (x2dx1 ∧dx2)
(

x1
∂

∂x1
+ x2

∂

∂x2
,x1

∂

∂x1
+ x2

∂

∂x2

)
.

Exercise 5.3.4 Let M be a complex manifold of dimension n and consider a holomorphic
n−form ω ∈ Ωn,0(M).

Consider the form ω ∧ω ∈ An,n(M).
1. Show that inω ∧ω ∈ Ω2n(M).
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2. Prove that, if ωp ̸= 0 for all p ∈ M, then ω ∧ω is a volume form.

Exercise 5.3.5 Showa that the real canonical bundle of Sn is trivial for all n.
aUse the form

n+1

∑
i=0

(−1)ix1 ∧·· ·∧ xi−1 ∧ xi+1 ∧·· ·∧ xn

Exercise 5.3.6 Consider P1
C with homogeneous coordinates (z0 : z1) with the complex

structure given by the charts {(Ui,ϕi)}i∈{0,1} with

Ui ={zi ̸= 0} , ϕ0((z0 : z1)) =
z0

z1
, ϕ1((z0 : z1)) =

z1

z0
.

Showa that every holomorphic 1−form on P1
C vanishes identicallyb.

aHint: Consider the local coordinates z resp. z′ on U0 resp. U1 given by ϕ0 resp. ϕ1. The restriction of a
holomorphic 1−form on P1

C on U0 resp. U1 is of the form f (z)dz resp. f ′(z′)dz′with f , f ′ holomorphic. Write a
relation among f and f ′ and deduce that f ′ has a pole, a contradiction.

bSo this bundle is not trivial!

5.4 Pull-back and exterior derivative of forms
Let F : M → N be a smooth function between two manifolds. For every point p ∈ M the
differential dFp : TpM → TF(p)N induce by Definition 5.1.16, ∀q ∈ N, linear applications
dF∗

p : ΛqT ∗
F(p)N → ΛqT ∗

p M. Gluing them we get the pull-back map

F∗ : Ω
•(N)→ Ω

•(M);

as follows.
If q = 0, f ∈ Ω0(N) =C∞(N), then F∗ f := f ◦F ∈ Ω0(M).
If q > 0, for a form ω ∈ Ωq(N), its pull-back F∗ω is defined by

(F∗
ω)p = dF∗

p (ωF(p)).

It is clear by the definition that F∗ω is a section of the vector bundle ΛqT ∗M. We claim its
smoothness without proving it for the time being. We will discuss the smoothness of F∗ω later
in this section.

R From the analogous properties of the alternating forms all F∗ are linear and

F∗(ω1 ∧ω2) = F∗
ω1 ∧F∗

ω2,

and therefore F∗ is a morphism of R−algebras. Moreover

(F ◦G)∗ = G∗ ◦F∗.

In particular, if F is a diffeomorphism, then F∗ is invertible with inverse (F−1)∗.

To define the exterior derivative we start by defining a linear application d : Ω0(M)→Ω1(M).
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Definition 5.4.1 Let f ∈ Ω0(M) be a smooth function. Fix a point p ∈ M.
The exterior derivative of fff at ppp is the linear map

(d f )p : TpM → R

defined by d fp(v) = v( f ). Note that ∀p ∈U , (d f )p ∈ (TpM)∗.
The exterior derivative of fff is the 1−form d f giving (d f )p at each p.

In local coordinates, since d f
(

∂

∂xi

)
= ∂ f

∂xi
,

d f = ∑
i

∂ f
∂xi

dxi

and therefore d f is smooth: d f ∈ Ω1(M).
This defines a map

d : Ω
0(M)→ Ω

1(M)

the exterior derivative, characterized by the formula

∀v ∈ X(M), d f (v) = v( f ).

R For any f ∈Ω0(M), we have denoted by d f not only the exterior derivative d f ∈Ω1(M) but
also the differential of f , the map d f : T M → TR given by, writing locally v=∑i vi

(
∂

∂xi

)
p
,

d f (v) = d fp

(
∑

i
vi

(
∂

∂xi

)
p

)
= ∑

i

∂ f
∂xi

(p)vi

(
d
dt

)
f (p)

= v( f )
(

d
dt

)
f (p)

So we can see this abuse of notation as a "forgetting d
dt "

One more apparent abuse of notation is that we denoted by dxi ∈ Ω1(U) both the exterior
derivative of the coordinate function xi and the 1−form giving at each point the element (dxi)p

of the basis of (TpM)∗ dual to
{(

∂

∂xi

)
p

}
. This is not an abuse of notation, since these two

1−forms coincide. In fact

dxi

(
∑

j
v j

∂

∂x j

)
=

(
∑

j
v j

∂

∂x j

)
(xi) = vi

We investigate the relation among pull-back and exterior derivative for forms of degree zero.

Lemma 5.4.2 Let F : M → N be a smooth function and consider any f ∈ C∞(N). Then
F∗(d f ) = d(F∗ f ).

Proof. Both F∗(d f ) and d(F∗ f ) are 1−forms on M and therefore it is enough to prove that

∀p ∈ M, (F∗(d f ))p = d(F∗ f )p

as elements of the dual vector space (TpM)∗. In other words we need to prove that

∀p ∈ M, ∀v ∈ TpM, (F∗(d f ))p(v) = d(F∗ f )p(v).
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Indeed

(F∗(d f ))p(v) = dF∗
p ((d f )F(p))(v) = (d f )F(p)(dFp(v)) = ((d f )F(p) ◦dFp)(v) =

= d( f ◦F)p(v) = d(F∗ f )p(v).

■

Now we can write the pull-back of a form explicitly.

Proposition 5.4.3 Let F : M → N be a smooth function. Fix a point p ∈ M, and choose a
chart (U,ϕ) for M in p with coordinates x1, . . . ,xn, and a chart (V,ψ) for N in F(p) with
coordinates y1, . . . ,ym such that F(U)⊂V . Assume

ω|V = ∑
1≤i1<...<iq≤n

ωi1···iqdyi1 ∧·· ·∧dyiq ∈ Ω
q(V ).

Then

(F∗
ω)|U = ∑

1≤i1<...<iq≤n
(ωi1···iq ◦F)dFi1 ∧·· ·∧dFiq ,

where Fk := yk ◦F .

Proof.

F∗
ω = F∗

(
∑

1≤i1<...<iq≤n
ωi1···iqdyi1 ∧·· ·∧dyiq

)
= ∑

1≤i1<...<iq≤n
F∗ (

ωi1···iqdyi1 ∧·· ·∧dyiq
)

= ∑
1≤i1<...<iq≤n

(
ωi1···iq ◦F

)
F∗dyi1 ∧·· ·∧F∗dyiq .

We have then only to check F∗dyk = dFk. which follows since F∗dyk = dyk ◦dF = d(yk ◦
F) = dFk. ■

Definition 5.4.4 There is one case which is rather important, it is the case when F is an
embedding. In this case we will write ω|M for F∗ω .

Obviously if p ∈ M, ωp = 0 ⇒ (F∗ω)p = 0. It is rather important to notice that the converse is
not true: it may be that ωp ̸= 0 but still (F∗ω)p = 0; the reader will find important examples
among the exercises of this section.

Now we can write the pull-back of a form explicitly. For example, if F is the function
F(x1,x2) = (x1x2,x2

1 + x2
2), then

F∗(y1dy2) = (x1x2)d(x2
1 + x2

2) = 2x2
1x2dx1 +2x1x2

2dx2.

We can finally prove the smoothness of a pull-back.

Corollary 5.4.5 If F : M → N is smooth and ω ∈ Ωq(N) then F∗ω is smooth, so it defines an
element of Ωq(M).
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Proof. Since

F∗
ω = ∑

1≤i1<...<iq≤n
(ωi1···iq ◦F)dFi1 ∧·· ·∧dFiq ,

and dFi j = ∑
∂Fi j
∂xk

dxk, then we obtain that F∗ω = ∑gIdxI where all gI are sums of products of

the smooth functions (ωi1···iq ◦F) and of the partial derivatives ∂Fi
∂xk

. ■

To extend the exterior derivative to q−forms, we first consider the local case. In other words
instead of manifolds M,N we consider open subset U,V of Rn

± and Rn
±.

We extend the exterior derivative d : Ω0(U)→ Ω1(U) to an operator d : Ω•(U)→ Ω•(U)
of degree 1 of the graded algebra of the differential forms. We will do that by defining all
restrictions

d|Ωq(U) : Ω
q(U)→ Ω

q+1(U).

Theorem 5.4.6 There is a unique linear operator d : Ω•(U)→ Ω•(U) of degree 1 such that
i) ∀ f ∈ Ω0(U), ∀v ∈ X(U), d f (v) = v( f );

ii) ∀q1,q2 ≥ 0, ∀ω1 ∈ Ωq1(U), ∀ω2 ∈ Ωq2(U), d(ω1 ∧ω2) = dω1 ∧ω2 +(−1)q1ω1 ∧dω2;
iii) d ◦d = 0.

If ω = ∑I ωIdxI , then dω = ∑I dωI ∧dxI = ∑I ∑
n
i=1

∂ωI
∂xi

dxi ∧dxI.

Proof. The existence is easy: we just need to consider the formal expression given in the
statement, dω = ∑dωI ∧dxI , and check that it has the required properties. We only check iii),
leaving the other simpler checks to the reader.

By the linearity of d it is enough if we prove the statement for ω = f dxi1 ∧·· ·∧dxiq . Then

using the equality dxi ∧dx j =−dx j ∧dxi, since by Schwarz’ Theorem ∂ 2 f
∂x j∂xi

= ∂ 2 f
∂xi∂x j

,

d(d( f dxI)) = d

(
n

∑
i=1

∂ f
∂xi

dxi ∧dxI

)

=
n

∑
i, j=1

∂ 2 f
∂x j∂xi

dx j ∧dxi ∧dxI

= ∑
i ̸= j

∂ 2 f
∂x j∂xi

dx j ∧dxi ∧dxI

= ∑
i< j

∂ 2 f
∂x j∂xi

dx j ∧dxi ∧dxI +∑
i> j

∂ 2 f
∂x j∂xi

dx j ∧dxi ∧dxI

= ∑
i< j

(
∂ 2 f

∂x j∂xi
dx j ∧dxi +

∂ 2 f
∂xi∂x j

dxi ∧dx j

)
∧dxI

= ∑
i< j

(
∂ 2 f

∂x j∂xi
dx j ∧dxi −

∂ 2 f
∂xi∂x j

dx j ∧dxi

)
∧dxI = 0.

We prove the uniqueness by showing that every linear operator with the properties i), ii), and iii)
coincides with it.

By linearity dω = ∑I d (ωIdxI), so by the properties i) and ii) (for q1 = 0) it follows dω =

∑I (dωI ∧dxI +ωId(dxI)), and we conclude the proof by showing that for every multiindex
I = (i1, . . . , iq)

d(dxi1 ∧·· ·∧dxiq) = 0. (5.5)



94 Chapter 5. Differential forms

We prove (5.5) by induction on q. If q = 1, since by the property i) dxi is the differential of
the coordinate function xi, d(dxi) = (d ◦d)xi vanishes by the property iii).

Finally, we may assume (5.5) true for r-forms, r < q. Then

d(dxi1 ∧dxi2 ∧·· ·∧dxiq) = d(dxi1 ∧ (dxi2 ∧·· ·∧dxiq))

= d(dxi1)∧ (dxi2 ∧·· ·∧dxiq)−dxi1 ∧d(dxi2 ∧·· ·∧dxiq))

= 0−0 = 0. ■

Note that d : Ω•(U)→ Ω•(U) is NOT a ring homomorphism, as in general d(ω1 ∧ω2) ̸=
dω1 ∧dω2.

We can now complete the discussion of the special case of maps among open subset of Rn
±

and Rm
± by proving that Lemma 5.4.2 extend to forms of higher degree.

Proposition 5.4.7 If F : U →V is a smooth function between open subsets U ⊂Rn
±, V ⊂Rm

±,
and ω ∈ Ωq(V ). Then F∗dω = dF∗ω .

Proof. We write

ω = ∑
1≤i1<i2<···<iq≤n

ωi1···iqdyi1 ∧·· ·∧dyiq ,

which yields

F∗
ω = ∑

1≤i1<i2<···<iq≤n
(ωi1···iq ◦F)dFi1 ∧·· ·∧dFiq .

By Theorem 5.4.6 and Lemma 5.4.2

dF∗
ω = ∑

1≤i1<i2<···<iq≤n
d(ωi1···iq ◦F)∧dFi1 ∧·· ·∧dFiq =

= ∑
1≤i1<i2<···<iq≤n

F∗dωi1···iq ∧dFi1 ∧ ·· ·∧dFiq .

On the other hand

dω = ∑
1≤i1<i2<···<iq≤n

dωi1···iq ∧dyi1 ∧·· ·∧dyiq ,

and therefore

F∗dω = ∑
1≤i1<i2<···<iq≤n

F∗dωi1···iq ∧F∗dyi1 ∧·· ·∧F∗dyiq

= ∑
1≤i1<i2<···<iq≤n

F∗dωi1···iq ∧dFi1 ∧·· ·∧dFiq . ■

Now we generalize the results of this section to manifolds.
Note that if (U,ϕ) is a chart, with coordinates x1, . . .xn then (Exercise 5.4.1) ϕ∗dui = dxi

and therefore ϕ∗
∑ωIduI = ∑(ωI ◦ϕ)dxI .

Theorem 5.4.8 There is a unique operator, called exterior derivative or differential

d : Ω
•(M)→ Ω

•(M),

of degree 1 such that
i) ∀ f ∈ Ω0(M), ∀v ∈ X(M), d f (v) = v( f ).
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ii) ∀q1,q2 ≥ 0, ∀ω1 ∈ Ωq1(M), ∀ω2 ∈ Ωq2(M),

d(ω1 ∧ω2) = dω1 ∧ω2 +(−1)q1ω1 ∧dω2;

iii) d ◦d = 0.
If (U,ϕ) is a chart with coordinates x1, . . . ,xn and on U

ω = ∑
1≤i1<i2<···<iq≤n

ωi1···iqdxi1 ∧·· ·∧dxiq ,

then

dω = ∑
1≤i1<i2<···<iq≤n

dωi1···iq ∧dxi1 ∧·· ·∧dxiq

= ∑
1≤i1<i2<···<iq≤n

n

∑
i=1

∂ωi1···iq
∂xi

dxi ∧dxi1 ∧·· ·∧dxiq .

= ϕ
∗d((ϕ−1)∗ω)

Proof. We first prove the uniqueness part of the statement.
Assume that there are two exterior derivatives d and d′. Then, to prove the uniqueness

part of the statement, we need to show that for each ω , dω = d′ω . This is a local statement:
it is enough if we prove that dω and dω ′ coincide in each chart U . Chosen a chart, we
write ω in local coordinates as ∑1≤i1<i2<···<iq≤n ωi1···iqdxi1 ∧·· ·∧dxiq . Repeating word-by-word
the proof of the analogous statement in Theorem 5.4.6 we obtain that, in U , dω = d′ω =

∑1≤i1<i2<···<iq≤n ∑
n
i=1

∂ωi1 ···iq
∂xi

dxi ∧dxi1 ∧·· ·∧dxiq .
Now we prove the existence part of the statement. We can use the expression

∑
1≤i1<i2<···<iq≤n

n

∑
i=1

∂ωi1···iq
∂xi

dxi ∧dxi1 ∧·· ·∧dxiq

to define dω in a chart. This gives a well defined global form if and only if two such forms
coincide in the intersection of the respective domain of definitions.

In other words we need to show that the local expression given for dω is independent on
the choice of the chart. Then let (Uα ,ϕα) and (Uβ ,ϕβ ) be two charts in p and set dαω =

ϕ∗
αd((ϕ−1

α )∗ω), dβ ω = ϕ∗
β

d((ϕ−1
β

)∗ω). We need to show that dαω = dβ ω on Uα ∩Uβ ; this6

follows easily by the uniqueness part of the statement (that we have already shown) applied to
the manifold Uα ∩Uβ .

The reader can easily check that d, so defined, has the properties i)-iii). ■

We can now conclude the section generalizing Proposition 5.4.7.

6Here is a different proof. We need to show ϕ∗
α d((ϕ−1

α )∗ω) = ϕ∗
β

d((ϕ−1
β

)∗ω), which may be rewritten, setting

η := (ϕ−1
α )∗ω ∈ Ω1(Dα ) as

ϕ
∗
α dη = ϕ

∗
β

d(ϕ−1
β

)∗ϕ
∗
α η

which is equivalent to

ϕ
∗
αβ

dη = dϕ
∗
αβ

η

that follows from Proposition 5.4.7.
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Corollary 5.4.9 Let F : M → N be a smooth function, ω ∈ Ω•(N).
Then F∗dω = dF∗ω .

Proof. This is a local statement: it is enough if we prove the statement in a neighbourhood of
every point p ∈ M. As a general principle, local statements on manifolds holds if and only if
they hold for affine spaces, and we have proved that in Proposition 5.4.7.

More precisely, we choose charts (U,ϕ) in M and (V,ψ) in N such that p ∈U , F(U)⊂V
and observe that by Proposition 5.4.7

(ψ ◦F ◦ϕ
−1)∗d((ψ−1)∗ω) = d(ψ ◦F ◦ϕ

−1)∗((ψ−1)∗ω).

Then

F∗dω = F∗
ψ

∗d((ψ−1)∗ω)

= ϕ
∗(ϕ−1)∗F∗

ψ
∗d((ψ−1)∗ω)

= ϕ
∗(ψ ◦F ◦ϕ

−1)∗d((ψ−1)∗ω)

= ϕ
∗d(ψ ◦F ◦ϕ

−1)∗((ψ−1)∗ω)

= ϕ
∗d(ϕ−1)∗F∗

ψ
∗(ψ−1)∗ω

= ϕ
∗d(ϕ−1)∗F∗

ω

= dF∗
ω. ■

Complement 5.4.1 Assume that ω , τ are homogeneous forms (possibly of different degree).
Then prove

τ ∧ω = (−1)(degτ)·(degω)
ω ∧ τ.

Complement 5.4.2 Prove that (F ◦G)∗ = G∗ ◦F∗.

Complement 5.4.3 Prove that F∗(ω1 ∧ω2) = F∗ω1 ∧F∗ω2.

Exercise 5.4.1 Let (U,ϕ) be a chart for a manifold M, and let x1, . . .xn be the corresponding
local coordinates.

Prove ϕ∗dui = dxi.

Exercise 5.4.2 Let M,N be diffeomorphic manifolds.
Show that Ω•(N) is isomorphic to Ω•(M) as graded R−algebra..

Exercise 5.4.3 Let M be a manifold, ω ∈ Ωq(M). Consider an open subset U ⊂ M as
manifold embedded in M, and choose a point p ∈ M.

Show that ωp = 0 ⇔ (ω|U)p = 0.

Exercise 5.4.4 Assume that M is a manifold without boundary, f ∈C∞(M), y ∈ Reg( f ), and
consider X := f−1(y) with the differentiable structure such that the inclusion i : X ↪→ M is an



5.4 Pull-back and exterior derivative of forms 97

embedding (as in Theorem 2.4.7). Consider the 1−form d f ∈ Ω1(M).
Show that d f|X = 0.

Exercise 5.4.5 Assume that X is a manifold embedded in a manifold M.
For every q−form ω ∈ Ωq(M), consider the sets

ZM(ω) := {p ∈ M|ωp = 0} , ZX(ω) :=
{

p ∈ X |(ω|X)p = 0
}
.

Show that ZM(ω)∩X ⊂ ZX(ω).
Consider the 1−form dx1 ∈ Ω1(R2). Show that ZR2(dx1)∩S1 ̸= ZS1(dx1).

Exercise 5.4.6 Consider the following two open subsets of S1: Ui = {p ∈ S1|xi ̸= 0} for
i = 1,2. Consider the 1−form ω on S1 defined by

ωp =


((

−dx2
x1

)
|U1

)
p

if p ∈U1((
dx1
x2

)
|U2

)
p

if p ∈U2

Show that this gives a well defined 1-form ω ∈ Ω1(S1) which is a volume form on S1.

Exercise 5.4.7 Consider a function f ∈C∞(Rn), y ∈ Reg( f ), M = f−1(y). Provea that the
real canonical bundle of M is trivial.

aHint: consider the open subsets Mi := {p ∈ M| ∂ f
∂xi

(p) ̸= 0}]. Try to define ωi ∈ Ωn−1(M) so that ∀p ∈ Mi,

ωp = (−1)i (dx1 ∧·· ·∧dxi−1 ∧dxi+1 ∧·· ·∧dxn)p
∂ f
dxi

(p)

Exercise 5.4.8 Compute explicit formulas for the differential of a general 0-form, 1-form
resp. 2-form on R3 and relate the results with the usual definition of gradient, curl and
divergence. What’s the differential of a 3−form?

Exercise 5.4.9 Let U,V ⊂ Rn be open subsets, F : U →V be a smooth map.
Show that

F∗(dx1 ∧·· ·∧dxn) = det(J(F))dx1 ∧·· ·∧dxn

where J(F) is the Jacobi matrix of F .

Exercise 5.4.10 Let U , V be open sets of Rn and assume that they are diffeomorphic.
Prove that F∗ : Ω•(V )→ Ω•(U) is an isomorphism.
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6. Orientability and Integrability

6.1 Orientability
The orientability of a real manifold is an interesting geometrical property which has no analogs
in the complex case. Indeed, as we see in the next definition, to consider it we need to be able to
distinguish "positive" and "negative" numbers.

Definition 6.1.1 Let V be a finite dimensional real vector space. Then we will say that two
bases of V are orientation equivalent if the determinant of the corresponding base change
matrix is positive. This equivalence relation partitions the bases of V in two equivalence
classes, the two orientations of V .

Consequently we will say that a matrix A ∈ GL(n,R) preserves the orientation if
detA > 0. In other words, a base change matrix preserves the orientation if and only if it
maps bases to bases in the same orientation class. Analogously A reverses the orientation if
detA < 0.

Let Ω, Ω′ be two open subsets of Rn
± and let F : Ω → Ω′ be a smooth function. F

preserves the orientation if ∀p ∈ Ω, the Jacobi matrix of F in p preserves the orientation. F
reverses the orientation if ∀p ∈ Ω, the Jacobi matrix of F in p reverses the orientation.

Note that, if Ω is connected and F is a diffeomorphism, then F either preserves or reverses
the orientation.

Proposition 6.1.2 Let ϕ : U →V be a smooth map among open subsets of Rn
±. Then

ϕ
∗dx1 ∧·· ·∧dxn = det(J(ϕ))dx1 ∧·· ·∧dxn.

Proof. It is enough to check the formula as equality on ΛnT ∗
p Rn on each point p of U , and this

follows immediately by the definition of pull-back and Proposition 5.1.17. ■

Consider now a real manifold M, so we have a fixed differentiable structure, corresponding to
several (pairwise compatible) atlases. Those whose transition functions preserve the orientation
define an orientation on M as follows.

Definition 6.1.3 Let M be a real manifold of positive dimension. An atlas for M is oriented
if all its transition functions preserve the orientation. In other words, two different local
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coordinates at the same point p induce bases of TpM (taking the corresponding partial
derivatives) in the same orientation class.

M is orientable if it admits an oriented atlas.
Two oriented atlases are orientedly compatible or orientedly equivalent if their union

is oriented. This defines an equivalence relation on the set of atlases of the differentiable
structure of M. An equivalence class for this equivalence relation is an orientation on M. A
manifold with a chosen orientation is an oriented manifold.

If dimM = 0 (then if M is a point) we set conventionally that an orientation on M is the
choice of a sign: either + or −.

In the framework of oriented manifolds, the following functions are crucial.

Definition 6.1.4 Let M, N be oriented manifolds of the same dimension, and let F : M → N
be a smooth map.

We say that F preserves, resp. reverses the orientation if, ∀p ∈ M, given local coor-
dinates x1, . . . ,xn around p induced by a chart of an atlas of the orientation of M and local
coordinates y1, . . . ,yn around F(p) induced by a chart of an atlas of the orientation of N, then
the Jacobi matrix

(
∂Fi
∂x j

(p)
)

preserves, resp. reverses the orientation.

Proposition 6.1.5 Each connected orientable manifold admits exactly two orientations.

To give an orientation of a manifold with more connected components is equivalent to choose
an orientation on each component. It follows that a manifold with k connected components is
orientable if and only if all its connected components are orientable, and the number of possible
orientations is 2k.

Proof. The case dimM = 0 is obvious. Assume dimM ≥ 1.
Consider the linear application L : Rn → Rn defined by

L(x1,x2, . . . ,xn) = (x1, . . . ,xn−1,−xn).

L is a linear isomorphism and a diffeomorphism. Moreover L(Rn
+) =Rn

−, L(Rn
−) =Rn

+ and both
L|Rn

+
: Rn

+ → Rn
− and L|Rn

−
: Rn

− → Rn
+ are diffeomorphisms.

Assume now M orientable. Let {(Uα ,ϕα)}α∈I be an oriented atlas for M, and consider the
atlas {(Uα ,L ◦ϕα)}α∈I . This is an oriented atlas, since (L ◦ϕα)◦ (L ◦ϕβ )

−1 = L ◦ϕα ◦ϕ
−1
β

◦
L−1 = L◦ϕαβ ◦L preserves the orientation by

detJ
(
L◦ϕαβ ◦L

)
= detJ (L) ·detJ

(
ϕαβ

)
·detJ (L) =

= (−1) ·detJ
(
ϕαβ

)
· (−1) = detJ

(
ϕαβ

)
> 0.

The new atlas is not orientedly compatible with the first one, since ∀α , L◦ϕα ◦ϕ−1
α reverses

the orientation. Therefore every orientable manifolds has at least two orientations, and it remains
only to show that every further orientable atlas {(Vβ ,ψβ )}β∈J for M is compatible with one ot
these two.

For every point p ∈ M we choose α ∈ I, β ∈ J with p ∈Uα ∩Vβ . we define

ν(p) :=
|detJ(ϕα ◦ψ

−1
β

)ψβ (p)|
detJ(ϕα ◦ψ

−1
β

)ψβ (p)
∈ {±1} ⊂ R.

Since both atlases {(Uα ,ϕα)}α∈I and {(Vβ ,ψβ )}β∈J are oriented, ν(p) do not depend on
the choice of α and β . Moreover ν is smooth, therefore continous. But M is connected, {±1} is
discrete, so ν is constant. We have then two cases: either ν ≡ 1 or ν ≡−1.
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If ν ≡ 1, a straightforward computation shows that {(Uα ,ϕα)}α∈I and {(Vβ ,ψβ )}β∈J are
compatible. Else, ν ≡−1, and similarly {(Uα ,L◦ϕα)}α∈I and {(Vβ ,ψβ )}β∈J are compatible.

■

Notation 6.1. If M is an oriented manifold, we will denote by M the same manifold with the
opposite orientation, obtained by changing the orientation of each component.

There is no natural way to extend the definition of orientability of the category of complex
manifolds, since we can’t decide if a complex number is "positive" or "negative" in a reasonable
way. On the other hand, we know that every complex manifold of dimension n has a natural
differentiable structure of real manifold without boundary of dimension 2n, sometimes denoted
as the underlying real manifold. It is then natural to ask, for every complex manifold, if its
underlying real manifold is orientable or not. This natural question has a surprisingly simple
answer.

Assume first for sake of simplicity that M is a complex manifold of dimension 1, with
atlas {(Uα ,ϕα)}α∈I . Then the ϕαβ : C→ C are holomorphic functions in one variable. The
underlying real manifold has atlas {(Uα ,ψα)}α∈I , and the transition functions ψαβ are obtained
by the ϕαβ removing the complex structures from its domain and from its codomain: in other
words ψαβ = (aαβ ,bαβ ) is exactly the map ϕαβ where we are considering its domain and its
codomain as open subsets of R2 instead of C.

By the Cauchy-Riemann relations the Jacobi matrix of ψαβ is(
∂aαβ

∂x − ∂bαβ

∂x
∂bαβ

∂x
∂aαβ

∂x

)

whose determinant is ∂aαβ

∂x

2
+

∂bαβ

∂x

2
> 0. Therefore the real atlas induced by the complex atlas is

already an oriented atlas.
A similar result holds in higher dimension,

Proposition 6.1.6 Let U,V be open subsets of Cn and let F : U →V be a holomorphic map.
Choose a point p in U and let B ∈ C be the determinant of the n×n Jacobi matrix of F at p.
Let A ∈R be the determinant of the real Jacobi map of F , the 2n×2n real matrix representing
the differential of F , seen as smooth map among real affine spaces, at p. Then

A = B ·B.

In particular A ≥ 0.

Proof. Let z1, . . . ,zn and z′1, . . . ,z
′
n be the complex coordinates respectively of U and V and

write z j = x j + iy j and z′j = x′j + iy′j, so that (x1,y1, . . . ,xn,yn) and (x′1,y
′
1, . . . ,x

′
n,y

′
n) are real

coordinates of respectively of U and V .
By Proposition 6.1.2, denoting by A ∈ R the determinant of the Jacobi matrix of the corre-

sponding transition functions then

F∗ (dx′1 ∧dy′1 ∧·· ·∧dx′n ∧dy′n
)
= Adx1 ∧dy1 ∧·· ·∧dxn ∧dyn.

Note that dx1∧dy1∧·· ·∧dxn∧dyn ∈ Ω2n(U). Recall that Ω2n(U)⊂ An,n(U). In this bigger
space

dz j ∧dz j = (dx j + idy j)∧ (dx j − idy j) = dx j ∧ (−idy j)+(idy j)∧dx j =−2idx j ∧dy j
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so

dz1 ∧dz1 ∧·· ·∧dzn ∧dzn = (−2i)n dx1 ∧dy1 ∧·· ·∧dxn ∧dyn,

similarly

dz′1 ∧dz′1 ∧·· ·∧dz′n ∧dz′n = (−2i)n dx′1 ∧dy′1 ∧·· ·∧dx′n ∧dy′n,

and then

F∗ (dz′1 ∧dz′1 ∧·· ·∧dz′n ∧dz′n
)
= Adz1 ∧dz1 ∧·· ·∧dzn ∧dzn.

Reorder both terms putting first the holomorphic differentials and then the antiholomorphic
differentials. It changes both sides of the equation by the same power of (−1) and then

F∗ (dz′1 ∧·· ·∧dz′n ∧dz′1 ∧·· ·∧dz′n
)
= Adz1 ∧dz2 ∧·· ·∧dzn ∧dz1 ∧·· ·∧dzn. (6.1)

By the complex analogous of Proposition 6.1.2,

F∗ (dz′1 ∧·· ·∧dz′n
)
= Bdz1 ∧dz2 ∧·· ·∧dzn. (6.2)

Since by definition dzi, dz′i are complex conjugated of dzi, dz′i

F∗ (dz′1 ∧·· ·∧dz′n
)
= Bdz1 ∧·· ·∧dzn. (6.3)

Finally by (6.1, 6.2, 6.3) it follows

A = BB ≥ 0.

■

This shows that the underlying real manifold of any complex manifold is naturally oriented
by considering any complex atlas as real atlas as above.

Theorem 6.1.7 The real atlas obtained by a complex atlas is oriented.
Two equivalent complex atlases induce orientedly equivalent real atlas, so determining a

natural orientation on the underlying real manifold of any complex manifold.

Proof. By Proposition 6.1.6 a transition function of a complex atlas preserves the orientation as
a map among open subsets of R2n: in fact the determinant A of its real Jacobi matrix at any point
p equals BB for some B ∈ C, B ̸= 0, and then A is positive,

This implies first that the real atlas obtained by a complex atlas is oriented, and then that if
two complex atlases are equivalent (i.e. the union is a complex atlas) the induced real atlases are
orientedly equivalent (i.e. the union is a complex atlas). ■

R Whenever we have a complex atlas, we can construct a second complex atlas by "twisting"
the first atlas by the conjugation map c(z) = z̄ as follows.
Note that the function c is not holomorphic. However if {(Uα ,ϕα)} is a complex atlas,
setting ψα := c ◦ ϕα the atlas {(Uα ,ψα)} is again a complex atlas. Indeed the new
transition functions

ψαβ = c◦ϕαβ ◦ c

are holomorphic if and only if the old transition functions ϕαβ are holomorphic.
Note that the induced orientations on the real underlying differentiable manifolds are the
same if and only if the (complex) dimension is even.

Now we introduce a very powerful tool in the theory of real manifolds, the partitions of unity.
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Definition 6.1.8 Let X be a topological space. A family S := {Sα}α∈I ⊂ P(X) of subsets
of X is locally finite if ∀p ∈ X there exists an open set U ∋ p such that U ∩Sα ̸= /0 only for
finitely many α ∈ I.

The definition is posed for every S ⊂ P(X), but we will only use it for families of open
sets U⊂ T (X) (here T (X) is the topology of X).

Definition 6.1.9 Let U := {Uα}α∈I be an open covering of a manifold M. A partition
of unity subordinate to U is a family of smooth functions ρi : M → [0,1], i varying in a
countable set of indices J, such that

a) ∀i, the support supp(ρi) := {p ∈ M|ρi(p) ̸= 0} is compact;
b) ∀i ∈ J, ∃α(i) ∈ I such that supp(ρi)⊂Uα(i);
c) {supp(ρi)}i∈J ⊂ P(M) is locally finite;
d) ∀p ∈ M, ∑i∈J ρi(p) = 1.

Note that the sum at the point d) is meaningful because, by c), it reduces to a finite sum on a
suitable small neighbourhood of every point.

We will use the next result without proving it. We only mention that the proof uses the fact
that M has a countable basis of open subsets.

Theorem 6.1.10 Let U := {Uα} be an open covering of a real manifold M. Then there exists
a partition of unity subordinate to U.

We will also need the following

Lemma 6.1.11 Let M be a manifold and let U ⊂ M be an open subset.
Consider a form ω ∈ Ωq(U) and assume that its support suppω = {p ∈U |ωp ̸= 0} is

compact. Then there is a form ω̃ ∈ Ωq(M) such that{
ω̃p = ωp ∀p ∈U
ω̃p = 0 ∀p ∈ M \U

(6.4)

Proof. The expression (6.4) defines obviously a section of the bundle ΛqT ∗M; we only need to
prove that ω̃ is smooth.

By definition on all points of U ω̃ equals ω: ω̃|U = ω .
Set K := suppω . Its complement V := M \K is an open subset of M where ω̃ vanishes.
We have then found two open subsets U,V of M such that U ∪V = M and ω̃ restricted to

both is smooth. Since smoothness is a local property, then ω̃ is smooth. ■

Proposition 6.1.12 Let M be a manifold of dimension n > 0. Then M is orientable if and
only if there exists a volume form on M, i.e. if and only if its real canonical bundle is trivial
(compare Exercise 3.2.2).

Proof. (⇒) Choose an oriented atlas {(Uα ,ϕα)}α∈I .
Take a partition of unity {ρi}i∈N subordinate to the cover {Uα}α∈I . For every i ∈ N choose

α(i) with supp(ρi)⊂Uα(i) and define ωi by

ωi(p) =
{

ρiϕ
∗
α(i)(du1 ∧·· ·∧dun) if p ∈Uα(i)

0 else.

By Lemma 6.4, ωi ∈ Ωn(M).
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Then we can consider the form ω = ∑i ωi ∈ Ωn(M). Indeed, since the support of each
ωi is suppωi := {p ∈ M|(ωi)p ̸= 0} = suppρi, then the family {suppωi} is locally finite, and
therefore ∑i ωi is locally a finite sum.

We show that, ∀p ∈ M, ωp ̸= 0.
First of all choose i with ρi(p) ̸= 0. Let x1α , . . .xnα be the coordinates induced by a chart

(Uα ,ϕα) with suppωi = suppρi ⊂Uα . Then ωi = ρidx1α ∧·· ·∧ xnα .
For every j ̸= i, ω j = ρ jdx1β ∧·· ·∧ xnβ for the coordinates x1β , . . . ,xnβ induced by a chart

(Uβ ,ϕβ ). Since dxiα = ϕ∗
αdui, dxiβ = ϕ∗

β
dui,

(dx1β ∧·· ·∧dxnβ )p = (ϕ∗
β

du1 ∧·· ·∧dun)p =

= (ϕ∗
αϕ

∗
βα

du1 ∧ ·· ·∧dun)p = detJ(ϕβα)ϕα (p)(dx1α ∧ ·· ·∧dxnα)p

and therefore, since our atlas is supposed oriented, ∀ j, ∃λ j ≥ 0 such that (ω j)p = λ j(dx1α ∧
·· ·∧ xnα)p. Since λi(p) = ρi(p)> 0, ωp ̸= 0.

(⇐) Take an atlas {(Uα ,ϕα)}α∈I for M such that all Uα are connected. We construct a further
atlas for M which is oriented, by using the same open sets: an atlas of the form {(Uα ,ψα)}α∈I .

Fix α ∈ I, and let x1α , . . . ,xnα be the local coordinates induced by the chart (Uα ,ϕα). Then
we may write ω|Uα

= fαdx1α ∧·· ·∧dxnα with fα ∈C∞(Uα).
By assumption fα never vanishes. Since Uα is assumed connected, then the function fα is

either strictly positive or strictly negative. In the former case we take ψα = ϕα ; in the latter case
we take ψα = L◦ϕα for the map L introduced in the proof of Proposition 6.1.5.

We show that the atlas {(Uα ,ψα)}α∈I is oriented. Denoting by y1α , . . . ,ynα the local coordi-
nates of the chart (Uα ,ψα), we write ω|Uα

= gαdy1α ∧·· ·∧dynα with gα ∈ C ∞(Uα), obtaining
gα(p)> 0 for all p. Indeed, if we had fα > 0, then gα = fα . Else fα < 0, and then dynα =−dxnα

whence for i < n dyiα = dxiα . In particular fαdx1α ∧ ·· · ∧ dxnα = − fαdy1α ∧ ·· · ∧ dynα and
therefore gα =− fα .

Arguing as before (dy1β ∧·· ·∧dynβ )p = detJ(ψβα)ψα (p)(dy1α ∧·· ·∧dynα)p, and therefore

detJ(ψβα)ψα (p) =
gα (p)
gβ (p) > 0. ■

The proof of Proposition 6.1.12 shows a bit more than the statement. Fix a volume form
ω , a point p in M, and a chart in p, if x1, . . . ,xn are the corresponding local coordinates, then
clearly ωp = λ (dx1 ∧·· ·∧dxn)p, for some λ ̸= 0. The proof of Proposition 6.1.12 shows that, if
we choose the chart in an oriented atlas, the sign of λp does not depend neither from the chart
nor from the point, but only from the choice of the orientation. Then we can give the following
definition.

Definition 6.1.13 Let M be an oriented manifold and let ω be a volume form on M.
We will say that M is positively oriented with respect to ω if for every choice of a chart,

in the given local coordinates ω = λdx1 ∧·· ·∧dxn with ∀p λ (p)> 0.
Similarly we will say that M is negatively oriented with respect to ω if for every choice

of a chart, in the given local coordinates ω = λdx1 ∧·· ·∧dxn with ∀p λ (p)< 0.

R By Proposition 6.1.6 every local biholomorphism preserves the orientation.

The proof of Proposition 6.1.12 shows that, for each volume form ω ∈ Ωn(M), one of the
two orientations of M is positively oriented with respect to ω , the other one is negatively oriented
with respect to ω (and positively oriented with respect to −ω).

For every oriented manifold M we can define the induced orientations on M◦ and ∂M.
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Definition 6.1.14 Assume that M is oriented, and take an atlas for the chosen orientation.
Then the atlas induced (by restriction) on M◦ is oriented too, giving what we call "the induced
orientation on M◦".

Definition 6.1.15 Let M be an oriented manifold. We define an orientation on ∂M, the one
induced by M, as follows.

• If dimM = 0, then ∂M = /0, and there is nothing to do.
• If dimM = 1, then ∂M is discrete, so to orient it we need to associate a sign to each

point of it. We choose the opposite sign with respect to the one induced by the codomain
of any chart in this point, in the following sense. If p ∈ ∂M, we pick an oriented chart
(U,ϕ) in M with p ∈U : if ϕ(U)⊂R1

− we choose the +, if ϕ(U)⊂R1
+ we choose the

−. This do not depend on the choice of the chart, see Exercise 6.1.6.
• if dimM ≥ 2 is even, we choose an oriented atlas {(Uα ,ϕα)}α∈I such that ∀α ∈ I,

ϕα(Uα) is open either in Rn or in Rn
+ (see Exercise 6.1.7). Then we take on ∂M the

orientation of the atlas {(Uα ∩∂M,(ϕα)|Uα∩∂M
)}α∈I; we ask the student to check that

it is oriented in Complement 6.1.4.
• if dimM ≥ 3 is odd, we take the orientation opposite to the one of the atlas {(Uα ∩

∂M,(ϕα)|Uα∩∂M
)}α∈I induced by {(Uα ,ϕα)}α∈I of M.

The defintion of orientability has a natural relative version on bundles that, roughly speaking,
correspond to give an orientation to each fibre in a continous way. We do it only for vector
bundles, as this is the only case we need.

Definition 6.1.16 We will say that a vector bundle E is orientable if it admits a cocycle
{gαβ} such that, ∀α,β , p, detgαβ (p)> 0 .

If such a cocycle exists, a trivialization {Φα} associated to it induce an orientation on each fibre
Ep = π−1(p). Indeed Φα maps Ep diffeomorphically onto {p}×Rr, so inducing an orientation
on Ep from the natural orientation of Rr; the positivity of the determinant of gαβ (p) ensures that
the given orientation of Ep does not depend on the choice of α . Different trivializations may
induce different orientations on the Ep.

Definition 6.1.17 An orientation on a vector bundle E is the choice of an orientation of
every fibre Ep induced as above by a cocycle {Φα} such that all detgαβ (p) are positive.

We will say that an orientable bundle is oriented if an orientation is chosen.

If B is connected, then every orientable vector bundle admits exactly two orientations.
We will later need to orient the direct sum of two orientable vector bundles, so we conclue

this section with the following natural

Definition 6.1.18 Let E, F be two oriented vector bundles on the same base B.
The induced orientation on the vector bundle E ⊕F is the one such that for all p ∈ B,

if {e1, . . . ,er} is an oriented basis of Ep and { f1, . . . , fs} is an oriented basis of F then
{e1, . . . ,er, f1, . . . , fs} is an oriented basis of (E ⊕F)p.

Complement 6.1.1 Let M be an orientable manifold, U ⊂ M an open subset. Show that U
is orientable.

Complement 6.1.2 — The cylinder. The cylinder C is the quotient of [0,1]× [0,1]⊂ R2

by the equivalence relation ∀y ∈ [0,1], (0,y)∼ (1,y). We denote by π : [0,1]× [0,1]→C the
projection map.
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We give an atlas for C with 4 charts: {(Ui,ϕi)}i∈{1,2,3,4} where

U1=π

(([
0, 2

3

)
∪
(

5
6 ,1

])
×
[

0, 2
3

))
ϕ1(π(x,y))=

 (x,y) if x< 2
3

(x−1,y) if x> 5
6

U2=π

(([
0, 1

6

)
∪
(

1
3 ,1

])
×
[

0, 2
3

))
ϕ2(π(x,y))=

 (x,y) if x< 1
6

(x−1,y) if x> 1
3

U3=π

(([
0, 2

3

)
∪
(

5
6 ,1

])
×
(

1
3 ,1

])
ϕ3(π(x,y))=

 (x,1−y) if x< 2
3

(x−1,1−y) if x> 5
6

U4=π

(([
0, 1

6

)
∪
(

1
3 ,1

])
×
(

1
3 ,1

])
ϕ4(π(x,y))=

 (x,1−y) if x< 1
6

(x−1,1−y) if x> 1
3 .

i) Compute all transition functions. Notice that the atlas is not oriented, but all transition
functions either preserve or reverse the orientation

ii) Prove that the cylinder is orientable by producing an oriented atlas {(Ui,ψi)}i∈{1,2,3,4}.

Complement 6.1.3 Prove that the sign of the Jacobi matrix in Definition 6.1.4 do not depend
on the choice of the local coordinates.

Complement 6.1.4 Show that the atlas given for X in definition 6.1.15 is oriented.

Complement 6.1.5 Show that an orientable vector bundle on an orientable manifold is an
orientable manifold.

Exercise 6.1.1 Let M be a manifold and assume that there exist two charts (U1,ϕ1) and
(U2,ϕ2) such that U1 and U2 are connected, U1 ∩U2 ̸= /0 and the transition function ϕ12
neither preserves nor reverses the orientation. Show that then M is not orientable.

Exercise 6.1.2 — The Moebius band. The Moebius band M is the quotient of the square
[0,1]× [0,1]⊂ R2 by the equivalence relation ∀y ∈ [0,1], (0,y)∼ (1,1− y). We denote by
π : [0,1]× [0,1]→ M also the projection on this quotient.

We give an atlas for M: {(Ui,ϕi)}i∈{1,2,3,4} where

U1=π

(([
0, 2

3

)
×
[

0, 2
3

))
∪
((

5
6 ,1

]
×
(

1
3 ,1

]))
ϕ1(π(x,y))=

 (x,y) if x< 2
3

(x−1,1−y) if x> 5
6

U2=π

(([
0, 1

6

)
×
(

1
3 ,1

])
∪
((

1
3 ,1

]
×
[

0, 2
3

)))
ϕ2(π(x,y))=

 (x,1−y) if x< 1
6

(x−1,y) if x> 1
3

U3=π

(([
0, 2

3

)
×
(

1
3 ,1

])
∪
((

5
6 ,1

]
×
[

0, 2
3

)))
ϕ3(π(x,y))=

 (x,1−y) if x< 2
3

(x−1,y) if x> 5
6

U4=π

(([
0, 1

6

)
×
[

0, 2
3

))
∪
((

1
3 ,1

]
×
(

1
3 ,1

]))
ϕ4(π(x,y))=

 (x,y) if x< 1
6

(x−1,1−y) if x> 1
3 .

• Show that the Moebius band is not an orientable manifold.
• Consider the open set M◦ := π([0,1]×(0,1)). Show that M◦ and every manifold which

contains an open set diffeomorphic to M◦ is not orientable.
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Exercise 6.1.3 Show that the real projective plane P2
R is not orientable, and deduce that there

is no complex structure on P2
R; in other words, no complex manifold has P2

R as underlying
real manifold.

Exercise 6.1.4 Let M be a complex manifold with complex atlas {Uα ,ϕα}. Let con j : Cn →
Cn be the conjugation map con j(z1, . . . ,zn) = (z̄1, . . . , z̄n). Then {Uα ,con j◦ϕα} is a complex
atlas, yielding then a possibly different complex structure on the same manifold. Set M′ for
the new complex manifold obtained.

Show that M and M′ are diffeomorphic as real manifold, through a diffeomorphism that
preserves the orientation if the complex dimension of M is even and reverses the orientation
if the complex dimension of M is odd.

Deduce that the underlying real manifold of M′ is opposite to the one induced by M (M)
if and only if the complex dimension of M is odd.

Exercise 6.1.5 — Interpretation of the relation among a volume form and the induced ori-
entation of the manifold. Let M be an oriented manifold, (U,φ) a chart in a corresponding
oriented atlas, and let as usual x1, . . . ,xn be the induced local coordinates on U . Let ω be a
volume form on M.

1) Show that M is positively oriented with respect to ω if and only if ∀p ∈U ,

ωp

((
∂

∂x1

)
p
, . . . ,

(
∂

∂xn

)
p

)
> 0.

1) Show that M is negatively oriented with respect to ω if and only if ∀p ∈U ,

ωp

((
∂

∂x1

)
p
, . . . ,

(
∂

∂xn

)
p

)
< 0.

Exercise 6.1.6 Recall that, for every chart (Uα ,ϕα) of a manifold of dimension n, ϕα(Uα)
is an open subsets of one ot the following: Rn, Rn

+, Rn
−.

Let M be a 1-dimensional oriented manifold, p ∈ ∂M. Show that
• either for every chart (Uα ,ϕα) with p ∈Uα , ϕα(Uα) is an open subsets of R1

+,
• or for every chart (Uα ,ϕα) with p ∈Uα , ϕα(Uα) is an open subsets of R1

−.

Exercise 6.1.7 Let M be an oriented manifold of dimension at least 2.
Show that there is an atlas {(Uα ,ϕα)}α∈I for the chosen orientation such that ∀α ∈ I,

ϕα(Uα) is open in Rn or Rn
+.

Show that the previous statement fails if we suppose dimM = 1.

Exercise 6.1.8 Consider the identity map of an orientable manifold, taking two different
orientations for the domain and for the codomain: IdM : M → M.

Show that, with this choice of the orientations, IdM reverses the orientation.

Exercise 6.1.9 Assume that a map F : M → N preserves the orientation.
Prove that the map F considered as a map F : M → N or as a map F : M → N, reverses
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the orientation.
What can be said on the map F : M → N?
What if we assume instead that F reverses the orientation?

Exercise 6.1.10 Show that, if M is an orientable manifold, then its tangent bundle T M → M
is an orientable vector bundle.

Exercise 6.1.11 Show that, if M is an orientable manifold, then its cotangent bundle T ∗M →
M is an orientable vector bundle.

Exercise 6.1.12 Show that, if M is an orientable bundle, then the vector bundle

Λ
dimMT ∗M → M

is an orientable vector bundle.

Exercise 6.1.13 Let M be an oriented manifold, and let S be a manifold embedded in M.
Show that T M|S is an orientable bundle.

Exercise 6.1.14 Let S,M be oriented manifolds, and assume that S is embedded in M. Show
that NS|M is an orientable bundle.

6.2 Integrating forms

We know how to integrate smooth functions on open subsets of Rn
±; the classical Riemann’s

integration theory is enough for this class of functions.
Every idea on Rn which is sufficiently independent from the choice of the coordinates may

be lifted to the larger category of the real manifolds. Unfortunately, the integration does not have
this property.

Actually the area of an open subsets U ⊂ Rn, which is the integral on U of the constant
function 1, depends on the choice of the coordinates: if you "double" all coordinates the area is
multiplied by 2n.

The action of coordinate changes on integrals is precisely described by the following famous
result.

Theorem 6.2.1 Let U and V be two open subsets of Rn
± and let ϕ : V →U be a diffeomor-

phism. Let f : U → R be a smooth function with compact support. Then∫
U

f =
∫

V
( f ◦ϕ)|detJ(ϕ)|.

Here and in the following we assume that f has compact support to avoid convergence
problems.

Theorem 6.2.1 shows that the action of a coordinate change on an integral depends only on
the determinant of the Jacobi matrix of the coordinate change. Exercise 5.4.9 suggests then to
consider n-forms where n = dimM.

We first restrict our attention to the forms with compact support.
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Definition 6.2.2 The space of qqq−forms with compact support Ω
q
c(M) is the vector subspace

of Ωq(M)

Ω
q
c(M) := {ω ∈ Ω

q(M)|suppω is compact}

First of all, we define the integral of a form in ω ∈ Ωn
c(U) on an open subset U ⊂ Rn

±. Then
ω may be uniquely written as ω = f du1 ∧·· ·∧dun for a smooth function f ∈ Ω0

c(U) =C∞
c (U).

Definition 6.2.3 If ω = f du1 ∧·· ·∧dun ∈ Ωn
c(U) then we define∫

U
ω :=

∫
U

f . (6.5)

Is this definition independent from the choice of the coordinates? Not completely.

Proposition 6.2.4 Let U,V be two open subsets of Rn
±, ω ∈ Ωn

c(U), and let ϕ : V →U be a
diffeomorphism.

If ϕ preserves the orientation, then∫
U

ω =
∫

V
ϕ
∗
ω.

If ϕ reverses the orientation, then∫
U

ω =−
∫

V
ϕ
∗
ω.

Proof. Assume that ϕ preserves the orientation; in other words, assume that det(J(ϕ)) is always
positive.

Write ω = f du1 ∧·· ·∧dun. Then, by Theorem 6.2.1 and Exercise 5.4.9,∫
U

ω =
∫

U
f =

∫
V
( f ◦ϕ)|det(J(ϕ)) |

=
∫

V
(ϕ∗ f )det(J(ϕ))

=
∫

V
(ϕ∗ f )det(J(ϕ))du1 ∧·· ·dun

=
∫

V
(ϕ∗ f )ϕ∗(du1 ∧·· ·∧dun)

=
∫

V
ϕ
∗
ω. ■

If follows that, to have a definition of integral which is independent from the coordinates, we
have to ensure that all transition functions preserve the orientation: we have to fix an orientation.

This allows us to define an integration theory on Ωn
c(M) only if M is an oriented manifold.

We start by considering forms whose support is contained in a chart.

Definition 6.2.5 Let M be an oriented manifold of dimension n, and let ω ∈ Ωn
c(M). Assume

that there exists (U,ϕ) in the oriented atlas of M such that suppω ⊂U . Then we define∫
M

ω :=
∫

ϕ(U)
(ϕ−1)∗ω (6.6)

Proposition 6.2.4 ensures that Definition 6.2.5 is well posed, showing that the right-hand
term of (6.6) is independent from the choice of the chart.
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More precisely, if suppω ⊂Uα ∩Uβ , since ϕαβ preserves the orientation, then

∫
ϕα (Uα )

(ϕ−1
α )∗ω =

∫
ϕα (Uα∩Uβ )

(ϕ−1
α )∗ω =

=
∫

ϕβ (Uα∩Uβ )
ϕ
∗
αβ

(ϕ−1
α )∗ω =

∫
ϕβ (Uα∩Uβ )

(ϕ−1
β

)∗ω =
∫

ϕβ (Uβ )
(ϕ−1

β
)∗ω.

To extend Definition 6.2.5 to any ω ∈ Ωn
c(M) we need to use the partitions of unity.

Definition 6.2.6 Let M be an oriented manifold and choose one of the corresponding oriented
atlases {(Uα ,ϕα)}α∈I . Choose a partition of unity subordinate to the cover U := {Uα}α∈I .
For every i ∈ N choose α(i) with suppρi ⊂Uα(i) and define ωi := ρiω .

Then we define∫
M

ω := ∑
i∈N

∫
M

ωi.

Apparently the right-hand term is an infinite sum. One can prove that since {suppωi} is locally
finite and suppω is compact, then there are only finitely many indices such that ωi is not
identically 0. So all but finitely many addenda of the right-hand term are zero: it is a finite sum.

Anyway, at a first glance this is still not a good definition, since the formula defining
∫

M ω

appears to be dependent on the chosen atlas and on the chosen partition of unity. This problem is
solved by the next proposition.

Proposition 6.2.7 Definition 6.2.6 do not depend neither on the choice of the partition nor on
the choice of the atlas, but only on the orientation of M.

More precisely, if M is the same manifold taken with the opposite orientation, then∫
M

ω =−
∫

M
ω

Proof. A partition of unity may be subordinate to many different atlases. Obviously if we change
atlas (for the same orientation) without changing the partition of unity, the ωi do not change, and
therefore Definition 6.2.6 do not depend on the choice of the atlas.

Consider now the general case of two different partitions of unity {ρi}i∈N and {σ j} j∈N,
subordinate to two different atlases {(Uα ,ϕα)} and {(Uβ ,ϕβ )}.

First of all, we notice that {(Uα ,ϕα)}∪{(Uβ ,ϕβ )} is an atlas orientedly compatible with
both, and such that both partitions of unity are subordinate to it. So we can assume {(Uα ,ϕα)}=
{(Uβ ,ϕβ )}.

Second, we note that also the family of functions {ρiσ j}(i, j)∈N×N is a partition of unity!
Indeed N×N is countable and all other properties follow from the analogous properties of {ρi}
and {σ j}.

We define ωi j := ρiσ jω . If we prove, ∀i ∈ N,

∫
M

ρiω = ∑
j

∫
M

ωi j.

then ∑i
∫

M ρiω = ∑i, j
∫

M ωi j, and similarly it equals ∑ j
∫

M σ jω concluding our proof.
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This is simple to prove: take a chart (U,ϕ) containing suppωi, and compute

∑
j

∫
M

ωi j = ∑
j

∫
M

σ jρiω = ∑
j

∫
ϕ(U)

(σ j ◦ϕ
−1)(ϕ−1)∗ρiω =

=
∫

ϕ(U)

(
∑

j
σ j ◦ϕ

−1

)
(ϕ−1)∗ρiω =

∫
ϕ(U)

(ϕ−1)∗ρiω =
∫

M
ρiω.

Finally, if {(Uα ,ϕα)} is an atlas for M, then {(Uα ,L ◦ϕα)} (where L(u1, . . . ,un−1,un) =
(u1, . . . ,un−1,−un)) is an atlas for M. Computing the integrals using these atlases and the same
partition of unity, by Proposition 6.2.4 follows

∫
M ω =−

∫
M ω . ■

Definition 6.2.8 If dimM = 0, then M = {p} is a point, and its orientation is a sign, ε(p) ∈
{±} . The objects to integrate are the functions f : {p}→ R, which are naturally identified
with R by f 7→ f (p). Then we define

∫
M f := ε(p) f (p).

R Arguing as in 6.2.7, it is not difficult to show (see Complement 6.2.1) that if f : M → N is
a diffeomorphism which preserves the orientation for all ω ∈ Ωn

c(N) then
∫

M f ∗ω =
∫

N ω

and similarly, if f reverses the orientation, then
∫

M f ∗ω =−
∫

N ω .
In the definition of partition of unity we have requested the supports of the ρi to be compact,
which was somewhere convenient. Anyway, we notice that in the proof of Proposition
6.2.7, we haven’t used the compactness of the supports of the σ j. It follows that, when
computing the integral of a form, we can also use a "partition of unity" with support not
compact.
This is important for solving Complement 6.2.4 and then Complement 6.2.5, which are
very important to compute integrals explicitly. Indeed, nobody computes integrals using
directly the definition, since partitions of unity produce functions usually very hard to
integrate. Anyway, most manifolds contains a chart whose complement is a union of
one or more embedded manifolds of smaller dimension. Then by the above mentioned
complements, the integral of a form does not change when we restrict to such a chart, and
then we can reduce the computation to a single "classical" integral.

We conclude this section with the following famous theorem.

Theorem 6.2.9 — Stokes’ Theorem. Let M be an oriented manifold of dimension n, ω ∈
Ωn−1

c (M). Then∫
M

dω =
∫

∂M
ω.

Proof. Consider an oriented atlas {(Uα ,ϕα)}α∈I for M, a partition of unity {ρi}i∈N subordinate
to {Uα}α∈I , and define ωi := ρiω . Then ω = ∑i ωi and therefore∫

∂M
ω =

∫
∂M

∑
i

ωi = ∑
i

∫
∂M

ωi.

On the other hand∫
M

dω =
∫

M
d(∑

i
ωi) = ∑

i

∫
M

dωi.

Therefore if the theorem holds for each ωi, then it holds for ω . We may then assume that
suppω ⊂U for an (oriented) chart (U,ϕ).
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We assume for simplicity ϕ : U → Rn
+, the proof for the case in which the codomain of ϕ is

Rn
− being almost identical.

We write

(ϕ−1)∗ω =
n

∑
i=1

ai(u1, . . . ,un)du1 ∧·· ·∧dui−1 ∧dui+1 ∧·· ·∧dun,

for the ai some smooth functions whose compact support is contained in the open set ϕ(U) of
Rn
+. We extend these functions to functions ai ∈C∞(Rn

+) setting them zero out of ϕ(U); this
extends (ϕ−1)∗ω to a form in Ωn−1

c Rn
+. Since

∫
M dω =

∫
ϕ(U)(ϕ

−1)∗dω =
∫

ϕ(U) d(ϕ−1)∗ω , we
get

∫
M

dω =
∫
Rn
+

d

(
n

∑
i=1

aidu1 ∧·· ·∧dui−1 ∧dui+1 ∧·· ·∧dun

)
=

=
∫
Rn
+

(
n

∑
i=1

dai ∧du1 ∧·· ·∧dui−1 ∧dui+1 ∧·· ·∧dun

)
=

=
∫
Rn
+

(
n

∑
i=1

n

∑
j=1

∂ai

∂u j
du j ∧du1 ∧·· ·∧dui−1 ∧dui+1 ∧·· ·∧dun

)

=
∫
Rn
+

(
n

∑
i=1

∂ai

∂ui
dui ∧du1 ∧·· ·∧dui−1 ∧dui+1 ∧·· ·∧dun

)

=
n

∑
i=1

(−1)i−1
∫
Rn
+

∂ai

∂ui
du1 ∧·· ·∧dun

=
n

∑
i=1

(−1)i−1
∫
Rn
+

∂ai

∂ui
du1 · · ·dun.

We start the computation of
∫
Rn
+

∂ai
∂ui

du1 · · ·dun. by integrating with respect to the variable ui.
We need to distinguish two cases, since we are integrating on Rn

+, so all variables vary from
−∞ to ∞ but the last one, un, which varies from 0 to +∞.

∫
M

dω =
n

∑
i=1

(−1)i−1
∫
Rn
+

∂ai

∂ui
du1 · · ·dun

= (−1)n−1
∫
Rn
+

∂an

∂un
du1 · · ·dun +

n−1

∑
i=1

(−1)i−1
∫
Rn
+

∂ai

∂ui
du1 · · ·dun

= (−1)n−1
∫

du1 · · ·dun−1

∫ +∞

0

∂an

∂un
dun +

n−1

∑
i=1

(−1)i−1
∫

· · ·
∫

∞

−∞

∂ai

∂ui
dui

Finally we note that, since all the ai have compact support,
∫

∞

−∞

∂ai
∂ui

dui = 0 and
∫ +∞

0
∂an
∂un

dun =
−an(u1, . . . ,un−1,0). Therefore∫

M
dω = (−1)n

∫
an(u1, . . . ,un−1,0)du1 · · ·dun−1. (6.7)

To compute
∫

∂M ω =
∫

∂Rn
+
(ϕ−1)∗ω we recall that the orientation of ∂Rn

+ coincides with the
standard orientation of Rn−1 if and only if n is even. Then∫

∂M
ω = (−1)n

∫
Rn−1

n

∑
i=1

aidu1 ∧·· ·∧dui−1 ∧dui+1 ∧·· ·∧dun.
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The restriction of every form dui, i < n to Rn−1 is the namesake form dui. In contrast, the
restriction of the form dun to Rn−1, is the zero form! Therefore all summands vanish but the last
one (for i = n) and∫

∂X
ω = (−1)n

∫
Rn−1

an(u1, . . . ,un−1,0)du1 · · ·dun−1. (6.8)

The statement follows by comparing (6.7) and (6.8). ■

A first easy consequence is very important for the next chapter.

Corollary 6.2.10 Let M be oriented of dimension n and ∂M = /0, ω ∈ Ωn−1
c (M). Then∫

M dω = 0

Complement 6.2.1 If F : M → N is a diffeomorphism which preserves the orientation, and
ω ∈ Ωn

c(N) then∫
M

F∗
ω =

∫
N

ω.

If F : M → N is a diffeomorphism which reverses the orientation, and ω ∈ Ωn
c(Y ) then∫

M
F∗

ω =−
∫

N
ω.

Complement 6.2.2 Let M1, M2 oriented manifolds, assume ∂M1 = /0 and consider the
manifold M1 ×M2 with the orientation induced by the orientations of the Mi. Let πi : M1 ×
M2 → Mi be the natural projections and consider two forms ωi ∈ ΩdimMi

c (Mi).
Prove that∫

M1×M2

(π∗
1 ω1 ∧π

∗
2 ω2) =

(∫
M1

ω1

)(∫
M2

ω2

)

Complement 6.2.3 Show that the function
∫

M : ΩdimM
c (M)→ R is linear.

Complement 6.2.4 Let M be an oriented manifold of dimension n, N a manifold of strictly
smaller dimension.

Let i : N ↪→ M an embedding with closed image. Consider the open subset M′ :=
M \ i(N)⊂ M with the orientation induced by M.

Prove that, if ω ∈ Ωn
c(M), and ω|M′ ∈ Ωn

c(M
′), then∫

M
ω =

∫
M′

ω.

Complement 6.2.5 Let M,n,N, i,M′ as in the previous exercise. We assume ω ∈ Ωn
c(M)

(but we do not do any assumption on suppω|M′ . Extend Definition 6.2.6 to a definition of∫
M′ ω , and show that it is a good definition.
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Exercise 6.2.1 Let M be a compact complex manifold of dimension n, and let ω ∈Ωn−1,0(M)
be a holomorphic form of degree n−1 . Recall (see Exercise 5.3.4) that indω ∧dω is a real
form, an element of Ω2n(M).

1. Prove that
∫

M indω ∧dω = 0.
2. Prove that dω = 0. In other words all holomorphic forms of degree n−1 are closed.

6.3 Integrating functions

We can define an integration theory on orientable manifolds for smooth functions by choosing a
volume form ω on M, whose existence is guaranteed by Proposition 6.1.12, as follows.

Definition 6.3.1 Consider a manifold M and a volume form ω on it.
Then, for every f ∈C∞

c (M), we define
∫

M f :=
∫

M f ω where in the right-hand term M is
taken with the positive orientation with respect to ω .

Then the choice of a volume form allows us to integrate functions. Please note that we write
for simplicity

∫
M f but this strongly depends on the choice of ω . If we change the volume form,∫

M f changes!

If M is compact, we can then define its volume.

Definition 6.3.2 Let M be a compact manifold of dimension n, ω ∈ Ωn(M) be a volume form.
Then, we define the volume of M as

V (M) :=
∫

M
1 =

∫
M

ω.

The main example of volume form is the form du1 ∧·· ·∧dun on Rn.

Consider a function f ∈ Ω0(Rn), y ∈ Reg( f ), and set M := f−1(y)⊂ Rn.

To ease the notation we write du1 ∧ ·· · ∧ d̂ui ∧ ·· · ∧ dun for the form du1 ∧ ·· · ∧ dui−1 ∧
dui+1 ∧·· ·∧dun. Then by Exercise 5.4.7 the expression

ηp := (−1)n+i (du1 ∧·· ·∧ d̂ui ∧·· ·∧dun)p
∂ f
dui

(p)
(6.9)

gives a well-defined volume form η on the whole M.

Indeed there is at least one index i for which ∂ f
dui

(p) does not vanish, and then also the
numerator does not vanish as alternating form even when restricted to TpM = kerd fp.

Moreover, for two different choices of the index i such that ∂ f
dui

(p) ̸= 0, the right-hand term
of (6.9) gives the same alternating form on kerd fp = TpM. Let us insist on the fact that this is
true only on M. The right-hand term of (6.9) gives, for different i, forms on Rn that differs in any
point p ∈ Rn, including the points of M.

They are different alternating forms on TpRn whose restriction to TpM coincide.

Notice however that

(−1)n+i (du1 ∧·· ·∧ d̂ui ∧·· ·∧dun)p
∂ f
dui

(p)
∧d fp = (du1 ∧·· ·∧dun)p.
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In particular, if v1, . . . ,vn−1 are vectors in TpM, vn ∈ TpRn, then

du1 ∧·· ·∧dun(v1, . . . ,vn−1,vn) =

=

(
(−1)n+i (du1 ∧·· ·∧ d̂ui ∧·· ·∧dun)p

∂ f
dui

(p)
∧d fp

)
(v1, . . . ,vn−1,vn) =

= ∑
σ∈Sn

ε(σ)(−1)n+i

n!
(du1 ∧·· ·∧ d̂ui ∧·· ·∧dun)p

∂ f
dui

(p)
(vσ(1), . . . ,vσ(n−1))d fp(vσ(n)) =

= ∑
σ∈Sn−1

ε(σ)(−1)n+i

n!
(du1 ∧·· ·∧ d̂ui ∧·· ·∧dun)p

∂ f
dui

(p)
(vσ(1), . . . ,vσ(n−1))d fp(vn) =

=
d fp(vn)

n! ∑
σ∈Sn−1

ε(σ)ωp(vσ(1), . . . ,vσ(n−1)) =

=
(n−1)!d fp(vn)

n!
ωp(v1, . . . ,vn−1) =

d fp(vn)

n
ωp(v1, . . . ,vn−1),

so, for vn ̸∈ TpM (which means d fp(vn) ̸= 0)

ηp(v1, . . . ,vn−1) =
ndu1 ∧·· ·∧dun

d fp(vn)
(v1, . . . ,vn−1,vn). (6.10)

We notice that the induced volume form depends not only on M but also on the choice of f .
Indeed, replacing, ∀λ ̸= 0, f by λ f and y by λy we get the same M but the induced volume form
changes, being divided by λ . This is not convenient, so we multiply the form by the norm of the
gradient ∇ f .

Definition 6.3.3 Consider a function f ∈ Ω0(Rn), define ∇p f = ∑
∂ f
∂ui

(p)
(

∂

∂ui

)
p

and set

therefore ||∇p f ||=
√

∑

(
∂ f
∂ui

(p)
)2

.

Pick y ∈ Reg( f ) and set M := f−1(y) ⊂ Rn. The induced volume form ω on M is
defined by the following equality, holding ∀p ∈ M, ∀vi ∈ TpM:

ωp(v1, . . . ,vn−1) = n
1

||∇p f ||
du1 ∧·· ·∧dun(v1, . . . ,vn−1,∇p f ).

Note that d fp (∇p f ) = ||∇p f ||2, so by (6.10) ω = ||∇ f ||η .
Note that we need y ∈ Reg( f ) to ensure that we are not dividing by zero. Clearly Definition

6.3.3 of the induced volume form does not change if we substitute f with λ f , λ > 0, whereas
if we substitute f by − f , ω is substituted by −ω changing then the orientation induced on
M. Correspondingly the linear application

∫
M : Ωn−1

c → C∞
c (M) depends on the choice of the

orientation of M. In contrast, the induced integral
∫

M : C∞
c (M) → R does not depend on the

choice of f .
Let us see an example.

Example 6.1 Let f ∈ C∞(R2), y ∈ Reg( f ), and assume that M := f−1(y) is compact: a
compact closed regular plane curve. Let ω ∈ Ω1(M) be the volume form induced by f as in
Definition 6.3.3.

Consider a regular parametrization γ of M, a surjective immersion γ : [0,1]→ M such
that γ|[0,1) is injective and γ(0) = γ(1). Set γ ′(t0) := dγt0

( d
dt

)
p.

Then, ∀v ∈ Tγ(t0)M, v = λγ ′(t0). Let us compute ωp(v). Set γ ′(t0) =: (γi,γ2). Then, up to
rescaling the function f defining M we can assume ∇ f = (−γ2,γ1).
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So

ωp(v) = ωp(λγ
′(t0)) = λωp(γ

′(t0)) =

= λ
2

||γ ′(t0)||
du1 ∧du2(γ

′(t0),∇ f ) =
λ

||γ ′(t0)||
det
(

γ1 γ2
−γ2 γ1

)
= λ ||γ ′(t0)||.

We conclude this section by showing some classical applications of the Stokes’ theorem.

Example 6.2 — Fundamental Theorem of Calculus. Take M = [a,b]⊂R, with the natural
orientation, ω = f ∈C∞([a,b]).

The boundary is ∂M = {a,b} oriented by taking the + in b and the − in a. Therefore∫
∂M f = f (b)− f (a). By d f = f ′(t)dt Stokes’ theorem in this case is just the fundamental

theorem of the calculus∫
[a,b]

f ′(t)dt = f (b)− f (a),

Similarly suppose that M is an arc, which means that M is the image of an embed-
ding i : [a,b] → Rn. Consider M with the orientation making i an orientation preserving
diffeomorphism. Take a function f ∈C∞(Rn).

Then, as in the previous case∫
M

d f = f (i(b))− f (i(a)).

More generally, if dimM = 1, then
∫

M d f is the sum (with suitable signs) of the values of
f on the boundary points (if any) of M.

Example 6.3 — Green formula. Let A ⊂ R2 be an open subset with regular boundary,
which means that A is a manifold with boundary embedded in R2 whose interior is A. We
consider a 1−form ω ∈ Ω1

c(A), ω = P(x,y)dx+Q(x,y)dy, so dω =
(

∂Q
∂x − ∂P

∂y

)
dx∧dy.

Then Stokes’ theorem in this case gives∫
A

(
∂Q
∂x

− ∂P
∂y

)
=
∫

γ

Pdx+Qdy,

where γ is ∂A positively (counterclockwise) oriented.

Complement 6.3.1 Consider a smooth function f ∈ C∞(R3), y ∈ Reg( f ), M := f−1(y).
Construct the volume form ω induced on M in Definition 6.3.3.

Consider a parametrization of an open subset of M, which means consider an open subset
U ⊂ R2 and an embedding P : U ↪→ M. Show that P∗ω =±

√
detG du1 ∧du2.

Complement 6.3.2 Let f ∈C∞(Rn), y ∈ Reg( f ), λ ∈ R\{0}, g := λ f . Then λy ∈ Reg(g)
and M = f−1(y) = g−1(λy)

Definition 6.3.3 induces two different volume forms ω f and ωg on M, respectively induced
by f and g.

Show that ω f = ωg ⇔ λ > 0.
Show that the two corresponding linear applications

∫
M : C∞

c (M)→R coincide, regardless
the positivity of λ .
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Complement 6.3.3 — The divergence theorem. Prove∫
A

div( f ) =
∫

∂A
f · n̂,

for an open set A ⊂R3 with regular boundary ∂A. Here f : A →R3 is a smooth function, n̂ is
one of the two vectors of norm 1 orthogonal to the surface (which one?), and the divergence
of f is the function div( f ) := ∑

3
i=1

∂ fi
∂xi

.

Complement 6.3.4 — Stokes’ theorem on the curl. If S ⊂ R3 is an oriented embedded
surface and Γ = ∂S is its boundary with the induced orientation. Consider a 1−form ω :=
f1dx1 + f2dx2 + f3dx3.

Prove∫
S

curl( f ) · n̂ =
∫

Γ

ω.

where curl( f ) is the function with values in R3

curl( f ) =
(

∂ f3

∂x2
− ∂ f2

∂x3
,
∂ f1

∂x3
− ∂ f3

∂x1
,
∂ f2

∂x1
− ∂ f1

∂x2

)
.

Exercise 6.3.1 Consider a parametrized plane curve γ : [0,1]→ R2, and assume that γ is
an embedding in a submanifold M of R2 as in Example 6.1. Endowe Γ := γ([0,1]) with the
volume form pull-back of the volume form of M.

Prove that the volume of Γ (say the length) equals
∫ 1

0 |γ ′|.

Exercise 6.3.2 Find a form ω ∈ Ω2(R2) whose restriction to S1 is the volume form induced
by f = x2

1 + x2
2 as in Definition 6.3.3.

Exercise 6.3.3 Consider S1 = {x2
1 + x2

2 = 1} ⊂ R2. Prove that the volume of S1 is 2π .

Exercise 6.3.4 Let Π ⊂ R2 be a polygona of vertices P1, . . . ,Pr, ordered counterclockwise.
Set (xi,yi) := Pi, x0 := xr, xr+1 := x1.

Prove that the area of Π equals

1
2

r

∑
i=1

yi(xi+1 − xi−1).

aWarning: a polygon is NOT a manifold with boundary embedded in the plane because of the corners at the
vertices.
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7. De Rham cohomology

We can now define the De Rham cohomology of a real manifold.
Unless we do explicitly state something different, all manifolds of this chapter are real

manifolds. When we consider the De Rham cohomology of a complex manifold M, we are
considering M just as oriented real manifold, with the orientation given in Theorem 6.1.7.

7.1 De Rham cohomology and compact support cohomology
Definition 7.1.1 A differential complex is a pair (V •,d) where V • =

⊕
q∈ZV q is a graded

vector space and d : V • →V • is an operator of degree 1 such that d ◦d = 0.
If (V •,d) is a differential complex Imd ⊂ kerd and we can define its cohomology

H•
d (V

•) :=
kerd
Imd

.

For every ω ∈ kerd we denote by [ω] its class in H•
d (V

•).
H•

d (V
•) has a natural structure of graded vector space H•

d (V
•) =

⊕
q∈Z Hq

d (V
•), obtained

by defining Hq
d (V

•) := {[ω] ∈ H•
d (V

•)|ω ∈V q}.
In particular

Hq
d (V

•) =
kerd|V q

dV q−1 .

Let M be a real manifold. The graded algebra Ω•(M) :=
⊕

q∈Z Ωq(M) with the operator d
defined in Theorem 5.4.8. is a differential complex. Its algebra structure passes to its cohomology
by the following computation.

Proposition 7.1.2 Let (V •,d) be a differential complex.
Let × : V •×V • → V • be a product inducing a graded algebra structure on V • with the

property that for all q1,q2 ∈ Z, for all ω1 ∈V q1 , ω2 ∈V q2 , there exists λ ,µ ∈K\{0} with

d(ω1 ×ω2) = λω1 ×ω2 +µω1 ×dω2.

Then [ω1]× [ω2] := [ω1 ×ω2] is a good definition of a graded algebra structure on H•
d (V

•).
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Proof. We prove that [ω1]× [ω2] := [ω1 ×ω2] is a good definition, leaving the remaining checks
to the reader. By the bilinearity of the product we may assume without loss of generality
ω1 ∈V q1 , ω2 ∈V q2 .

First of all we need that, if ω1 and ω2 belong to kerd, also ω1 ×ω2 belongs to kerd. Indeed
d(ω1 ×ω2) = λdω1 ×ω2 +µω1 ×dω2 = 0+0 = 0.

Then we need to show that the cohomology class of ω1×ω2 only depends on the cohomology
classes of the ωi. Indeed, if [ωi] = [ω ′

i ], then ∃ηi with dηi = ωi −ω ′
i . It follows, since dω ′

1 =
dω2 = 0,

ω1 ×ω2 = (ω ′
1 +dη1)× (ω ′

2 +dη2) =

= ω
′
1 ×ω

′
2 +ω

′
1 ×dη2 +dη1 ×ω2 =

= ω
′
1 ×ω

′
2 +

1
λ

d(ω ′
1 ×η2)+

1
µ

d(η1 ×ω2) =

= ω
′
1 ×ω

′
2 +d

(
ω ′

1 ×η2

λ
+

η1 ×ω2

µ

)
so [ω1 ×ω2] = [ω ′

1 ×ω ′
2]. ■

Let’s then have a better look to the differential complexes (Ω•(M),d).

Definition 7.1.3 A differential form ω ∈ Ω•(M) is closed if dω = 0, i.e. if ω ∈ kerd.
A differential form ω is exact if there is a differential form η such that ω = dη , i.e. if

ω ∈ Imd.

By Theorem 5.4.8 every exact form is closed, and then (Ω•(M),d) is a differential complex.

Definition 7.1.4 For every manifold M, the differential complex (Ω•(M),d) is the De Rham
complex of M.

Its cohomology is the De Rham cohomology algebra (sometimes denoted just by De
Rham cohomology for short) of M, the graded algebra

H•
DR(M) =

{closed forms}
{exact forms}

=
⊕

Hq
DR(M),

where

Hq
DR(M) =

{closed q-forms}
{exact q-forms}

is the qth De Rham cohomology group of M. The algebra structure on H•
DR(M) is defined,

by Proposition 7.1.2 by the wedge product of De Rham cohomology classes

[ω1]∧ [ω2] = [ω1 ∧ω2].

Notation 7.1. We will denote by hq
DR(M) ∈ N∪{∞} the dimension of Hq

DR(M).
Let M be a manifold such that all De Rham cohomology groups are finitely dimensional.

Then the Hilbert function of M is the Hilbert function of H•
DR(M), the function Z→ N mapping

each q to hq
DR(M).

The Euler number of M is e(M) := ∑(−1)qhq
DR(M).

Note that Hq
DR(M) is defined for all q ∈ Z, but it is different from {0} only for 0 ≤ q ≤ n.

The forthcoming Exercise 7.1.2 shows that h0
DR(M) only depends on the topology of M;

more precisely it counts the connected components of M. Some similar interpretations hold true
also for other cohomology groups; we will discuss some of them later.

There is a class of maps among differential complexes that is very useful.
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Definition 7.1.5 A chain map is a linear application

L : V • →W •

among two differential complexes (V •,dV ), (W •,dW ) that commutes with the differentials,
which means

L◦dV = dW ◦L.

Their more interesting property is that chain maps induce maps among the respective
cohomologies.

Proposition 7.1.6 Let (V •,dV ) and (W •,dW ) be differential complexes, and let L : V • →W •

be a chain map.
Then there is a linear application

H•(L) : H•
dV
(V •)→ H•

dW
(W •)

defined by H•(L)[ω] = [Lω].
If L has degree d, then H•(L) has degree d.
If both (V •,dV ) and (W •,dW ) have algebra structures fulfilling the assumptions of Propo-

sition 7.1.2 and L is a morphism of algebras then, considering H•
dV
(V •) and H•

dW
(W •) with the

induced algebra structures, H•(L) is a morhpism of algebras too.

Proof. The only nontrivial thing to prove is that H•(L)[ω] = [Lω] is a good definition.
First of all, for all ω ∈ kerdV , dW Lω = LdV ω = L0 = 0, so Lω ∈ kerdW has a class [Lω] ∈

H•
dW
(W •).
Then, if [ω] = [ω ′] then ∃η such that ω −ω ′ = dV η and therefore Lω −Lω ′ = L(ω −ω ′) =

LdV η = dW Lη . It follows [Lω]− [Lω ′] = [dW Lη ] = 0 and therefore [Lω] = [Lω ′]. ■

It follows

Corollary 7.1.7 Let F : M → N be a smooth map. Then there is a graded algebra homomor-
phism F∗ : H•

DR(N)→ H•
DR(M) of degree zero such that, for each closed form ω ∈ Ω

q
DR(N),

F∗[ω] = [F∗ω].

Proof. By Proposition 5.4.7 the pull-back F∗ defines a chain map of degree zero F∗ : Ω•(N)→
Ω•(M) that is moreover, as we have already remarked, an algebra homomorphism.

Then the result follows by Proposition 7.1.6. ■

By abuse of notation we have given the same name to the map F∗ : Ω•(N)→ Ω•(M) and to
the induced map F∗ : H•

DR(N)→ H•
DR(M).

Since the latter is induced by the former by the formula F∗[ω] = [F∗(ω)], most of the
properties of the first map pass in a natural way to the second one.

For example the formula

(F ◦G)∗ = G∗ ◦F∗

holds also in cohomology. It follows (Complement 7.1.2 ) that diffeomorphic manifolds have
isomorphic De Rham cohomology algebras.

Since the wedge product of forms with compact support has compact support and the exterior
derivative of a form with compact support has also compact support, the subset

Ω
•
c(M) := {ω ∈ Ω

•(M)|suppω is compact}
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is a graded subalgebra of Ω•(M) and a differential (sub)complex whose degree 1 operator is
given by the restriction of d.

Definition 7.1.8 The compact support cohomology algebra or compact support cohomol-
ogy ring of M is the graded algebra

H•
c (M) := H•

d (Ω
•
c(M)) =

kerd|Ω•
c(M)

Imd|Ω•
c(M)

=
{closed forms with compact support}

{differentials of forms with compact support}

whose grading is given by the decomposition H•
c (M) =

⊕
q Hq

c (M) as direct sum of

Hq
c (M) :=

kerd|Ωq
c(M)

d
(

Ω
q−1
c (M)

) =
{closed q-forms with compact support}

{differentials of (q−1)-forms with compact support}
.

The graded piece Hq
c (M) is the qqqth-cohomology group with compact support. The product

of the algebra structure is defined as

[ω1]∧ [ω2] := [ω1 ∧ω2].

As in the case of the De Rham cohomology, Hq
c (M) is defined for all q ∈ Z, but it equals

{0} unless 0 ≤ q ≤ n.
Note that, if M is compact, Ω•(M) = Ω•

c(M) and therefore H•
DR(M) = H•

c (M).

Notation 7.2. We will denote by hq
c(M) ∈ N∪{∞} the dimension of Hq

c (M).

We would like to generalize Corollary 7.1.7 to the cohomology with compact support, but
we cannot because in general1F∗(Ω•

c(N)) ̸⊂ Ω•
c(M). But there is an important class of functions

for which it works.
Definition 7.1.9 Let M, N be manifolds and let F : M → N be a function.

F is proper if, ∀K ⊂ N compact, then F−1(K)⊂ M is compact too.

If F is a smooth proper map then obviously F∗(Ω•
c(N))⊂ Ω•

c(M) and then

Corollary 7.1.10 Let M, N be manifolds and let F : M → N be a smooth proper map.
Then there is a graded algebra homomorphism F∗ : H•

c (N)→ H•
c (M) such that, for each

closed form ω ∈ Ω
q
c(N), F∗[ω] = [F∗ω].

Since diffeomorphisms are proper maps, it follows that diffeomorphic manifolds have isomorphic
compact support cohomology algebras.

Complement 7.1.1 Show that, for every differential complex (V •,d), Hq
d (V

•) =
kerd|V q

dV q−1 .

Complement 7.1.2 Show that the De Rham cohomologies of diffeomorphicmanifolds are
isomorphic as graded algebras.

Exercise 7.1.1 Show that f ∈ Ω0(M) =C∞(M) is closed if and only if it is locally constant,
i.e. ∀p ∈ M there exists an open neighbourhood U of p such that f|U is constant.

1As example take the first projection π1 : R×R→ R.
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Exercise 7.1.2 Show that h0
DR(M) equals the number of connected components of M. Find a

similar description for h0
c(M).

Exercise 7.1.3 Compute h1
DR(R).

Exercise 7.1.4 Show that H•
DR(R) is isomorphic as graded algebra to R[t]/(t). Show that

H•
c (R) is isomorphic as graded algebra to tR[t]/(t2).

Hint: We need to determine when a 1− form with compact support has a primitive whose
support is compact. Look for a criterium in terms of integrals.

Exercise 7.1.5 Compute the De Rham cohomology ring and the compact support cohomology
ring of the intervals [0,1) and [0,1].

Exercise 7.1.6 Show that the restrictions to S1 of the forms xdy and xdy− ydx of R2 are
closed but not exact.

Exercise 7.1.7 Show that if M is oriented and ∂M = /0, then there is a well defined linear
map

∫
M : Hn

c (M)→ R associating to each class [ω] the number
∫

M ω .
Show moreover that the map

∫
M is surjective.

7.2 Exact sequences

Definition 7.2.1 An exact sequence is a (finite or not finite) sequence of linear applications

· · · →V q−1 →V q →V q+1 → ·· ·

such that the image of each map coincides with the kernel of the next one.

One can see an exact sequence as a graded vector space V • :=
⊕

qV q. Then the linear
applications build naturally an operator d on V • of degree 1, and the exact sequence condition
means that (V •,d) is a differential complex with trivial cohomology {0}.

Definition 7.2.2 A short exact sequence is an exact sequence of the form

0 → A
f→ B

g→C → 0

where 0 stands for the 0−dimensional vector space {0}.
In other words we have an injective map f : A → B, a surjective map g : B →C such that

Im f = kerg.

A special role is played by the following exact sequences.

Definition 7.2.3 A short exact sequence of complexes is a short exact sequences of chain
maps of degree zero among differential complexes

0 → A• f→ B• g→C• → 0.
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These are commutative diagrams

...

d
��

...

d
��

...

d
��

0 // Aq−1 f
//

d
��

Bq−1 g
//

d
��

Cq−1

d
��

// 0

0 // Aq f
//

d
��

Bq g
//

d
��

Cq

d
��

// 0

0 // Aq+1 f
//

d ��

Bq+1 g
//

d ��

Cq+1

d��

// 0

...
...

...

(7.1)

whose rows are exact, and whose columns are differential complexes. Therefore in the diagram
(7.1)

• all maps f , g and d are linear;
• d ◦d = 0;
• all f are injective;
• all g are surjective;
• Im f = kerg;
• d ◦ f = f ◦d and d ◦g = g◦d.
The key result is the following

Theorem 7.2.4 Assume that there is a short exact sequence of complexes

0 → A• f→ B• g→C• → 0.

Then there is a long exact sequence of cohomology groups

· · · → Hq−1(C•)
d∗→ Hq(A•)

f∗→ Hq(B•)
g∗→ Hq(C•)

d∗→ Hq+1(A•)→ ·· · (7.2)

Proof. We have to define the maps f∗, g∗ and d∗ in (7.2) and then prove that (7.2) is an exact
sequence by showing that the image of each map equals the kernel of the next one.

Since f ,g are chain maps of degree zero, by Proposition 7.1.6 they induce linear applications
f∗,g∗ of degree zero among the respective cohomologies

f∗ : H•(A•)→ H•(B•), g∗ : H•(B•)→ H•(C•),

so that

∀a ∈ A• with da = 0 f∗([a]) = [ f (a)], ∀b ∈ B• with db = 0 g∗([b]) = [g(b)].

To describe the linear application d∗ of degree 1 we define each of its graded pieces
d∗ : Hq−1(C•)→ Hq(A•) as follows.

By the surjectivity of g, for every c ∈ Cq−1 we can pick an element b ∈ Bq−1 such that
g(b) = c. When c is a representative of a cohomology class, then d(c) = 0 and g(d(b)) =
d(g(b)) = d(c) = 0. Then d(b) ∈ kerg = Im f and therefore there is an element a ∈ Aq such that
f (a) = d(b). The following diagram summarizes how we constructed a and b.
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...

d

��

...

d

��

...

d

��

b � //
_

��

c_

��

0 // Aq−1 f
//

d

��

Bq−1 g
//

d

��

Cq−1

d

��

// 0

a � // db � // 0

0 // Aq f
//

d

��

Bq g
//

d

��

Cq

d

��

// 0

...
...

...

We define then

d∗([c]) = [a].

We need to prove that the definition is well done, i.e. that
1. d(a) = 0 (so that we can consider its cohomology class [a]);
2. the cohomology class [a] do not depend on the choices we have done:

of a ∈ f−1(d(b));
of b ∈ g−1(c);
of c in its cohomology class.

The proof of point 1) is easy. Indeed f (d(a)) = d( f (a)) = d(d(b)) = 0, so d(a) ∈ ker f . Since
f is injective, then d(a) = 0.

Point 2) are really three different checks, one for each choice we have done, the choice of a,
the choice of b and finally the choice of c.

The first check, “the choice of a”, is obvious: since f is injective, f−1(d(b)) has cardinality
1 and then we had no choice there!

For the second check, let’s consider a different b′ with g(b′) = c, and set a′ for the unique
element in Aq with f (a′) = db′. Then g(b−b′) = g(b)−g(b′) = c− c = 0, so b−b′ ∈ kerg =
Im f , so there exists a ∈ Aq−1 such that f (a) = b−b′. Then

f (d(a)) = d( f (a)) = d(b−b′) = db−db′ = f (a)− f (a′) = f (a−a′).

By the injectivity of f it follows a−a′ = da and then [a] = [a′]. The following diagram describes
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the argument used.

...

d

��

...

d

��

...

d

��

a � //
_

��

b−b′ � //
_

��

0

0 // Aq−1 f
//

d

��

Bq−1 g
//

d

��

Cq−1

d

��

// 0

da = a−a′ � // db−db′

0 // Aq f
//

d

��

Bq g
//

d

��

Cq

d

��

// 0

...
...

...

The last check, the independence of [a] by the choice of c in its cohomology class, can be done
by a similar diagram chasing argument. We leave it to the reader, as the rest of the proof.

More precisely, to complete the proof the reader should show that d∗ is linear (this is standard
undergraduate linear algebra) and prove

• Im f∗ ⊂ kerg∗;
• Im f∗ ⊃ kerg∗;
• Img∗ ⊂ kerd∗;
• Img∗ ⊃ kerd∗;
• Imd∗ ⊂ ker f∗;
• Imd∗ ⊃ ker f∗.

all statements that can be proved by diagram chasing as above (do it, it is fun!) ■

Complement 7.2.1 Run all details of the Proof of Theorem 7.2.4.

Exercise 7.2.1 Let (V •,d) be a differential complex of finitely dimensional vector spaces
such that {q|dimV q > 0} is finite. Then

∑(−1)q dimV q = ∑(−1)q dimHq(V •).

In particular, if 0 →V a →V a+1 → ·· ·→V b → 0 is an exact sequence of finitely dimensional
vector spaces, then ∑(−1)q dimV q = 0.
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Exercise 7.2.2 — The dual exact sequence. Let A
f→ B

g→ C be an exact sequence of
finitely dimensional vector spaces. Prove that

C∗ g∗→ B∗ f ∗→ A∗

is also an exact sequence.

7.3 The Mayer-Vietoris short exact sequence
At the moment we have considered, for each manifold M, two differential complexes, the
De Rham complex (Ω•(M),d) and its subcomplex (Ω•

c(M),d) with respective cohomologies
H•

DR(M) and H•
c (M).

To apply Theorem 7.2.4 to our cohomology theories we need to construct suitable short exact
sequences of complexes.

Definition 7.3.1 Let M be manifold, U ⊂ M be an open subset with the induced differentiable
structure. Consider the restriction map

ρ
M
U : Ω

•(M)→ Ω
•(U)

defined by ρM
U (ω) := ω|U

Since the restriction ω|U is the pull-back for the inclusion map U ↪→ M, and pull-back
and differential commute, ρM

U is a chain map.

Theorem 7.3.2 Let {U,V} be an open covering of a manifold M.
Then there is a short exact sequence of chain maps

0 → Ω
•(M)

f→ Ω
•(U)⊕Ω

•(V )
g→ Ω

•(U ∩V )→ 0 (7.3)

where f (ω) = (ρM
U ω,ρM

V ω), and g(ωU ,ωV ) = ρV
U∩V ωV −ρU

U∩V ωU .

Proof. The only nontrivial check is the surjectivity of g.
By Theorem 6.1.10 and its proof (that we have not seen) there is a partition of unity made by

two smooth functions fU , fV : M → [0,1] such that
• fU + fV = 1;
• supp fU ⊂U ;
• supp fV ⊂V .
For every τ ∈ Ωq(U ∩V ) consider the form fU τ ∈ Ωq(U ∩V ).
We extend it to a form on V by setting ∀p ∈V \U , ( fU τ)p = 0. We obtain a smooth form

(that we keep calling fU τ), fU τ ∈ Ωq(V ): indeed the smoothness is obvious on U ∩V , whereas
for every p ∈ V \ (U ∩V ) = V \U there is a neighbourhood of p, namely V \ supp fU , where
fU τ = 0, and therefore fU τ is smooth at these points too.

Similarly for fV : we have constructed two forms fU τ ∈ Ωq(V ), fV τ ∈ Ωq(U) such that

( fU τ)|U∩V +( fV τ)|U∩V = τ.

We conclude by

g(− fV τ, fU τ) = ( fU τ)|U∩V +( fV τ)|U∩V = τ. ■
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Corollary 7.3.3 Let {U,V} be an open covering ot a manifold M.
Then there is an exact sequence

· · · → Hq−1
DR (U ∩V ) →

→ Hq
DR(M) → Hq

DR(U)⊕Hq
DR(V ) → Hq

DR(U ∩V ) →
→ Hq+1

DR (M) → ···

Proof. It follows immediately applying Theorem 7.2.4 to the exact sequence (7.3). ■

The same construction does not work for forms with compact support because the support of
the restriction of a form with compact support to an open subset may be not compact.

Still, a different construction gives a similar result.

Definition 7.3.4 Let M be a manifold and let U ⊂ M be an open subset.
Consider the inclusion U ↪→ M.
Then we define

jUM : Ω
•
c(U)→ Ω

•
c(M)

so that, ∀ω ∈ Ω•
c(U), jUMω ∈ Ω•

c(M) is the form that coincides with ω on the points of U ,
and vanishes elsewhere.

Note that jUMω is smooth by Lemma 6.1.11 because suppω is compact.
Note moreover that jUM is a chain map.

Theorem 7.3.5 Let {U,V} be an open covering ot a manifold M.
Then there is a short exact sequence of chain maps

0 → Ω
•
c(U ∩V )

f→ Ω
•
c(U)⊕Ω

•
c(V )

g→ Ω
•
c(M)→ 0

where f (ω) = (− jU∩V
U ω, jU∩V

V ω), and g(ωU ,ωV ) = jUMωU + jVMωV .

Proof. The proof follows the same lines of the proof of Theorem 7.3.2. Do it! ■

Corollary 7.3.6 Let {U,V} be an open covering of a manifold M.
Then there is an exact sequence

· · · → Hq−1
c (M) →

→ Hq
c (U ∩V ) → Hq

c (U)⊕Hq
c (V ) → Hq

c (M) →
→ Hq+1

c (U ∩V ) → ···

Proof. This follows immediately by Theorem 7.2.4 and Theorem 7.3.5. ■

Complement 7.3.1 Prove Theorem 7.3.5.

Exercise 7.3.1 Use Corollary 7.3.3 to compute H1
DR(S

1).

Exercise 7.3.2 Use Corollary 7.3.6 to compute H1
c (S

1).
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Exercise 7.3.3 Let M be a manifold and let U,V ⊂ M be open subsets such that U ∪V = M
and all De Rham cohomology groups of U , V and U ∩V are finitely dimensional.

Prove that then all De Rham cohomology groups of M are finitely dimensional and
moreover

e(M)+ e(U ∩V ) = e(U)+ e(V ).

7.4 The Poincaré lemma
Let M be a manifold, let π : M×R→ M be the projection on the first factor, fix c ∈ R, and let
s : M → M×R be corresponding constant section, so ∀p ∈ M, s(p) = (p,c). Notice π ◦ s = IdM:
s is a section of a trivial bundle.

Lemma 7.4.1 There exist a linear operator

K : Ω
•(M×R)→ Ω

•(M×R)

of degree −1 such that

IdΩq(M×R)−π
∗ ◦ s∗ = (−1)q(K ◦d −d ◦K) (7.4)

The operator K above is called integration along the fibres.

Proof. The ordinary derivative d
dt defines a vector field on R. Consider the inclusions R ↪→M×R

given by the fibres of π , namely ∀p ∈ M, t 7→ (p, t). Their differentials map the vector field d
dt on

vector fields on each {p}×R, giving then, ∀(p, t) ∈ M×R, a tangent vector in T(p,t)(M×R).
We get then a section of the tangent bundle of M×R that we denote by ∂

∂ t . This is smooth,
so ∂

∂ t ∈ X(M×R), as one easily checks in local coordinates.
Indeed, if (U,ϕ) is a chart for M giving local coordinates x1, . . . ,xn, (U ×R,ϕ × IdR) is a

chart for M×R, whose corresponding coordinates we denote, by a natural abuse of notation, by
x1, . . . ,xn, t. Then the partial derivative with respect to the coordinate t equals the restriction to
U ×R of the just defined vector field ∂

∂ t , which is then smooth.
Note π(x1, . . . ,xn, t) = (x1, . . . ,xn), s(x1, . . . ,xn) = (x1, . . . ,xn,c), so π∗dxi = dxi, s∗dxi = dxi,

s∗dt = ds∗t is the differential of the function with constant value c, and so it vanishes: s∗dt = 0.
We define K as follows. ∀k ∈ R consider the shift by k ak : M×R→ M×R defined by

ak(p, t) = (p, t + k).

Then, ∀q ∈ N, ∀ω ∈ Ωq(M×R), ∀p ∈ M, ∀t ∈ R, ∀v1, . . . ,vq−1 ∈ T(p,t)(M×R),

(K(ω))(p,t) (v1, . . . ,vq−1) := q
∫ t

c

(
a∗t−uωp,u

)(
v1, . . . ,vq−1,

(
∂

∂ t

)
(p,t)

)
du.

The reader can easily check that K(ω) is a section of the vector bundle Λq−1T ∗(M×R), whose
smoothness we check as usual in local coordinates. If ω = f dxi1 ∧·· ·∧dxiq we get K(ω) = 0.
If ω = f dxi1 ∧·· ·∧dxiq−1 ∧dt we get

K(ω) =

(∫ t

c
f (x1, . . . ,xn,u)du

)
dxi1 ∧·· ·∧dxiq−1 .

Smoothness follows since every form in Ωq(M ×R) is a sum of forms of the two above
considered types.
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The formula (7.4) is a local statement, i.e. it is enough to prove it in a neighbourhood of
every point, so we can check it in local coordinates. Since both sides of (7.4) are linear we only
need to check (7.4) for forms of type f dxi1 ∧·· ·∧dxiq and of type f dxi1 ∧·· ·∧dxiq−1 ∧dt.

In the first case, ω = f dxi1 ∧·· ·∧dxiq ,

(IdΩq(M×R)−π
∗ ◦ s∗)ω = ( f − f ◦ s◦π)dxi1 ∧·· ·∧dxiq

= ( f (x1, . . . ,xn, t)− f (x1, . . . ,xn,c))dxi1 ∧·· ·∧dxiq

and

(K ◦d −d ◦K)ω = K(d( f dxi1 ∧·· ·∧dxiq))

= K(d f ∧dxi1 ∧·· ·∧dxiq)

= K
(

∂ f
∂ t

dt ∧dxi1 ∧·· ·∧dxiq

)
+∑

i
K
(

∂ f
∂xi

dxi ∧dxi1 ∧·· ·∧dxiq

)
= K

(
∂ f
∂ t

dt ∧dxi1 ∧·· ·∧dxiq

)
= (−1)qK(

∂ f
∂ t

dxi1 ∧·· ·∧dxiq ∧dt)

= (−1)q
(∫ t

c

∂ f
∂ t

(x1, . . . ,xn,u)du
)

dxi1 ∧·· ·∧dxiq

= (−1)q( f (x1, . . . ,xn, t)− f (x1, . . . ,xn,c))dxi1 ∧·· ·∧dxiq .

In the second case, ω = f dxi1 ∧·· ·∧dxiq−1 ∧dt, since s∗dt = 0 then s∗ω = 0 and

(IdΩq(M×R)−π
∗ ◦ s∗)ω = IdΩq(M×R)ω −0 = ω.

Moreover

(K ◦d)ω = K(d( f dxi1 ∧·· ·∧dxiq−1 ∧dt))

= K

(
n

∑
i=1

∂ f
∂xi

dxi ∧dxi1 ∧·· ·∧dxiq−1 ∧dt

)

=
n

∑
i=1

(∫ t

c

∂ f
∂xi

)
dxi ∧dxi1 ∧·· ·∧dxiq−1

and

(d ◦K)ω = d(K( f dxi1 ∧·· ·∧dxiq−1 ∧dt))

= d
((∫ t

c
f
)

dxi1 ∧·· ·∧dxiq−1

)
= d

(∫ t

c
f
)
∧dxi1 ∧·· ·∧dxiq−1

= f dt ∧dxi1 ∧·· ·∧dxiq−1 +∑
i

(∫ t

c

∂ f
∂xi

)
dxi ∧dxi1 ∧·· ·∧dxiq−1

= (−1)q−1
ω +∑

i

(∫ t

c

∂ f
∂xi

)
dxi ∧dxi1 ∧·· ·∧dxiq−1 . ■

A first consequence is the following
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Theorem 7.4.2 — Extended Poincaré Lemma. For every manifold M, the cohomology
rings of M and M×R are isomorphic. More precisely, the graded algebra homomorphisms

π
∗ : H•(M)→ H•(M×R)

and

s∗ : H•(M×R)→ H•(M)

are isomorphisms and s∗ = (π∗)−1.

Proof. Since π ◦ s = IdM, then s∗ ◦π∗ = (π ◦ s)∗ = IdHq(M).
On the other hand, for every closed form ω ∈ Ωq(M ×R), (dK −Kd)ω = dKω is exact.

Then, by Lemma 7.4.1,

(π∗ ◦ s∗)[ω] = [ω]+ (−1)q[(dK −Kd)ω] = [ω],

and therefore π∗ ◦ s∗ = IdHq(M×R). ■

The classical Poincaré Lemma, claiming that every closed form on Rn is exact, follows then
immediately.

Corollary 7.4.3 — Poincaré Lemma. ∀q ̸= 0, hq(Rn) = 0.

Proof. Applying recursively the extended Poincaré lemma

hq(Rn) = hq(Rn−1) = · · ·= hq(R0) = 0. ■

A striking application of the extended Poincaré lemma is that the cohomology do not
distinguish varieties with the same homotopy type.

To state it properly we need few definitions. First we need a differentiable version of
homotopy.

Definition 7.4.4 Let M,N be manifolds, and let F,G : M → N be smooth maps. We say that
F and G are smoothly homotopic if there exists a smooth map

H : M×R→ N

such that ∀p ∈ M, H(p, t) equals F(p) for t = 0 and G(p) for t = 1.
H is a smooth homotopy among F and G.

The usual definitions of homotopic maps in the topological category (so continous insted of
differentiable) uses M × [0,1] as domain of the homotopy map H. Moving to the category of
differentiable manifolds H ×R it is more convenient to replace [0,1] by R mainly to allow us to
consider manifolds with boundary ∂M ̸= 0.

Corollary 7.4.5 If F,G : M → N are smoothly homotopic, then the ring homomorphisms
F∗,G∗ : H•(N)→ H•(M) are equal: F∗ = G∗.

Proof. We denote by sc : M → M×R the section sc(p) = (p,c).
Consider the smooth homotopy H : M×R→M among F and G. Then F =H ◦s0, G=H ◦s1.

By Theorem 7.4.2 s∗0 = s∗1 (since both are inverse of π∗). Therefore

F∗ = (H ◦ s0)
∗ = s∗0 ◦H∗ = s∗1 ◦H∗ = (H ◦ s1)

∗ = G∗. ■

We deduce the following definition and corollary
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Definition 7.4.6 Two manifolds M,N have the same homotopy type if there exist smooth
maps F : M → N and G : N → M such that both F ◦G and G◦F are smoothly homotopic to
the identity of the respective manifold.

Corollary 7.4.7 If two manifolds have the same homotopy type then their De Rham cohomol-
ogy rings are isomorphic as graded rings.

Complement 7.4.1 Prove that the operator K of the Lemma 7.4.1 is well defined, i.e. that
its definition is independent on the coordinates xi.

Complement 7.4.2 Prove that the existence of a smooth homotopy defines an equivalence
relation on the space of smooth functions from M to N.

Complement 7.4.3 Show that, if there exists a smooth map H ′ : M× [0,1]→ N such that
∀p ∈ M, H ′(p,0) = F(p) and H ′(p,1) = G(p), then F and G are smoothly homotopic.

Exercise 7.4.1 Let π : E → B be a vector bundle.
Show that the De Rham cohomology ring of E is isomorphic to the De Rham cohomology

ring of B.
Compute the De Rham cohomology rings of the interior of the cylinder and of the Moebius

band.

Exercise 7.4.2 Compute the De Rham cohomology ring of Sn.

7.5 The Poincaré lemma for the compact support cohomology

The De Rham cohomology do not distinguish among manifolds with the same homotopy type.
There is no similar statement for the cohomology with compact support: indeed Exercise 7.1.4
shows that the compact support cohomology ring of R differs from the one of a point, although
they have the same homotopy type.

Still, the argument of the proof of the Poincaré Lemma may be adapted to the compact
support cohomology, obtaining a different but still interesting result.

Theorem 7.5.1 For every manifold M, for every q ∈ Z

Hq
c (M×R)∼= Hq−1

c (M)

Proof. Arguing as in the proof of the Theorem 7.4.2, the statement follows from the construction,
∀q ∈ Z, of two chain maps

e∗ : Ω
•
c(M)→ Ω

•
c(M×R) of degree 1

π∗ : Ω
•
c(M×R)→ Ω

•
c(M) of degree −1

such that π∗ ◦ e∗ = IdΩ•
c(M) and an operator K of degree −1 on Ω

q
c(M×R) such that

IdΩ
q
c(M×R)−e∗ ◦π∗ = (−1)q(K ◦d −d ◦K).
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We start by constructing e∗. We choose a function e′ ∈C∞
c (R) such that

∫
R e′(t)dt = 1, set

e ∈ Ω1(M×R) be the pull back (π ′)∗(e′(t)dt) via the projection map π ′ : M×R→R and finally
define

e∗ω := π
∗
ω ∧ e

where π : M×R→ M is the usual projection map.

The support of e∗ω is compact, although both the supports of e and π∗ω may be not compact.
Indeed, in some sense, suppe is bounded vertically and suppπ∗ω horizontally: then suppe∗ω is
compact.

Notice that e is closed, since de = d(π ′)∗(e′(t)dt) = (π ′)∗(d(e′(t)dt)) = (π ′)∗0 = 0. Then
e∗ is a chain map: de∗ω = d(π∗ω ∧ e) = dπ∗ω ∧ e±π∗ω ∧de = π∗dω ∧ e+0 = e∗dω .

For the sake of simplicity, we give the definition of π∗ and K in local coordinates, leaving
to the reader to find an intrinsic definition (analogous to the definition of the operator K in the
proof of Lemma 7.4) to ensure that the definitions are well posed, i.e. independent of the choice
of the coordinates.

We fix local coordinates as in the proof of Lemma 7.4: coordinates x1, . . . ,xn on an
open subset U ⊂ M and corresponding coordinates (x1, . . . ,xn, t) on U ×R. In particular
π(x1, . . . ,xn, t) = (x1, . . . ,xn). Correspondingly we get forms dxi ∈ Ω1(U), dxi,dt ∈ Ω1(U ×R).

Consider a form ω ∈ Ω
q
c(M ×R). If ω|U×R = f dxi1 ∧ ·· · ∧ dxiq we set (π∗ω)|U := 0. If

ω|U×R = f dxi1 ∧·· ·∧dxiq−1 ∧dt we set

(π∗ω)|U :=
(∫

R
f (x1, . . . ,xn, t)dt

)
dxi1 ∧·· ·∧dxiq−1 .

Since every form in Ω•
c(M×R) is a sum of forms as above, this determines locally the operator

π∗ : Ω•
c(M)→ Ω•

c(M×R).
We show now that π∗ is a chain map. This is also a local property, . i.e. it holds if and only if

it holds in a neighbourhood of every point, so we can check it in coordinates.

If ω|U×R is of the form f dxi1 ∧·· ·∧dxiq then d(π∗ω)|U = d0 = 0 and

(π∗dω)|U = π∗(d f ∧dxi1 ∧·· ·∧dxiq)

= π∗

(
∂ f
∂ t

dt ∧dxi1 ∧·· ·∧dxiq

)
+π∗

(
∑

i

∂ f
∂xi

dxi ∧dxi1 ∧·· ·∧dxiq

)

= π∗

(
∂ f
∂ t

dt ∧dxi1 ∧·· ·∧dxiq

)
= (−1)q

π∗

(
∂ f
∂ t

dxi1 ∧·· ·∧dxiq ∧dt
)

= (−1)q
(∫

R

∂ f
∂ t

dt
)

dxi1 ∧·· ·∧dxiq

= 0.
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If ω|U×R is of the form f dxi1 ∧·· ·∧dxiq−1 ∧dt then

d(π∗ω)|U = dπ∗( f dxi1 ∧·· ·∧dxiq−1 ∧dt)

= d
((∫

R
f dt
)

dxi1 ∧·· ·∧dxiq−1

)
= d

(∫
R

f dt
)
∧dxi1 ∧·· ·∧dxiq−1

=

(
∑

i

∂

∂xi

(∫
R

f dt
))

dxi ∧dxi1 ∧·· ·∧dxiq−1

= ∑
i

(∫
R

∂ f
∂xi

dt
)

dxi ∧dxi1 ∧·· ·∧dxiq−1

and

(π∗dω)|U = π∗(d f ∧dxi1 ∧·· ·∧dxiq−1 ∧dt)

= π∗

(
∑

i

∂ f
∂xi

dxi ∧dxi1 ∧·· ·∧dxiq−1 ∧dt

)
+π∗

(
∂ f
∂ t

dt ∧dxi1 ∧·· ·∧dt
)

= π∗

(
∑

i

∂ f
∂xi

dxi ∧dxi1 ∧·· ·∧dxiq−1 ∧dt

)

=

(∫
R
∑

i

∂ f
∂xi

dt

)
dxi ∧dxi1 ∧·· ·∧dxiq−1

= ∑
i

(∫
R

∂ f
∂xi

dt
)

dxi ∧dxi1 ∧·· ·∧dxiq−1

Since locally all forms are sum of forms as above, the statement follows: π∗ is a chain map.

We prove now that π∗ ◦e∗ = IdΩ•
c(M). Indeed, since we assumed

∫
R e′(t)dt = 1 then π∗e∗ω =

π∗(π
∗ω ∧ e) = π∗(e′(t)(π∗ω)∧dt) = (

∫
R e′(t)dt)ω = ω.

We define K : Ω•
c(M ×R)→ Ω•

c(M ×R) in local coordinates, by defining it for forms of
type f dxi1 ∧ ·· ·∧dxiq and of type f dxi1 ∧ ·· ·∧dxiq−1 ∧dt, leaving to the reader the check that
the definition is independent from the coordinates by finding an intrinsic definition. We set then

K( f dxi1 ∧·· ·∧dxiq) := 0

and

K( f dxi1 ∧·· ·∧dxiq−1 ∧dt) :=

=

((∫ t

−∞

f (x1, . . . ,xn,u)du
)
−
(∫

R
f (x1, . . . ,xn,u)du

)(∫ t

−∞

e′
))

dxi1 ∧·· ·∧dxiq−1 .

We leave to the reader the rather long but straightforward check of the equality

IdΩ
q
c(M×R)−e∗ ◦π∗ = (−1)q(K ◦d −d ◦K). ■
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Corollary 7.5.2 ∀q ̸= n, hq
c(Rn) = 0, whereas hn

c(Rn) = 1.

Proof. Applying recursively the extended Poincaré lemma

hq
c(Rn) = hq−1

c (Rn−1) = · · ·= hq−n
c (R0) = hq−n(R0). ■

The "shift of exponents" in the statement makes impossible to conjecture generalizations to
the compact support cohomology of most of the consequences of the Poincaré lemma for the De
Rham cohomology discussed in the previous section.

For example (Exercise 7.4.1), if π : E → B is a vector bundle, then the map π∗ induces
isomorphisms in De Rham cohomology: ∀q, Hq

DR(E) ∼= Hq
DR(B). In contrast, even if for the

trivial bundle E = B ×Rr we know by Poincaré Lemma that Hq
c (B ×Rr) ∼= Hq−r

c (B), the
analogous statement is not true for other vector bundles on B of rank r. A counterexample is
provided by the Moebius band, seen as rank 1 vector bundle over S1: we will see (Theorem
9.3.6) that its second compact support cohomology group has dimension zero, whereas the first
cohomology group of S1 has dimension 1.

A good reason for this failure may be that the Moebius band is not orientable as vector
bundle over S1, and therefore there is no way to define an integration along the fibres in this
cases. Indeed the Poincaré Lemma for the cohomology with compact support generalizes to
orientable vector bundles under some more assumptions on the base, as we will see in the
forthcoming Exercise 8.1.2 and later in the crucial (involving a different cohomology theory)
Thom isomorphism Theorem 9.5.6.

Exercise 7.5.1 Compute the compact support cohomology of the following manifolds
• Rn

• Rn
+

• the interior of the cylinder
• Sn ×Rm
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8. Manifolds of finite type

8.1 The dimension of the cohomology

In all the exercises up to now, all the cohomology groups were finitely dimensional.
Is that true in general? The answer is no: there are manifolds with some cohomology groups

infinite dimensional. Anyway these are rare, in some sense, and most of the examples considered
in these lectures have all cohomology groups of finite dimension. This property is indeed shared
by a large category of manifolds, the manifolds of finite type.

Definition 8.1.1 Let M be a manifold of dimension n. An open cover U := {Uα}α∈I is good
if

∀k ∈ N, ∀i1, . . . , ik ∈ I, it holds
k⋂

j=1

Ui j
∼= Rn or Rn

+ or /0.

It is not difficult to construct a good cover in every concrete case (try with your favourite
manifold!). Indeed

Theorem 8.1.2 Every manifold has a good cover.

We skip the proof of Theorem 8.1.2, since it needs some Riemannian Geometry.

Definition 8.1.3 A manifold is of finite type if it admits a good cover of finite cardinality.

By Theorem 8.1.2 it follows

Corollary 8.1.4 Every compact manifold is of finite type.

Anyway, the category of manifolds of finite type is larger than the category of compact
manifolds. For example, all manifolds obtained by removing finitely many points from a compact
manifold are of finite type. All the examples of manifolds we have considered up to now are of
finite type.

Proposition 8.1.5 All De Rham cohomology groups of a manifold of finite type have finite
dimension.

The idea of this proof is very important, since the same inductive procedure will be used in
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many other proofs in the next sections.

Proof. Let M be a manifold of finite type and let U= {U1, . . . ,Uk} be a finite good cover of M.
We prove the statement by induction on k.

If k = 1 then M is isomorphic to either Rn or Rn
+, whose cohomology groups have finite

dimension.
Assume then the statement true for all manifolds of finite type admitting a good cover of

cardinality strictly smaller than k.
We define U :=U1 ∪·· ·Uk−1, V :=Uk. We note that
- {U1, . . . ,Uk−1} is a good cover of U of cardinality k−1;
- {Uk} is a good cover of V of cardinality 1;
- {U1 ∩Uk, . . . ,Uk−1 ∩Uk} is a good cover of U ∩V of cardinality k−1.
Then the statement holds for U , V and U ∩V .
By the Mayer-Vietoris exact sequence

Hq−1
DR (U ∩V )

d∗→ Hq
DR(M)

f∗→ Hq
DR(U)⊕Hq

DR(V )

we deduce1

hq
DR(M) = dimker f∗+dimIm f∗

= dimImd∗+dimIm f∗

≤ hq−1
DR (U ∩V )+hq

DR(U)+hq
DR(V ). ■

Complement 8.1.1 State and prove the analogous of Proposition 8.1.5 for the cohomology
with compact support.

Exercise 8.1.1 Construct a connected manifold not of finite type, and prove that it is not of
finite type.

Exercise 8.1.2 Let π : E → B be a real vector bundle of rank r over a manifold of finite type
B given by a smooth cocycle, so that E has a differentiable structure such that π is smooth as
in Proposition 3.2.2. Assume moreover that E is orientable as vector bundle. Then

∀q Hq
c (E)∼= Hq−r

c (B).

8.2 The Künneth formula
The Künneth formula is a theorem computing the De Rham cohomology ring of a product of
manifolds by the De Rham cohomology ring of the factors.

Recall Definition 5.1.3: for every pair of finitely dimensional vector spaces V1, V2 their tensor
product V1 ⊗V2 is the space of all bilinear maps V ∗

1 ×V ∗
2 →K.

Recall also that ∀(v1,v2) ∈V1 ×V2 we defined the decomposable tensor v1 ⊗ v2 ∈V1 ⊗V2 as
the one such that ∀(ϕ1,ϕ2) ∈V ∗

1 ×V ∗
2 ,

(v1 ⊗ v2)(ϕ1,ϕ2) = ϕ1(v1)ϕ2(v2).

We will need the following two powerful algebraic tools.

1Here we use that dimV = dimker f +dimIm f holds for every linear map f : V →W , even if the dimension of
V is not finite, as then at least one among ker f and Im f has infinite dimension too.
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Lemma 8.2.1 Let V , A0, A1 and A2 be finitely dimensional vector spaces. Assume be given
an exact sequence

A0
f0−→ A1

f1−→ A2.

Then the induced sequence

A0 ⊗V
f0⊗IdV−−−−→ A1 ⊗V

f1⊗IdV−−−−→ A2 ⊗V

is exact too.

Proof. By Definition 5.1.6 ( fi ⊗ IdV )(a⊗ v) = fi(a)⊗ v, so the image of fi ⊗ IdV is generated
by the vectors of the form a′⊗ v for a′ ∈ Im fi, v ∈V . It follows that, if a1, . . . ,am and v1, . . . ,vn

are respective bases of Im fi and V , then {a j ⊗ vk} is a basis of Im( fi ⊗ IdV ). In particular

r( fi ⊗V ) = r( fi) · (dimV )

It follows that Im( f0 ⊗ IdV ) and ker( f1 ⊗ IdV ) have the same dimension:

dimIm( f0 ⊗V ) = r( f0 ⊗V ) = r( f0)(dimV ) = (dimker f1)(dimV ) =

= (dimA1 − r( f1))(dimV ) = (dimA1)(dimV )− r( f1)(dimV ) =

= dim(A1 ⊗V )− r ( f1 ⊗ IdV ) = dimker( f1 ⊗ IdV )

It is then enough if we prove the inclusion Im( f0 ⊗ IdV ) ⊂ ker( f1 ⊗ IdV ). In other words,
we need to prove ( f1 ⊗ IdV )◦ ( f0 ⊗ IdV ) = 0. By Theorem 5.1.5 it is enough if we check that all
decomposable elements are in the kernel and in fact

( f1 ⊗ IdV )◦ ( f0 ⊗ IdV )(a⊗ v) = ( f1 ⊗ IdV ) ( f0(a)⊗ v) = ( f1( f0(a))⊗ v) = 0⊗ v = 0. ■

Lemma 8.2.2 — Five Lemma. Consider a commutative diagram of linear applications

A //

fA
��

B //

fB
��

C //

fC
��

D //

fD
��

E

fE
��

A′ // B′ // C′ // D′ // E ′

and assume that both rows are exact sequence and that the "external" vertical maps fA, fB, fD

and fE are isomorphisms. Then also fC is an isomorphism.

Proof. The proof follows a diagram chasing argument like those we have left to the reader in
the proof of Theorem 7.2.4. Therefore we leave this proof to the reader as well. ■

R Lemma 8.2.2 holds under the weaker assumption that fA be just surjective and fE be just
injective, as the reader who writes the proof will easily notice.
The statement of Lemma 8.2.2 is then weaker that its proof. Anyway, this weaker statement
is easier to remember and strong enough for all the applications in these notes.

Now we can prove the Künneth formula.
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Theorem 8.2.3 — Künneth formula. Let M,N be manifolds of finite type, and assume
∂M = /0. Then, ∀k ∈ Z, there are isomorphisms

KM :
⊕

p+q=k

H p
DR(M)⊗Hq

DR(N)
∼=−→ Hk

DR(M×N)

defined on decomposable tensors as follows: given classes ω ∈ H p
DR(M) and η ∈ Hq

DR(N),

KM (ω ⊗η) = π
∗
1 ω ∧π

∗
2 η

where the maps π j are the natural projections π1 : M×N → M and π2 : M×N → N.
In particular if {ωi}i∈I and {η j} j∈J are respectively bases of H•

DR(M) and H•
DR(N) then

{π∗
1 ωi ∧π∗

2 η j}(i, j)∈I×J is a basis of H•
DR(M×N).

R The assumption ∂M = /0 is necessary just to ensure that M×N has a natural differentiable
structure, which we are implicitly using.

Proof. Let U := {U1, . . . ,Uh} be a finite good cover of M. We prove the statement by induction
on h.

If h = 1, then M ∼= Rn and⊕
p+q=k

H p
DR(M)⊗Hq

DR(N) = H0
DR(Rn)⊗Hk

DR(N)∼= Hk
DR(N)

where the last isomorphism is given, identifying as usual H0
DR(Rn) with R associating the class

of a constant function to the corresponding constant, by λ ⊗ω 7→ λω . Then the statement for
h = 1 claims that the map Hk

DR(N)→ Hk
DR(Rn ×N) mapping η to π∗

2 η is an isomorphism: this
is part ot the Extended Poincaré Lemma, Theorem 7.4.2.

Assume now h > 1. Arguing as in the proof of Proposition 8.1.5 we can find two open subsets
U,V ⊂ M such that U ∪V = M and U , V and U ∩V have finite good covers of cardinality strictly
smaller than h. By induction, we may then assume that the statement holds when substituting U ,
V or U ∩V to M. So by inductive assumption all maps KU , KV and KU∩V are isomorphisms.

Fix two integers p and q and consider the following diagram of linear maps

(H p−1
DR (U)⊕H p−1

DR (V ))⊗Hq
DR(N)

��

KU⊕KV // H p+q−1
DR (U ×N)⊕H p+q−1

DR (V ×N)

��

H p−1
DR (U ∩V )⊗Hq

DR(N)

��

KU∩V // H p+q−1
DR ((U ∩V )×N)

��

H p
DR(M)⊗Hq

DR(N)

��

KM // H p+q
DR (M×N)

��

(H p
DR(U)⊕H p

DR(V ))⊗Hq
DR(N)

KU⊕KV //

��

H p+q
DR (U ×N)⊕H p+q

DR (V ×N)

��

H p
DR(U ∩V )⊗Hq

DR(N)
KU∩V // H p+q

DR ((U ∩V )×N)

(8.1)

where
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- the right column is the cohomology exact sequence induced by the Mayer-Vietoris exact
sequence corresponding to the decomposition M×N = (U ×N)∪ (V ×N);

- the left column is obtained by the cohomology exact sequence induced by the Mayer-
Vietoris exact sequence corresponding to the decomposition M =U ∪V by tensoring with
IdHq(N): it is then exact by Lemma 8.2.1.

We show that the diagram (8.1) commutes. We have to check the commutativity of four
squares; the one at the bottom is

(H p
DR(U)⊕H p

DR(V ))⊗Hq
DR(N)

KU⊕KV //

��

H p+q
DR (U ×N)⊕H p+q

DR (V ×N)

��

H p
DR(U ∩V )⊗Hq

DR(N)
KU∩V // H p+q

DR ((U ∩V )×N)

We check it, by taking general elements (ω1,ω2) ∈ H p(U)⊕ H p(V ) , η ∈ Hq(N)and by
computing the two images of (ω1,ω2)⊗ η in H p+q

DR ((U ∩V )×N); the one from the "top"
way (through H p+q

DR (U ×N)⊕H p+q
DR (V ×N)) and the one from the "bottom" way (through

H p
DR(U ∩V )⊗Hq

DR(N)).
Indeed following the top way we obtain

(ω1,ω2)⊗η 7→ (π∗
1 ω1∧π

∗
2 η ,π∗

1 ω2∧π
∗
2 η) 7→ (π∗

1 ω2∧π
∗
2 η)|(U∩V )×N −(π∗

1 ω1∧π
∗
2 η)|(U∩V )×N)

and following the bottom way we obtain

(ω1,ω2)⊗η 7→ ((ω2)|U∩V − (ω1)|U∩V )⊗η 7→ (π∗
1
(
(ω2)|U∩V − (ω1)|U∩V )

)
∧π

∗
2 η

that is obviously equal. Then the bottom square commutes, as well as the top square that is
identical (substituting p with p− 1). The proof of the commutativity of the remaining two
squares is similar and left to the reader.

Now fix k and consider all diagrams (8.1) for p, q with p+q = k; they all have the same
right column. Summing the left columns we obtain a diagram

⊕
p+q=k(H

p−1
DR (U)⊕H p−1

DR (V ))⊗Hq
DR(N)

��

KU⊕KV // Hk−1
DR (U ×N)⊕Hk−1

DR (V ×N)

��⊕
p+q=k H p−1

DR (U ∩V )⊗Hq
DR(N)

��

KU∩V // Hk−1
DR ((U ∩V )×N)

��⊕
p+q=k H p

DR(M)⊗Hq
DR(N)

��

KM // Hk
DR(M×N)

��⊕
p+q=k(H

p
DR(U)⊕H p

DR(V ))⊗Hq
DR(N)

KU⊕KV //

��

Hk
DR(U ×N)⊕Hk

DR(V ×N)

��⊕
p+q=k H p

DR(U ∩V )⊗Hq
DR(N)

KU∩V // Hk
DR((U ∩V )×N)

(8.2)

such that
- the columns are exact sequences since the columns of (8.1) are exact;
- the diagram commutes since (8.1) commutes;
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- by the inductive hypothesis, the first two horizontal maps and the last two horizontal maps
are isomorphisms.

Then the diagram (8.2) commutes as well and the statement follows by the Five Lemma 8.2.2. ■

It is natural to try to generalize the Künneth formula to a formula for computing the coho-
mology of a general fibre bundle. Indeed, the product of two manifolds is a trivial bundle (in two
different ways: π1 : M×N → M is a trivial bundle on M with fiber N whereas π2 : M×N → N
is a trivial bundle on N with fiber M).

We can then say that the Künneth formula produces generators for the cohomology groups of
a trivial bundle, from generators of the cohomology groups of its basis and of its fibre. A similar
result for every bundle does not hold: for example the Klein bottle in Exercise 9.3.5 is a fibre
bundle over S1 with fibre S1 whose second cohomology group has dimension 0 (as the reader
will show solving Exercise 9.3.5) and not 1 as a Künneth type formula would predict.

Still, if there are cohomology classes in E whose restrictions to every fibre give a basis of
the cohomology of the fibre, then one can prove, by the same strategy of the proof of Künneth
formula, the following

Theorem 8.2.4 — Leray-Hirsch Theorem. Consider a fibre bundle π : E → B with fibre F .
Assume that both F and B are manifolds of finite type and thata either ∂F = /0 or ∂B = /0.

Consider E with the natural differentiable structure making π a submersion and the inclusion
of each fibre F ∼= Fp ↪→ E an embedding.

Assume that there are cohomology classes e1, . . .er ∈ H•
DR(E) such that ∀p ∈ B, {ei|Fp} is

a basis of H•
DR(Fp)∼= H•

DR(F).
Then, ∀k, Hk

DR(E)∼= Hk
DR(B×F)∼=

⊕
p+q=k H p

DR(B)⊗Hq
DR(F).

More precisely, if {ω1, . . .ωs} is a basis of H•
DR(B), then {π∗ωi ∧e j} is a basis of H•

DR(E).

aThis assumption is necessary to define a differentiable structure on E

Complement 8.2.1 Prove Lemma 8.2.1.

Complement 8.2.2 Prove that there is a canonical isomorphism

(A⊕B)⊗C ∼= (A⊗C)⊕ (B⊗C).

Complement 8.2.3 Complete the proof that the diagram (8.1) commutes.

Complement 8.2.4 State and prove a Künneth formula for the cohomology with compact
support.

Exercise 8.2.1 Compute the De Rham cohomology groups of (S1)k, and compare the result
with Pascal’s triangle.

Exercise 8.2.2 Prove that Sm1 ×Sn1 is diffeomorphic to Sm2 ×Sn2 if and only if {m1,n1}=
{m2,n2}.
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Exercise 8.2.3 Let M1, . . . ,Mk be manifolds without boundary of finite type. Prove that

dimH•(M1 ×·· ·×Mk) = ∏
i

dimH•(Mi).

Exercise 8.2.4 Prove that two products of spheres are diffeomorphic if and only if they have
the same factors up to the order.

Exercise 8.2.5 Let M1, . . . ,Mk be manifolds without boundary of finite type. Use the Künneth
formula to prove that

e(M1 ×·· ·×Mk) = ∏
i

e(Mi).

Exercise 8.2.6 Let π : E → B be a fibre bundle with fibre F . Assume B compact and F of
finite type.

Prove that

e(E) = e(B)e(F).

8.3 Double complexes

Definition 8.3.1 A double complex is a family of vector spaces {K p,q}(p,q)∈N2 provided,
∀(p,q) of two linear maps

d : K p,q → K p,q+1

δ : K p,q → K p+1,q

such that d2 = δ 2 = 0 and dδ = δd.

Equivalently we can see a double complex as the bigraded vector space K•,• :=
⊕

p,q∈N K p,q,
where the elements of K p,q are the (bi)homogeneous elements of bidegree (p,q), d is a linear
map of bidegree (0,1) and δ is a linear map of bidegree (1,0). Notice that we do not allow
negative values for either p or q.
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A double complex can be then visualized as a commutative diagram of the form

...
...

...
...

...

K0,4 δ //

d

OO

K1,4 δ //

d

OO

K2,4 δ //

d

OO

K3,4 δ //

d

OO

K4,4 δ //

d

OO

· · ·

K0,3 δ //

d

OO

K1,3 δ //

d

OO

K2,3 δ //

d

OO

K3,3 δ //

d

OO

K4,3 δ //

d

OO

· · ·

K0,2 δ //

d

OO

K1,2 δ //

d

OO

K2,2 δ //

d

OO

K3,2 δ //

d

OO

K4,2 δ //

d

OO

· · ·

K0,1 δ //

d

OO

K1,1 δ //

d

OO

K2,1 δ //

d

OO

K3,1 δ //

d

OO

K4,1 δ //

d

OO

· · ·

K0,0 δ //

d

OO

K1,0 δ //

d

OO

K2,0 δ //

d

OO

K3,0 δ //

d

OO

K4,0 δ //

d

OO

· · ·

(8.3)

such that all rows and all columns are differential complexes.
We associate to every double complex (K•,•,d,δ ) as above the differential complex (K•,D)

whose graded pieces are the spaces

Kn :=
⊕

(p,q)|p+q=n

K p,q

and whose differential is

D := δ +(−1)pd, (8.4)

in the sense that D is defined as the only linear operator D : K• → K• of degree 1 such that for
each ω ∈ K p,q ⊂ K p+q, Dω = δω +(−1)pdω ⊂ K p+1,q+1 ⊕K p,q+1 ⊂ K p+q+1.

By definition n < 0 ⇒ Kn = 0.
The choice of sign (−1)p as coefficient of d in the definition of D is necessary to ensure

D◦D = 0 as we will see in the proof of the following

Lemma 8.3.2 (K•,D) is a differential complex.

Proof. The only nontrivial check is D2 = 0. It is enough to prove DDω = 0 for any ω ∈ K p,q.
Indeed

DDω = Dδω +(−1)pDdω

= (δ +(−1)p+1d)δω +(−1)p(δ +(−1)pd)dω

= δδω +(−1)p(−dδ +δd)ω +ddω

= 0+0+0 = 0. ■

Consequently we get, for every double complex, a cohomology.

Definition 8.3.3 The cohomology of a double complex (K•,•,d,δ ) is the cohomology
H•

D(K
•) of the differential complex (K•,D).
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Notice that (kerδ ∩kerd)⊂ kerD.

The converse is not true in general and a general element ω ∈ kerD has dω ̸= 0 and δω ̸= 0.
However such ω do not belong to any bihomogeneous addendum K p,q. Indeed, by definition, for
all p and q

K p,q ∩kerD = K p,q ∩kerδ ∩kerd.

Since K0 = K0,0 has only one addendum that is not trivial, K0,0, then

H0
D(K

•) = K0 ∩kerD = K0,0 ∩kerd ∩kerδ .

Definition 8.3.4 The double complex (8.3) has exact rows if its rows are exact, i.e.

∀p,q ∈ N, δ (K p,q) = kerδ|K p+1,q .

Note that the exactness of the rows of a double complex do not claim anything on the kernels
of the maps δ|K0,q : K0,q → K1,q.

We will need the following technical lemma.

Lemma 8.3.5 Consider a double complex with exact rows as in (8.3). Then for every Φ in
Kn with the property that DΦ belongs to K0,n+1, there exists a Φ′ in K0,n such that Φ−Φ′

belongs to DKn−1.

Proof. If Φ = 0 the statement is clearly true with Φ′ = 0: Φ−Φ′ = 0 ∈ DKn−1.

We assume then Φ ̸= 0.

Set Φ j for the component of Φ in K j,n− j. Since Φ ̸= 0 at least one of the Φ j is different from
zero. Set k for the biggest j with Φ j ̸= 0. So Φ = Φ0 + . . .+Φk, Φk ̸= 0.

We prove the statement by induction on k.

The first case k = 0 is trivial since then K0 = K0,0 and therefore we may pick Φ′ = Φ.

Now consider the case k ≥ 1.

The component of DΦ in Kk+1,n−k equals δΦk. So, by DΦ ∈ K0,n+1 follows δΦk = 0. Then,
by the exactness of the rows, ∃Ψ ∈ Kk−1,n−k such that δΨ = Φk. Then

Φ−DΨ = Φ0 + . . .+Φk−2 +Φk−1 +Φk −DΨ = Φ0 + . . .+Φk−2 +(Φk−1 ±dΨ).

Since (Φk−1 ± dΨ) ∈ Kk−1,n−k+1 by the inductive hypothesis there exists Φ′ ∈ K0,n with
(Φ−DΨ)−Φ′ ∈ DKn−1, and then Φ−Φ′ ∈ DKn−1. ■

If the double complex (8.3) has exact rows the spaces Aq := ker(δ|K0,q) naturally build a new
column on the left to (8.3). Indeed, if a ∈ Aq, since δda = dδa = d0 = 0 then dAq ⊂ Aq+1. Then
(A• =⊕Aq,d) is a differential complex.

Set r : Aq ↪→ K0,q for the inclusion maps. We have then obtained a bigger commutative
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diagram

...
...

...
...

...
...

0 // A4 r //

d

OO

K0,4 δ //

d

OO

K1,4 δ //

d

OO

K2,4 δ //

d

OO

K3,4 δ //

d

OO

K4,4 δ //

d

OO

· · ·

0 // A3 r //

d

OO

K0,3 δ //

d

OO

K1,3 δ //

d

OO

K2,3 δ //

d

OO

K3,3 δ //

d

OO

K4,3 δ //

d

OO

· · ·

0 // A2 r //

d

OO

K0,2 δ //

d

OO

K1,2 δ //

d

OO

K2,2 δ //

d

OO

K3,2 δ //

d

OO

K4,2 δ //

d

OO

· · ·

0 // A1 r //

d

OO

K0,1 δ //

d

OO

K1,1 δ //

d

OO

K2,1 δ //

d

OO

K3,1 δ //

d

OO

K4,1 δ //

d

OO

· · ·

0 // A0 r //

d

OO

K0,0 δ //

d

OO

K1,0 δ //

d

OO

K2,0 δ //

d

OO

K3,0 δ //

d

OO

K4,0 δ //

d

OO

· · ·

0

OO

(8.5)

This is summarized by the following definition.

Definition 8.3.6 An augmented double complex with exact rows is given by
• a double complex ((K•,•,d,δ ),
• a differential complex (A•,d) with q < 0 ⇒ Aq = {0} ,
• for all q injective linear maps r : Aq → K0,q,

such that the corresponding diagram (8.5) is commutative (i.e. rd = dr) and has exact rows.

The main result of this section is Proposition 8.3.8 that produces, given an augmented double
complex with exact rows, an isomorphism of graded vector spaces among the cohomologies of
the differential complexes (A•,d) and (K•,D).

Definition 8.3.7 A chain map of degree zero among two differential complexes is a quasi-
isomorphism, if the induced map among the respective cohomologies is an isomorphism.

Proposition 8.3.8 Consider an augmented double complex with exact rows as in (8.5).
Then the maps r : Aq → K0,q ⊂ Kq form a quasi-isomorphism

r : (A•,d)→ (K•,D).

Proof. For all q ∈ N, ∀a ∈ Aq, since δ ◦ r = 0, by the commutativity of the diagram (8.5)

Dra = dra+δ ra = dra = rda,

so r : (A•,d)→ (K•,D) is a chain map of degree zero.
We have then induced maps in cohomology

r∗ : Hq(A•)→ Hq
D(K

•).

We show first their surjectivity and then their injectivity.
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Surjectivity. Consider a class [Φ] in Hq
D(K

•). Since Φ of it is D−closed, we can apply
Lemma 8.3.5 and then, replacing Φ with Φ′, we can assume Φ in K0,q.

Then from DΦ = 0 it follows the vanishing of both dΦ ∈ K0,q+1 and δΦ ∈ K1,q. The latter
vanishing δΦ = 0 implies, by the exactness of the rows, that there exists a ∈ Aq such that
ra = Φ. The former vanishing dΦ = 0 and the commutativity of the diagram (8.5) gives then
rda = dra = dΦ = 0 that implies, by the injectivity of r, da = 0. So there is a class [a] ∈ Hq(A•)
and r∗[a] = [ra] = [Φ].

Injectivity. Take ω ∈ Aq with dω = 0 and [ω] ∈ kerr∗. Then there exists Φ such that
DΦ = rω ∈ K0,q. Then by Lemma 8.3.5 we can assume Φ ∈ K0,q−1.

Then

DΦ ∈ K0,q ⇔ δΦ = 0.

Then by the exactness of the rows of the diagram (8.5) there exists η ∈ Aq−1 such that rη = Φ.
Finally rω = DΦ = dΦ = drη = rdη that implies, by the injectivity of r, ω = dη . So [ω] =
0. ■

An analogous construction may be done by reversing the role of the rows and of the columns
of (8.3).

Definition 8.3.9 The double complex (8.3) has exact columns if

∀p,q, d(K p,q) = kerd|K p,q+1 .

In this case we add a row on the bottom of (8.3). We set Bp := ker(d : K p,0 → K p,1),
B• :=⊕Bp. Since dBp ⊂ Bp+1, (B•,δ ) is a differential complex.

Definition 8.3.10 An augmented double complex with exact columns is given by
• a double complex ((K•,•,d,δ ),
• a differential complex (B•,δ ) wih p < 0 ⇒ Bp = {0},
• ∀p linear maps s : Bp → K p.0,

such that the corresponding diagram is commutative (i.e. sδ = δ s) and has exact columns.

By Proposition 8.3.8, exchanging rows and columns, every augmented double complex with
exact columns induces a quasi-isomorphism

s : (B•,δ )→ (K•,D).

If both the rows and the columns of a double complex (8.3) are exact, we may add both the
new row and the new column at the same time, getting the following.

Definition 8.3.11 A doubly augmented double complex with exact rows and columns is
given by

• a double complex ((K•,•,d,δ ) with exact rows and columns,
• a differential complex (A•,d) with q < 0 ⇒ Aq = {0} ,
• a differential complex (B•,δ ) wih p < 0 ⇒ Bp = {0},
• ∀q linear injective maps r : Aq ↪→ K0,q,
• ∀p linear injective maps s : Bp ↪→ K p.0,

such that

rd = dr sδ = δ s
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We represent it by drawing the commutative diagram

...
...

...
...

...
...

0 // A3 r //

d

OO

K0,3 δ //

d

OO

K1,3 δ //

d

OO

K2,3 δ //

d

OO

K3,3 δ //

d

OO

K4,3 δ //

d

OO

· · ·

0 // A2 r //

d

OO

K0,2 δ //

d

OO

K1,2 δ //

d

OO

K2,2 δ //

d

OO

K3,2 δ //

d

OO

K4,2 δ //

d

OO

· · ·

0 // A1 r //

d

OO

K0,1 δ //

d

OO

K1,1 δ //

d

OO

K2,1 δ //

d

OO

K3,1 δ //

d

OO

K4,1 δ //

d

OO

· · ·

0 // A0 r //

d

OO

K0,0 δ //

d

OO

K1,0 δ //

d

OO

K2,0 δ //

d

OO

K3,0 δ //

d

OO

K4,0 δ //

d

OO

· · ·

0

OO

// B0 δ //

s

OO

B1 δ //

s

OO

B2 δ //

s

OO

B3 δ //

s

OO

B4 δ //

s

OO

· · ·

0

OO

0

OO

0

OO

0

OO

0

OO

(8.6)

Notice that all rows and all columns of (8.6) different by the differential complexes (A•,d) and
(B•,δ ) are exact sequences.

Applying Proposition 8.3.8 twice, we get that both these differential complexes are quasi-
isomorphic to (K•,D). In particular their cohomologies are both isomorphic, as graded vector
spaces, to the same object, the cohomology of (K•,D).

Theorem 8.3.12 Assume to have a doubly augmented double complex with exact rows and
columns as in (8.6). Then

H•
d (A

•)∼= H•
δ
(B•)

as graded vector spaces.

8.4 Presheaves of abelian groups and Cech cohomology
The sheaf theory is a very powerful tool.

In this section we just sketch the beginning of this theory, by defining the presheaves of
abelian groups and their Cech cohomologies.

Presheaves can be done of any algebraic structure (groups, rings, vector spaces, . . .) by
adapting in the natural way the definition below. Even presheaves of sets exist and are useful.

Anyway, the definition of cohomology does not work in general. The minimal algebraic
structure necessary for the definition of cohomology is the structure of abelian group.

We are mainly interested in presheaves of vector spaces. Notice that the vector spaces are
abelian groups with a further operation, the multiplication by scalars. So preasheaves of vector
spaces are special preasheaves of abelian groups.

Definition 8.4.1 Let X be a topological space.
A presheaf F of abelian groups on X is a functor as follows:
• For each open set U of X there corresponds an abelian group F (U), the sections of F
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over U ;
• For each inclusion of open sets V ⊆ U there corresponds a group homomorphism

resV,U : F (U)→ F (V ).
The homomorphisms resV,U are called restriction morphisms; often resV,U(s) is denoted

s|V by analogy with restriction of functions.
The restriction morphisms are required to satisfy two properties:
• For each open set U of X , resU,U is the identity of F (U).
• If we have three open sets W ⊆V ⊆U , then resW,V ◦ resV,U = resW,U .

The latter condition says that it doesn’t matter whether we restrict directly to a smaller open
subset W or we restrict first to a bigger open subset V , then to W .

Example 8.1 Here are few examplesa of presheaves of abelian groups on a topological space.
• Consider any abelian group G. The presheaf of the constant functions with values in

GGG is the presheaf defined by
for every open subset U , the group G;
for every pair of open subsets V ⊆U , resV,U = IdG.

• Consider any abelian group G. The presheaf GGG or presheaf of the locally constant
functions with values in GGG is the presheaf defined by

for every open subset U , the groupb of the functions f : U → G that are locally
constant, i.e. such that ∀p ∈U there exists a neighbourhood V of p in U such that f
assumes the same value on all points of V ;

for every pair of open subsets V ⊆U , resV,U is the usual restriction of functions.
• the presheaf C0 of the continuos functions with values in R:

C0(U) is the group of the continous functions f : U → R;
for every pair of open subsets V ⊆U , resV,U is the usual restriction of functions.

aIn all cases we set the group of the section over the empty set /0 to be the trivial group, the group with one
element.

bHere the group structure is defined lifting the operations from the codomain G

The presheaf R of the locally constant functions with real values will be very useful in the
following.

If the topologica space is a manifold X , it has some natural presheaves coming from the
discussions in these notes.

Example 8.2 In all the following examples of presheaves, to be short, we do not specify the
maps resV,U : they are the natural restriction maps.

If X is a real manifold, we have
• the presheaf C∞ of the smooth functions: ∀U ⊂X , C∞(U)= { f : U →R| f is smooth };
• the presheaf ΩΩΩ

qqq of the smooth differential qqq-forms.
If X is a complex manifold, we have
• the presheaf O of the homolomorphic functions;
• the presheaf ΩΩΩ

p,q of the holomorphic (p,q)-forms;
• the presheaf Ap,q of the smooth (p,q)-forms.

To every presheaf of abelian groups on X we associate several differential complexes, one
for each open covering of X .

For technical reason, we need to fix a total ordering on the open covering.

Definition 8.4.2 Let X be a topological space, and let U = {Uα}α∈I be an open covering of
X , where I is a totally ordered set.
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For each p, for each α0 ≨ α1 ≨ . . .≨ αp ∈ I we define

Uα0···αp :=Uα0 ∩Uα1 ∩ . . .∩Uαp .

Let F be a presheaf of abelian groups on X .
The Cech complex of F and U is the differential complex (C•(U ,F ),δ ) where ∀p≨ 0,

Cp(U ,F ) vanishes whereas ∀p ≥ 0

Cp(U ,F ) := ∏
α0<···<αp

F (Uα0···αp)

and the differential δ is defined as follows. ∀ω ∈Cp(U ,F ), set ωα0α1α2···αp for its compo-
nent in F (Uα0···αp), α0 ≨ α1 ≨ . . . ≨ αp Then we define δω by giving all its components
(δω)α0α1α2···αpαp+1 ∈ F (Uα0···αp+1), ∀α0 ≨ α1 ≨ . . .≨ αp+1.

(δω)α0α1α2···αpαp+1 := (ωα1α2···αpαp+1)|Uα0α1α2 ···αpαp+1
+

− (ωα0α2···αpαp+1)|Uα0α1α2 ···αpαp+1
+ . . .+(−1)p+1(ωα0α1α2···αp)|Uα0α1α2 ···αpαp+1

.

Roughly speaking, (δω)α0α1α2···αpαp+1 , the component of δω on the intersection of p+ 2
open sets Uα0 ∩Uα1 ∩ . . .∩Uαp+1 , is obtained by taking the restriction of the component of ω on
each intersection of p+1 of them, and then summing the p+2 results with alternating signs.

Note that here we need that our presheaf is a presheaf of groups, as we sum elements in them
and take some opposites.

The check that δ ◦ δ = 0 needs the commutativity of the group: it is a straightforward
computation that we leave to the reader.

Definition 8.4.3 The Cech cohomology of the presheaf of abelian groups F with respect
to the covering U is the cohomology of the Cech complex H•(U ,F ) := H•

δ
(C•(U ,F )), a

graded vector space whose graded pieces are denoted H p(U ,F ).

It is not difficult to prove that the Cech cohomology does not depend, up to isomorphisms, from
the choice of the total ordering on I.

Example 8.3 Let π : E → B a G-bundle with fibre F , so G is a subgroup of Aut(F). Assume
G abelian.

Choose a trivialization
{

Φα : E|Uα
→Uα ×F

}
α∈I and fix a total ordedring of I.

The cocycle {gαβ} defines an element of C1({Uα},G ) where G is the presheaf of the con-
stant functions with values in G, which is δ -closed. So it also defines a class in H1({Uα},G ).

Consider a manifold M and an open covering U := {Uα}α∈I .

Definition 8.4.4 The Cech-De Rham complex is the double complex obtained by taking
• the vector spaces K p,q :=Cp(U ,Ωq);
• as "vertical" differential d : K p,q → K p,q+1 the natural map obtained taking the usual

differential of forms on each component; so

∀α0 ≨ α1 ≨ . . .≨ αp (dω)α0···αp = d(ωα0···αp);

• as "horizontal" differential δ : K p,q → K p+1,q the differential of the Cech complex
C•(U ,Ωq), where Ωq is the sheaf of the differential q−forms.

Here is the Cech-De Rham complex as commutative diagram.
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...
...

...
...

C0(U ,Ω4)
δ //

d

OO

C1(U ,Ω4)
δ //

d

OO

C2(U ,Ω4)
δ //

d

OO

C3(U ,Ω4) //

d

OO

· · ·

C0(U ,Ω3)
δ //

d

OO

C1(U ,Ω3)
δ //

d

OO

C2(U ,Ω3)
δ //

d

OO

C3(U ,Ω3) //

d

OO

· · ·

C0(U ,Ω2)
δ //

d

OO

C1(U ,Ω2)
δ //

d

OO

C2(U ,Ω2)
δ //

d

OO

C3(U ,Ω2) //

d

OO

· · ·

C0(U ,Ω1)
δ //

d

OO

C1(U ,Ω1)
δ //

d

OO

C2(U ,Ω1)
δ //

d

OO

C3(U ,Ω1) //

d

OO

· · ·

C0(U ,Ω0)
δ //

d

OO

C1(U ,Ω0)
δ //

d

OO

C2(U ,Ω0)
δ //

d

OO

C3(U ,Ω0) //

d

OO

· · ·

(8.7)

The reader can easily check that Cech-De Rham complex is a double complex fullfilling all
requirement of Definition 8.3.1. In particular dδ = δd.

In the following Proposition 8.8 we prove that it has exact rows, giving rise to an augmented
double complex with, as extra column (the differential complex (A•,d) of Definition 8.3.6) the
De Rham complex (Ω•(M),d), and as maps r : Ωq(M)→C0(U ,Ωq) = ∏α Ωq(Uα) the maps
induced by the restrictions, pull-backs for the inclusions Uα ⊂ M.

Proposition 8.4.5 The diagram

...
...

...
...

0 // Ω3(M)
r //

d

OO

C0(U ,Ω3)
δ //

d

OO

C1(U ,Ω3)
δ //

d

OO

C2(U ,Ω3) //

d

OO

· · ·

0 // Ω2(M)
r //

d

OO

C0(U ,Ω2)
δ //

d

OO

C1(U ,Ω2)
δ //

d

OO

C2(U ,Ω2) //

d

OO

· · ·

0 // Ω1(M)
r //

d

OO

C0(U ,Ω1)
δ //

d

OO

C1(U ,Ω1)
δ //

d

OO

C2(U ,Ω1) //

d

OO

· · ·

0 // Ω0(M)
r //

d

OO

C0(U ,Ω0)
δ //

d

OO

C1(U ,Ω0)
δ //

d

OO

C2(U ,Ω0) //

d

OO

· · ·

0

OO

(8.8)

is an augmented double complex with exact rows.

Proof. First note that, if U is a covering made by exactly two open sets {U0,U1}, the statement
follows by Theorem 7.3.2 setting U :=U0, V :=U1.
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The proof follows indeed exactly the same lines of the proof of Theorem 7.3.2.
First of all r is injective. Indeed if a differential form ω ∈ Ωq(M) has rω = 0 it means that

its restriction to every open subset Uα vanishes, and therefore ωp vanishes for all p ∈
⋃

Uα . So
ω = 0. This shows the exactness at Ωq(M).

δ ◦ r = 0. Indeed for every differential form ω , the component drω on Ω•(Uαβ ) is(
ω|Uα

)
|Uβ

−
(

ω|Uβ

)
|Uα

= ω|Uαβ
−ω|Uαβ

= 0.

kerδ = Imr. Indeed if (ωα) is in kerδ , then ∀(α,β ) (ωα)Uβ
= (ωβ )Uα

. So there exists
ω ∈ Ωp(M) such that ∀α , ∀p ∈ Uα , ωp = (ωα)p: rω = (ωα). This shows the exactness at
C0(U ,Ωq).

It remains to prove the exactness at Cp(U ,Ωq), p ≥ 1. Since δ ◦ δ = 0, we are left with
the proof that for all τ ∈Cp(U ,Ωq), p ≥ 1, with δτ = 0, there is σ ∈Cp−1(U ,Ωq) such that
δσ = τ .

This can be proved by constructing explicitely σ by τ using a partition of unity subordinate
to U as in the proof of Theorem 7.3.2. We leave the details to the reader. ■

This in particular implies, by Theorem 8.3.8, that the De Rham cohomology equals the
cohomology of the double complex (8.7).

If also the columns of (8.7) were exact, then we would obtain a doubly augmented double
complex with exact rows and columns as (8.6) with a new row at the bottom of (8.8); by Theorem
8.3.12 the cohomology of the new row would be isomorphic to the De Rham cohomology of M.
Unfortunately, this is not always true.

Our candidate new row is the Cech complex of the presheaf of the locally constant functions.
Indeed, since smooth functions are closed if and only if locally constant, the kernel of the map
d : C0(U ,Ω0)→C0(U ,Ω1) equals C0(U ,R).

Adding it we get the following commutative diagram.

...
...

...
...

0 // Ω3(M)
r //

d

OO

C0(U ,Ω3)
δ //

d

OO

C1(U ,Ω3)
δ //

d

OO

C2(U ,Ω3) //

d

OO

· · ·

0 // Ω2(M)
r //

d

OO

C0(U ,Ω2)
δ //

d

OO

C1(U ,Ω2)
δ //

d

OO

C2(U ,Ω2) //

d

OO

· · ·

0 // Ω1(M)
r //

d

OO

C0(U ,Ω1)
δ //

d

OO

C1(U ,Ω1)
δ //

d

OO

C2(U ,Ω1) //

d

OO

· · ·

0 // Ω0(M)
r //

d

OO

C0(U ,Ω0)
δ //

d

OO

C1(U ,Ω0)
δ //

d

OO

C2(U ,Ω0) //

d

OO

· · ·

0 //

OO

C0(U ,R) δ //

d

OO

C1(U ,R) δ //

d

OO

C2(U ,R) //

d

OO

· · ·

0

OO

0

OO OO

0

OO

(8.9)

If all columns of (8.9) except the first (the De Rham complex) are exact, then (8.9) is a
doubly augmented double complex with exact rows and columns.
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Those columns are exact if and only if the De Rham cohomology of all the open sets Uα0···αp

is concentrated in degree zero. In other words, if and only if ∀q > 0, ∀p, ∀α0 ≨ α1 ≨ · · ·≨ αp,
hq

DR(Uα0···αp) = 0. This motivates the following definition.

Definition 8.4.6 U is acyclic if ∀q > 0, ∀p, ∀α0 ≨ · · ·≨ αp,

hq
DR(Uα0···αp) = 0.

Note that all good covers are acyclic, and therefore acyclic covers exist.
U is acyclic if and only if the columns of (8.9) are exact. Theorem 8.3.12 applies then, if U

is acyclic, to (8.9), showing

Theorem 8.4.7 If U is an acyclic cover of M, then there is an isomorphism of graded vector
spaces

H•
DR(M)∼= H•(U ,R).

Note that the augmenting column (the De Rham complex) does not depend on the cover, and
the augmenting row has nothing to do with differential forms, so the cohomology of the double
complex (assuming the cover acyclic) does not depend on both things.

This shows that indeed the De Rham cohomology can be computed without using the
differential forms (which is a rather surprising conclusion for these notes). If moreover U is
finite (for example a finite good cover of a manifold of finite type), then the Cech complex of the
constant presheaf R relative to U is finite dimensional and can be indeed explicitely written,
giving a concrete method to compute the De Rham cohomology groups of M.

Indeed one can show (and we are not far from that) that the De Rham cohomology ring is a
topological invariant.

Complement 8.4.1 Complete the proof of Proposition 8.4.5.

Exercise 8.4.1 Show that δ ◦δ = 0.

Exercise 8.4.2 Choose two points of P1
R and conside the cover U of P1

R formed by the
two open subsets complements of those points. Set G = {± IdR} and set G for the constant
presheaf with values in G.

Prove that H1(U ,G )∼= G.
Write a trivialization of the trivial line bundle and of the tautological bundle with structure

group G, and show that their cocycles give different elements (so all elements) of H1(U ,G ).

Exercise 8.4.3 Consider a cover U of S1 given by two open subsets that are both the
complement of a point. So U = {U0,U1}, with U j = S1 \ p j, p0 ̸= p1.

1. Determine if U is acyclic.
2. Compute the dimensions of all the graded pieces Cq(U ,R) of C•(U ,R).
3. Write explicitly the differential δ of C•(U ,R).
4. Compute the cohomology groups of the Cech complex C•(U ,R) and compare the

result with the Hilbert function of the De Rham cohomology of S1.

Exercise 8.4.4 Construct an acyclic cover U of S1 made by three connected open subsets
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such that each open subset intersects exactly two other open subsets and the intersection of
each three of them is empty.

Then
1. Determine if U is acyclic.
2. Compute the dimensions of all the graded pieces Cq(U ,R) of C•(U ,R).
3. Write explicitly the differential δ of C•(U ,R).
4. Compute the cohomology groups of the Cech complex C•(U ,R) and compare the

result with the Hilbert function of the De Rham cohomology of S1.

Exercise 8.4.5 Write ∀n ≥ 4 an acyclic cover of S1 made by n connected open subsets, such
that each open subset intersects exactly two other open subsets and the intersection of each
three of them is empty.

Then
1. compute the dimensions of all the graded pieces Cq(U ,R) of C•(U ,R);
2. deduce from it the Euler characteristic of S1.

Exercise 8.4.6 Consider a cover U of S2 given by two open subsets that are both the
complement of a point. So U = {U0,U1}, with U j = S2 \ p j, p0 ̸= p1.

1. Determine if U is acyclic.
2. Compute the dimensions of all the graded pieces Cq(U ,R) of C•(U ,R).
3. Write explicitly the differential δ of C•(U ,R).
4. Compute the cohomology groups of the Cech complex C•(U ,R) and compare the

result with the Hilbert function of the De Rham cohomology of S2.

Exercise 8.4.7 Consider a homeomorphism of the sphere S2 onto a tetrahedron, and let
U = {U0,U1,U2,U3} be an acyclic cover such that each Ui is a small neighbourhood of the
preimage of a face of the tetrahedron. Here by small neighbourhood we mean the set of points
with distance < ε (in the metric induced by R3) for some suitably small ε > 0.

1. Compute the dimensions of all the graded pieces Cq(U ,R) of C•(U ,R).
2. Deduce from it the Euler characteristic of S2.
3. Compute the differential of C•(U ,R).
4. Compute the cohomology groups of the Cech complex C•(U ,R).

Exercise 8.4.8 Let S be a compact manifold of dimension 2, and assume that S is homeo-
morphic to the external surface of a (possibly not convex) polyhedron.

So S is topologically union of f polygons (possibly with different number of sides), which
we call faces.

We assume that every vertex belongs to exactly three faces, and that the intersection of
two polygons is either empty or an edge of both. Let e be the total number of edges and let v
be the number of vertices.

Prove that the Euler characteristic e(S) of S equals

f − e+ v.

Exercise 8.4.9 Prove the same statement as in Exercise 8.4.8 without any assumption on the
number of faces through any vertex, so allowing four or more faces through the same vertex.
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9. The Poincaré duality

9.1 The Poincaré duality

This chapter is devoted to the Poincaré duality and some of its applications.
The Poincaré duality applies only to manifolds M that are orientable and without boundary,

since it heavily uses
∫

M as element of the vector space dual of HdimM
c (M).

This includes several interesting cases, for example all manifolds with a complex structure
i.e. the underlying real manifold of any complex manifold.

Theorem 9.1.1 — Poincaré duality. Let M be an oriented manifold with ∂M = /0. Then
there exists, ∀q, isomorphisms

PM : Hq
DR(M)→

(
Hn−q

c (M)
)∗

such that for all pairs of closed forms ω ∈ Ωq(M) and η ∈ Ω
n−q
c (M)

PM([ω])([η ]) =
∫

M
ω ∧η .

Proof. We first show that PM is well defined. In other words, we show that
∫

M ω ∧η depends
only on the classes [ω] ∈ Hq(M) and [η ] ∈ Hn−q

c (M).
Indeed, chosen forms ω ∈ Ωq−1(M), η ∈ Ω

n−q−1
c (M), by Stokes’ Theorem 6.2.9, since by

assumption ∂M = /0 and dω = dη = 0∫
M
(ω +dω)∧ (η +dη) =

∫
M

ω ∧η +
∫

M
dω ∧η +

∫
M
(ω +dω)∧dη

=
∫

M
ω ∧η +

∫
M

d(ω ∧η)±
∫

M
d((ω +dω)∧η)

=
∫

M
ω ∧η +

∫
∂M

(ω ∧η)±
∫

∂M
((ω +dω)∧η)

=
∫

M
ω ∧η .

Therefore the map PM is well defined.
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We are left with the proof that all maps PM, obviously linear, are isomorphisms.
By sake of simplicity1, we prove it only for manifolds of finite type, so we take a finite good

cover U= {U1, . . . ,Uk} and argue by induction on k.
If k = 1 then M is diffeomorphic to Rn, whose De Rham and compact support cohomology

groups we know by the Poincaré lemmas: Corollaries 7.4.3 and 7.5.2.
Then for all q ̸= 0 both the domain and the codomain of PRn have dimension zero, and

therefore PRn is the unique map amon them, an isomorphism.
In the case q = 0, PRn is a map among two spaces of dimension 1, and therefore either it is

the zero map or it is an isomorphism. If it were the zero map, then PRn([1]) = 0 ∈ Hn
c (Rn)∗, and

so ∀η ∈ Ωn
c(Rn)

∫
Rn η = 0, which is obviously2 false.

Therefore PRn is an isomorphism for all q, and the starting step of the induction is proved.

By induction, arguing as in the proof of Proposition 8.1.5 we find two open subsets U and
V of M such that M =U ∪V and the statement holds for U , V and U ∩V ; all maps PU , PV and
PU∩V are isomorphisms.

We consider the diagrams

Hq−1(U)⊕Hq−1(V )

��

±(PU⊕PV )
// Hn−q+1

c (U)∗⊕Hn−q+1
c (V )∗

��

Hq−1(U ∩V )

��

±PU∩V // Hn−q+1
c (U ∩V )∗

��

Hq(M)

��

PM // Hn−q
c (M)∗

��

Hq(U)⊕Hq(V )
±(PU⊕PV )

//

��

Hn−q
c (U)∗⊕Hn−q

c (V )∗

��

Hq(U ∩V )
±PU∩V // Hn−q

c (U ∩V )∗

(9.1)

where
- the left column is the long cohomology exact sequence associated to the Mayer-Vietoris

exact sequence corresponding to the decomposition of M as union of U and V ;
- the right column is the dual of the analogous exact sequence for the cohomology with

compact support.
Note that we are indeed considering 16 different diagrams, depending on the choice of 4 signs.

Since the dual of an exact sequence is exact (Exercise 7.2.2), both columns of the diagram
(9.1) are exact sequences. By the inductive assumption all maps ±(PU ⊕PV ) and ±PU∩V are
isomorphisms. Therefore, if there is a choice of the signs ± such that the diagram (9.1) commutes,
the Five Lemma 8.2.2 implies that PM is an isomorphism, concluding our proof.

We complete then the proof by proving that there is a choice of the signs ± in the diagram
(9.1) making it commutative.

1The Poincaré duality holds indeed also for manifolds not of finite type. Its proof in the general case follows the
same idea, and uses transfinite induction.

2Take η = f dx1 ∧dx2 ∧·· ·∧dxn for any f ∈C∞
c (Rn), f ≥ 0, f ̸= 0.
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We have to check the commutativity of four squares; the one at the bottom is

Hq(U)⊕Hq(V )
±(PU⊕PV )

//

��

Hn−q
c (U)∗⊕Hn−q

c (V )∗

��

Hq(U ∩V )
±PU∩V // Hn−q

c (U ∩V )∗

We check it by computing the two images of a general element ([ω1], [ω2]) ∈ Hq(U)⊕Hq(V ) in
Hn−q

c (U ∩V )∗: the one from the "top" way (through Hn−q
c (U)∗⊕Hn−q

c (V )∗) and the one from
the "bottom" way (through Hq(U ∩V )).

Top:

([ω1], [ω2]) 7→ ±
(
([η1], [η2]) 7→

∫
U

ω1 ∧η1 +
∫

V
ω2 ∧η2

)
7→ ±

(
[η ] 7→

∫
U∩V

(ω2 −ω1)∧η

)

Bottom:

([ω1], [ω2]) 7→ ([(ω2)|U∩V − (ω1)|U∩V ])

7→ ±
(
[η ] 7→

∫
U∩V

(ω2 −ω1)∧η

)

Then the bottom square of diagram (9.1) commutes for a suitable choice of the signs. The
same proof shows that the same holds also for the top square.

We study the commutativity of the square

Hq(M)

��

PM // Hn−q
c (M)∗

��

Hq(U)⊕Hq(V )
±(PU⊕PV )

// Hn−q
c (U)∗⊕Hn−q

c (V )∗

in a similar way.
Top:

[ω] 7→
(
[η ] 7→

∫
M

ω ∧η

)
7→
(
([η1], [η2]) 7→

∫
M

ω ∧ ( jUMη1 + jVMη2)

)

Bottom:

[ω] 7→ ([ω|U ], [ω|V ])

7→ ±
(
([η1], [η2]) 7→

∫
U

ω ∧η1 +
∫

V
ω ∧η2

)
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Since clearly
∫

M ω ∧ ( jUMη1 + jVMη2) =
∫

U ω ∧η1 +
∫

V ω ∧η2 also this square commutes for
a suitable choice of the signs.

The last square is

Hq−1(U ∩V )

��

±PU∩V // Hn−q+1
c (U ∩V )∗

��

Hq(M)
PM // Hn−q

c (M)∗

Here we need the coboundary maps of the long cohomology exact sequence induced by the short
exact sequences of Mayer-Vietoris, and then the function fV in the proof of Theorem 7.3.2.

Bottom:

([ω]) 7→ [ jU∩V
M d(− fV ω)] = [ jU∩V

M (−d fV ∧ω)]

7→ ±
(
[η ] 7→ −

∫
U∩V

d fV ∧ω ∧η

)

Top:

[ω] 7→ ±
(
[η ] 7→

∫
U∩V

ω ∧η

)
7→ ±

(
[η ] 7→

∫
U∩V

ω ∧d( fV η)

)
and the commutativity up to a sign follows because η is closed, which implies d( fV η) =
d fV ∧η . ■

The first simple consequence of the Poincaré duality is the following

Corollary 9.1.2 Let M be a connected orientable manifold without boundary of dimension n.
Then the map

∫
M : Hn

c (M)→ R is an isomorphism.
In particular hn

c(M) = 1. Moreover a form ω is in the image dΩn−1
c if and only if

∫
M ω = 0.

Proof. Since we assumed M connected, by definition H0(M)∼= R is the space of the constant
functions. Theorem 9.1.1 implies then that Hn

c (M)∗, and therefore also Hn
c (M), has dimension 1.

More precisely, the isomorphism in Theorem 9.1.1 for q = 0 is the map

H0(M) ∋ c 7→
(
[η ] 7→ c

∫
M

η

)
∈ Hn

c (M)∗.

This gives for each c a different (as PM is an isomorphism) linear map among two vector spaces
of dimension 1, Hn

c (M) and R. Since for c = 0 it is the zero map, for c = 1 it is a different map,
and a linear map among vector spaces of dimension 1 is either zero or an isomorphism. ■

Exercise 9.1.1 Compute the De Rham cohomology groups of a torus with g holes (the
Riemann surface of genus g).
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Exercise 9.1.2 Compute the De Rham cohomology groups of a torus with g holes minus n
points.

Exercise 9.1.3 Compute the De Rham cohomology groups of a torus with g holes minus n
small opena discs pairwise disjoint.

aBe careful, this manifold has a boundary!

Exercise 9.1.4 Prove that every good cover of an orientable manifold of dimension n has
cardinality at least n+1.

9.2 The degree of a proper map

Corollary 9.1.2 gives an interesting interpretation of the number hdimM
c (M) for a manifold without

boundary: it is the number of the connected components of M that are orientable.
The second part of the statement, claiming that two forms represent the same class if and

only if they have the same integral on each orientable component, leads naturally to the definition
of the degree of a proper map.

Let F : M → N be a smooth proper map among two connected oriented (possibly not
compact) manifolds without boundary of the same dimension. Then the pull-back induces a
map F∗ : Hn

c (N)→ Hn
c (M). Corollary 9.1.2 shows that both spaces have dimension 1, and more

precisely the linear maps
∫

M : Hn
c (M)→ R and

∫
N : Hn

c (N)→ R are isomorphisms. Composing
F∗ with these isomorphism, we get a linear map R→ R which is then the multiplication by a
constant, the degree of F .

In other words:
Definition 9.2.1 Let M,N be oriented manifolds without boundary of the same dimension n,
N connected, and let F : M → N be a smooth proper map.

Choose ω ∈ Ωn
c(N) with

∫
N ω = 1. We define the degree of F as

degF :=
∫

M
F∗

ω.

Note that we have required only the connectedness of N. This is necessary in the definition
to ensure that the definition of the degree of F does not depend on the choice of ω: if N is
connected the forms ω ∈ Ωn

c(N) with
∫

N ω = 1 form a cohomology class; then their pull-backs
belong to the same cohomology class and therefore they all have the same integral.

In contrast the connectedness of M is not necessary.
We deduce immediately by the definition

∀ω ∈ Ω
n
c(N)

∫
M

F∗
ω =(degF)

∫
N

ω

R The degree is a multiplicative function. Indeed, if F,G are proper maps such that the
codomain of G equals the domain of G, then F ◦G exists and directly by the definition we
deduce

deg(F ◦G) = (degF)(degG)
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R If we change the orientation of M, the degree of F change sign.
If we change the orientation of N, the degree of F change sign.
If we change the orientation of both N and M the degree does not change.
In particular, if we consider a proper map from an orientable manifold to itself, its degree
does not depend on the choice3 of its orientation.

R If F is a diffeomorphism that preserves the orientation, then degF = 1.
If F is a diffeomorphism that reverses the orientation, then degF =−1.

Proposition 9.2.2 Let M,N be compact oriented manifolds without boundary of the same
dimension. If F,G : M → N are smoothly homotopic maps, then degF = degG.

Proof. This follows easily by Corollary 7.4.5. ■

It follows the following Theorem, known as “Hairy Ball Theorem”, since it determines,
“roughly speaking”, if one can comb a hairy ball such that each hair lies flat.

Theorem 9.2.3 — The Hairy Ball Theorem. A sphere Sn admits a smooth vector field without
any zero if and only if its dimension n is odd.

Proof. The readed should have already combed flat all odd-dimensional spheres solving Exercise
3.3.4. We only need then to show that if a sphere can be combed flat, its dimension is odd.

Consider a sphere Sn := {x = (x1, . . . ,xn+1) ∈ Rn+1|∑x2
i = 1} and a vector field v on it. We

can write it as

v(x) = ∑vi(x)
∂

∂xi

where “v is orthogonal to x”: ∑xivi(x) = 0 for all x.

If v never vanish (combing the sphere), we can divide it by
√

∑v2
i . So we can assume

without loss of generalities that ∑v2
i = 1.

Set v := (v1, . . . ,vn+1) for the point in Rn+1 whose coordinates correspond to the components
of v. Note that v ∈ Sn.

Consider the following induced function on Sn ×R

H(x, t) = cos(πt)x+ sin(πt)v.

Note that H(x,0) = x, H(x,1) =−x. Since x and v are orthogonal and of norm 1, H(x, t) belongs
to Sn for all x and t, so H can be seen as a smooth homotopy

H : Sn ×R→ Sn.

It follows that the antipodal map A : Sn → Sn is smoothly homotopic to the identity.
Then by Proposition 9.2.2 degA = 1, so A preserves the orientation. It follows n odd by the

forthcoming Lemma 9.2.4. ■

3if we agree to use the same orientation as orientation of the domain and of the codomain
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Lemma 9.2.4 Let A : Sn → Sn be the antipodal map A(p) =−p. Then
if n is odd then A is a diffeomorphism that preserves the orientation;
if n is even then A is a diffeomorphism that reverses the orientation.

Proof. Since A is a diffeomorphism and Sn is connected, then A either preserves or reverses the
orientation.

Notice that A is the restriction to the boundary of the diffeomorphism B : Bn+1 → Bn+1

analogously defined by B(p) = −p. By definition of orientation induced on the boundary A
preserves the orientation if and only if B does. It is enough then if we prove the statement for B
instead of A.

B has a fixed point, the origin O. Since Bn+1 is connected, B preserves the orientation if and
only if dBO ∈ Aut(TOBn+1) preserves the orientation as well, i.e. if and only if its Jacobi matrix
has positive determinant.

The statement follows then by dBO =− IdTORn+1 ⇒ degB = (−1)n+1. ■

In the next proposition we show that the degree has a geometrical interpretation that makes
it usually easy to compute; roughly speaking, it counts (in some sense) the cardinality of the
general fibre.

Recall that by Sard’s Lemma a smooth map among manifolds of the same dimension has
always at least a regular value.

Proposition 9.2.5 Let F : M → N be a smooth proper map among oriented manifolds without
boundary of the same dimension, and let q ∈ N be a regular value of F . Then

degF = ∑
p∈F−1(q)

ε(p)

where ε(p) = 1 if F preserves the orientation in a neighbourhood of p, ε(p) =−1 if F reverses
the orientation in a neighbourhood of p. In particular degF ∈ Z.

Proof. Since q is regular, then ∀p ∈ F−1(q), dFp is invertible and then ε(p) is well defined. It
follows that F−1(q) is discrete: by the properness of F , F−1(q) is also compact, and therefore
finite. Then ∑p∈F−1(q) ε(p) is a finite sum of 1’s and −1’s, an integer.

We write F−1(q) = {p1, . . . , pk}. By the local diffeomorphism theorem, there are open
neighborhoods Ui of pi such that F|Ui is a diffeomorphism onto a neighborhood of q. By
restricting the Ui we may assume that they are pairwise disjoint and that ∀i F(Ui) =V for a fixed
open neighborhood of q. We may also assume that V is contained in a chart (V ′,ψ) inducing
local coordinates x1, . . . ,xn.

Finally, we may also assume, up to shrinking V , that F−1(V ) =
⋃

Ui. Indeed, if this were
false, there would be a sequence {zi} in M \

⋃
Ui such that {F(zi)} converges to q. Then, since

{ f (zi)}∪{q} is compact, its preimage is a compact containing the sequence {zi}. Therefore, up
to passing to a subsequence, {zi} converges to some z ∈ M and by continuity of F , F(z) = q, so
z is one of the pi. In particular {zi} intersects Ui, a contradiction.

We choose a form ω with
∫

N ω = 1 and suppω ⊂ V . This can be done for example by
picking any nonnegative function 0 ̸= f ∈C∞

c (N) with supp f ⊂V . Then
∫

N f dx1 ∧·· ·∧ xn ̸= 0
and we can define the form

ω := jVN

(
f dx1 ∧·· ·∧ xn∫

N f dx1 ∧·· ·∧ xn

)
.

Then
∫

N ω =
∫

V ω = 1. Note that, since suppω ⊂V , then suppF∗ω ⊂
⋃

iUi.
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By Definition 9.2.1 and Complement 6.2.1 of Chapter 2

degF =
∫

M
F∗

ω =
k

∑
1

∫
Ui

F∗
ω =

k

∑
1

ε(pi)
∫

V
ω =

k

∑
1

ε(pi). ■

There are several easy consequences of this results. First of all, recalling that a point of the
codomain of a map that is not in the image is always a regular value, we see4 that every map that
is not surjective has degree zero. Conversely

Corollary 9.2.6 Let F : M → N be a smooth proper map among oriented manifolds without
boundary of the same dimension. If degF ̸= 0 then F is surjective.

If F is an holomorphic proper map among complex manifolds of the same dimension, then
we can consider F as a smooth map among real oriented manifolds without boundary. In this
case

Corollary 9.2.7 Let F : M → N be an holomorphic proper map among complex manifolds of
the same dimension, and let q ∈ N be a regular value of F . Then

degF = #F−1(q)≥ 0.

Proof. By Theorem 6.1.7 and its proof in this case ε(p) equals always 1, and then the statement
follows immediately from Proposition 9.2.5. ■

In particular the cardinality of the fibre of a regular value of a holomorphic proper map does
not depend on the choice of the regular value. This is not true in general for a smooth map among
real oriented manifolds where the same argument just proves that the parity of the cardinality of
the fibre is constant. In fact, the map f : R→ R given by f (t) = t2 is not surjective, so it has
degree 0, although the preimage of each positive regular value has cardinality 2.

Corollary 9.2.8 Let F : M → N be a smooth proper map among oriented manifolds without
boundary of the same dimension.

Let q ∈ N be a regular value of F . Then #F−1(q)−|degF | ∈ 2N.

For example, the map F : R → R given by F(x) = x3 − x has two critical values ±
√

3
3 ,

dividing Reg(F) in three connected components.
A straightforward explicit computation shows that the preimage of a regular value q has

cardinality 1 if q belongs to one of the two unbounded components, so if |q|>
√

3
3 , and then that

degF = 1. Still if |q|<
√

3
3 , #F−1(q) = 3.

Exercise 9.2.1 Show that a real projective space can be combed flat if and only if its
dimension is odd.

Exercise 9.2.2 Let F : M → N be a smooth map among compact oriented manifolds without
boundary of the same dimension.

Show that if degF ̸= 0 then the map F∗ : H•(N)→ H•(M) is injective.

4At a first glance, the proof of Proposition 9.2.5 requires that F−1(q) is not empty, so k ̸= 0, but this is not true.
For k = 0 the requirement F|Ui

to be a diffeomorphism is an empty condition, so one may first take any open subset V
of N containing q, for example V = N. Then the following argument, showing that, up to shrinking V , F−1(V ) =

⋃
Ui,

shows in fact that one can choose V so that F−1(V ) is empty. This implies F∗ω = 0 when suppω ⊂V , so degF = 0.
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Exercise 9.2.3 Show that if F : M → N is a holomorphic map among compact complex
manifolds of dimension 1 and the genus of M is strictly smaller than the genus of N, then F
is not surjective.

Note: with some standard complex analysis one can conclude that F is constant.

Exercise 9.2.4 Let P be a real polynomial of degree d, and consider it as smooth function
P : R→ R.

1) Prove that P is proper if and only if d > 0.
2) Prove that if d is even, then the degree of P as smooth proper map is 0.
3) Prove that if d is odd, then the degree of P as smooth proper map is either 1 or −1.

Exercise 9.2.5 Let P be a complex polynomial of degree d, and consider it as holomorphic
function P : C→ C.

1) Prove that P is proper if and only if d > 0.
2) Use Proposition 9.2.5 to prove that degF ̸= 0.
3) Deduce that P is surjective (this is the fundamental theorem of algebra).
4) Prove that the degree of P as smooth proper map equals its degree as a polynomial, d.

9.3 The orientation covering

The Poincaré duality holds only for orientable manifolds, as its proof shows: we need to be able
to integrate. One could think that this is only a technical problem: maybe there is a different
duality which works more generally?

In this section we will see that the answer to this question is negative. Actually, this negative
answer is very useful, since it produces a cohomological criterion for orientability.

We first need a couple of Lemmas.

Lemma 9.3.1 Let A : M → M be a smooth involutiona without fixed points and consider the
quotient N := M/∼ by the equivalence relation generated by p ∼ A(p).

Then there is a unique differentiable structure on N such that the projection map π : M →N
is a local diffeomorphism. Moreover

π
∗
Ω

•(N) = {ω ∈ Ω
•(M)|A∗

ω = ω} (9.2)
aThis means A◦A = IdM .

The formula (9.2) says that the A−invariant forms on M are exactly the forms coming from N.

Proof. We first notice that, since A−1 = A, A is a diffeomorphism.
Since M is Hausdorff, for all p in M there exists two disjoint open subsets U1 and U2

containing respectively p and A(p). Then U :=U1 ∩A(U2) is an open subset of M containing
p such that U ∩A(U) = /0. Shrinking U if necessary, we find a chart (U,ϕ) in p for M with
U ∩A(U) = /0.

We define the differentiable structure on N as follows: for each q in N choose p in M such
that π(p) = q and take a chart (U,ϕ) in p as above. Then π maps injectively U onto V := π(U).
Then we say that (V,ϕ ◦π−1) is a chart for N. Varying q in M we obtain an atlas for N such that
π is a local diffeomorphism. The uniqueness of the structure is obvious.

We still have to prove (9.2). One inclusion is easy: since π ◦A = π then for every ω ∈ Ω•(N),
A∗π∗ω = (π ◦A)∗ω = π∗ω , and then π∗ω is A-invariant.
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For the other inclusion, take ω ∈ Ω•(M) such that A∗ω = ω . For all point q in N take a chart
(V,ψ) as above, so that π−1(V ) is the disjoint union of an open subset U with A(U). Since π

defines a diffeomorphism among U and V we can pull-back ω|U to a form on V using π−1.
Notice that, since A∗ω = ω , the induced form on V does not change if we replace U with

A(U).
Now consider two open subsets V1 and V2 of N as above. The above construction gives

two forms η j ∈ Ω•(Vj) by setting η j := (π−1
|U j

)∗ω|U j . The reader can easily show that η1 and
η2 coincide on the common domain V1 ∩V2. Therefore all the forms obtained in this way are
restriction of the same global form η ∈ Ω•(N). The equality π∗η = ω holds since it holds on
each open subset U as above by definition of η . ■

An interesting example of the above situation is given by the antipodal map of a sphere, in
which case the quotient is a projective space.

We can now prove that the Poincaré duality fails for the real projective plane P2
R.

Proposition 9.3.2 If n is even then hn
DR(Pn

R) = hn
c(Pn

R) = 0

Proof. Consider the natural projection map π : Sn → Pn
R.

Pick any n−form ω ∈ Ωn(Pn
R). Consider ω̄ := π∗ω ∈ Ωn(Sn). By Lemma 9.3.1 ω̄ is

A-invariant: A∗ω̄ = ω̄ .
Since A reverses the orientation (Lemma 9.2.4) then∫

Sn
ω̄ =−

∫
Sn

A∗
ω̄ =−

∫
Sn

ω̄ ⇒
∫

Sn
ω̄ = 0.

Then, by Corollary 9.1.2, ω̄ is exact. Pick then η̄ ′ such that dη̄ ′ = ω̄ , and define η̄ := η̄ ′+A∗η̄ ′

2
averaging η̄ ′ with respect to A.

Notice that A∗η̄ = η̄ so by Lemma 9.3.1 η̄ = π∗η for some η ∈ Ω•(Pn
R).

Since π is a local diffeomorphism by

dη̄ = d
(

η̄ ′+A∗η̄ ′

2

)
=

dη̄ ′+A∗dη̄ ′

2
=

ω̄ +A∗ω̄

2
=

ω̄ + ω̄

2
= ω̄

it follows dη = ω completing the proof. ■

Proposition 9.3.2 implies, since by Corollary 9.1.2 for every connected orientable manifold
M of dimension n, hn

c(M) = 1.

Corollary 9.3.3 Every real projective space of even dimension is not orientable.

The proof of Proposition 9.3.2 relies on the use of the Poincaré duality on an orientable manifold,
Sn, strictly related (through the maps A and π) with the variety under investigation, Pn

R.
The argument fails for odd dimensional real projective spaces since the antipodal map of the

corresponding sphere preserves the orientation. In fact odd dimensional real projective spaces
are orentable, see Exercise 9.3.3.

We give now an analogous construction for every manifold, the orientation covering.

Definition 9.3.4 Let M be a connected manifold.
The orientation covering of M is defined, set-theoretically, as

M̃ := {(p,o)|p ∈ M, o is an orientationa of TpM}.

Denote by π : M̃ → M the projection π(p,o) = p. M̃ has a natural structure of (possibly
disconnected) differentiable manifold making π a local diffeomorphism, as follows.
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Let {(Uα ,ϕα)}α∈I be the maximal atlas of M. Every chart (Uα ,ϕα) gives local coor-
dinates x1, . . . ,xn; ∂

∂x1
, . . . , ∂

∂xn
determining, for each p ∈Uα an orientation of Tp(M). This

gives a subset, say Vα , of M̃, such that π maps Vα bijectively onto Uα .
We give to M̃ the topology generated by the Vα and the differentiable structure obtained

by restricting the "atlas" {(Vα ,ϕα ◦π)}α∈I .
aWe are using here Definition 6.1.1: an orientation of a vector space V is an equivalence class of bases of V .

R Notice that by definition the transition functions (ϕα ◦π)◦ (ϕβ ◦π)−1 preserve the orien-
tation, so M̃ is an oriented manifold!

R Since for every p ∈ M TpM admits exactly two orientations, we have a natural map

A : M̃ → M̃

defined by A(p,o) := (p, ō) where ō is the opposite orientation ō ̸= o.
A is a diffeomorphism that reverses the orientation with A◦A = IdM̃ , π ◦A = π .

R By the definition of the differentiable structure on M̃, π is smooth, and for all (p,o) ∈ M̃,
dπ(p,o) is an isomorphism.
Therefore π is a local diffeomorphism and then, by Theorem 2.4.4, an open map. Moreover
π is obviously a proper map. Since M and M̃ are both locally compact Hausdorff spaces,
then π is a closed map too.

Lemma 9.3.5 Let M be a connected manifold.
If M is not orientable then M̃ is connected.
If M is orientable then M̃ has two connected components, say M̃1 and M̃2, and ∀i,

π|M̃i
: M̃i → M is a diffeomorphism. More precisely, if we fix an orientation on M, one

of the diffeomorphisms π|M̃i
preserves the orientation whereas the other one reverses the

orientation.

Proof. If M is orientable fix an orientation of M and denote as usual by M̄ the same manifold
with the opposite orientation. We have a natural map F : M

∐
M̄ → M̃ mapping each point p in

the disjoint union M
∐

M̄ to the pair (p,o) where o is the orientation of p as point of M or M̄. It
is easy to show that F is a preserving orientation diffeomorphism. Then M̃ has two connected
components, F(M) and F(M̄) and the rest of the statement for the orientable case follows easily.

We conclude the proof by showing that, if M̃ is disconnected, then M is orientable.
So assume M̃ disconnected. Then there exists an open and closed proper nonempty subset

M̃1 of M̃.
Since π is at the same time an open map and a closed map, π(M̃1) is an open and closed

nonempty subset of M, so π(M̃1) = M.
We recall that for every point p ∈ M there are exactly two possible distinct orientations, so

π−1(p) = {(p,o),(p,o)}. It follows that if (p,o) does not belong to M̃1 then (p,o) will belong
to it, since otherwise p would not belong to π(M̃1) contradicting π(M̃1) = M. In other words
M̃ = M̃1 ∪A(M̃1): for any point q in the complementary subset M̃ \ M̃1, A(q) ∈ M̃1.

Now we show that M̃1 ∩A(M̃1) is the empty set. Since M̃1 is a proper open and closed
subset and A is a diffeomorphism, A(M̃1) is a proper and closed subset too, and then M̃1 ∩
A(M̃1) is a proper and closed subset of M̃ as well. If it were not empty, then by the argument
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above π
(
M̃1 ∩A(M̃1)

)
= M. However, since M̃1 ∩A(M̃1) is A−invariant, that would imply

M̃1 ∩A(M̃1) = M̃, a contradiction.
Finally consider the restriction of the map π to the open subset M̃1. We have shown that it

is a surjective local diffeomorphism from M̃1 → M. The fact that M̃1 ∩A(M̃1) is the empty set
implies that it is injective too. So M is diffeomorphic to an open subset of the oriented manifold
M̃ and then it is orientable too. ■

It follows the following criterion for orientability.

Theorem 9.3.6 Let M be a connected manifold without boundary of dimension n. Then{
hn

c(M) = 1 if M is orientable
hn

c(M) = 0 if M is not orientable

Proof. When M is orientable, this is just Corollary 9.1.2.
Assume now M not orientable, and consider the reversing orientation diffeomorphism

A : M̃ → M̃ defined already as A(p,o) = (p, ō). The proof now follows now exactly the strategy
of the proof of Proposition 9.3.2 just by substituting Sn with the orientation covering M̃ of M. ■

Complement 9.3.1 Prove that the orientation covering of P2
R is diffeomorphic to S2.

Exercise 9.3.1 Let M1, . . . ,Mk be compact manifolds without boundary. Prove that M1 ×
·· ·×Mk is orientable if and only if all Mi are orientable.

Exercise 9.3.2 Compute the De Rham cohomology ring of the real projective plane.

Exercise 9.3.3 Show that all real projective spaces of odd dimension are orientable.
Hint: The Mayer-Vietoris exact sequence may be useful

Exercise 9.3.4 Compute the De Rham cohomology rings of all real projective spaces Pn
R =

Sn/x ∼−x.

Exercise 9.3.5 Compute the De Rham cohomology ring of the Klein bottle R2/∼ where the
equivalence relation is given by (x0,y0)∼ (x1,y1)⇔ (x0 − x1,y0 − (−1)x0−x1y1) ∈ Z2.

Exercise 9.3.6 Let π : E → B be a fibre bundle with fibre Pr
R on a manifold B of finite type.

Prove that if r is even then the map π∗ : H•
DR(B)→ H•

DR(E) is a ring isomorphism.

9.4 The Poincaré duals of a closed submanifold
Let M be an oriented manifold without boundary of dimension n and let S be a closed oriented
submanifold without boundary of dimension k.

In other words S is an oriented manifold without boundary and the inclusion

i : S ↪→ M

is an embedding whose image i(S) is closed.
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Then, ∀ω ∈ Ωk
c(M), the support of ω|S := i∗ω is compact. Integrating along S we get a linear

application

[ω] 7→
∫

S
ω :=

∫
S

ω|S

in Ωk
c(M)∗ that vanishes, by Stokes’ Theorem 6.2.9, on dΩk−1

c (M).
So
∫

S defines an element of Hk
c (M)∗. Since by the Poincaré duality 9.1.1 Hk

c (M)∗ ∼= Hn−k
DR (M)

this associates to S a De Rham cohomology class on M.

Definition 9.4.1 The Poincaré dual or the closed Poincaré dual of S in M is the unique
cohomology class η ′

S ∈ Hn−k
DR (M) representing

∫
S.

In other words η ′
S ∈ Hn−k

DR (M) is the unique De Rham cohomology class such that for
every compact support cohomology class ω ∈ Hk

c (M)∫
S

ω =
∫

M
ω ∧η

′
S.

R Note we are considering the wedge product ω ∧η ′
S of two cohomology classes belonging

to different cohomology theories, this at a first glance does not make much sense!
The meaning is the following.
We consider a representative of ω in Ωk

c(M) and a representative of η ′
S in Ωn−k(M), their

wedge product is a closed n−form whose support is compact, so we can integrate it.
A standard argument shows that the integral does not depend on the choice of the two
representatives.

The closed Poincaré dual behaves well under diffeomorphisms, as follows.

Proposition 9.4.2 Let M, S be oriented manifolds without boundary of respective dimension
n, k, and let i : S ↪→ M be an embedding with closed image, and set η ′

S for the closed Poincaré
dual of S in M. Let F : M → M be a diffeomorphism.

If F preserves the orientation, then η ′
S = F∗η ′

F(S), else η ′
S =−F∗η ′

F(S).

Proof. By the characterizing property of the Poincaré dual, for all cohomology classes ω ∈
Hk

c (M),∫
M

ω ∧η
′
F(S) =

∫
F(S)

ω =
∫

S
(F ◦ i)∗ω =

∫
S

i∗F∗
ω =

∫
M

F∗
ω ∧η

′
S.

If F preserves the orientation the left hand term equals
∫

M F∗(ω ∧η ′
F(S)) =

∫
M F∗ω ∧F∗η ′

F(S).
Since this holds for all ω , then η ′

S = F∗η ′
F(S).

Similarly we obtain the equality η ′
S =−F∗η ′

F(S) when F reverses the orientation. ■

Corollary 9.4.3 Let M be an oriented manifold without boundary, and let F : M → M be an
orientation preserving diffeomorphism which is smoothly homotopic to the identity.

Let S be a closed oriented submanifold without boundary. Then S and F(S) have the same
closed Poincaré dual in M.

Proof. By assumption F preserves the orientation, so Proposition 9.4.2 gives η ′
S = F∗η ′

F(S) ∈
Hn−k

DR (M). On the other hand, by Corollary 7.4.5, F∗ : Hn−k
DR (M)→ Hn−k

DR (M) is the identity map.
So η ′

F(S) = η ′
S. ■
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If we further assume S compact, we similarly also associate to S a De Rham cohomology
class. We need however to assume that all De Rham cohomology group are finitely dimensional
(as for manifolds of finite type) so that dualizing the Poincaré duality 9.1.1 we obtain the
following

Theorem 9.4.4 Let M be an oriented manifold with ∂M = /0 and assume moreover that
H•

DR(M) is finitely dimensional. Then there are isomorphisms

P′
M : Hq

c (M)→
(

Hn−q
DR (M)

)∗
defined by

∀[η ] ∈ Hq
c (M) ∀[ω] ∈ Hn−q

DR (M) P′
M([η ])([ω]) =

∫
M

ω ∧η .

Proof. The defition of P′
M may be written simply as

P′
M([η ])([ω]) = PM([ω])([η ]).

and therefore, since PM is well defined, P′
M is well defined too.

Moreover

[η ] ∈ kerP′
M ⇔∀[ω] ∈ Hn−q

DR (M)
∫

M
ω ∧η = 0

⇔∀[ω] ∈ Hn−q
DR (M) [η ] ∈ kerPM([ω])

⇔∀ϕ ∈ (Hq
c (M))∗ [η ] ∈ kerϕ

⇔ [η ] = 0

So P′
M is injective. Since its domain and its codomain are by assumption finitely dimensional,

and of the same dimension by Poincaré duality, P′
M is an isomorphism. ■

So, if all the De Rham cohomology groups of M are finitely dimensional, then we can
exchange the role of the De Rham cohomology and of the compact support cohomology in the
discussion above.

Definition 9.4.5 Let M be an oriented manifold of dimension n without boundary whose
De Rham cohomology is finitely dimensional. Let S be a compact oriented manifold of
dimension k without boundary embedded in M.

By Poincaré duality, there is a unique cohomology class η ∈ Hn−k
c (M) representing

∫
S;

in other words there is a unique ηS ∈ Hn−k
c (M) such that ∀ω ∈ Hk

DR(M)∫
S

ω =
∫

M
ω ∧ηS.

We will say that ηS is the compact Poincaré dual of S in M.

Of course, if M is compact, then closed and compact Poincaré duals coincide.
The proof of Proposition 9.4.2 gives in the case of compact Poincaré duals the following

analogous statement.

Proposition 9.4.6 Let M be an oriented manifold without boundary of dimension n such that
H•

DR(M) is finitely dimensional, and let F : M → M be a diffeomorphism.
Let S be an oriented compact submanifold of dimension k. Set ηS for the compact Poincaré

dual of S in M.
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If F preserves the orientation, then the compact Poincaré dual of F−1(S) is F∗ηS.
If F reverses the orientation, then the compact Poincaré dual of F−1(S) is −F∗ηS.

We cannot prove an analogous of Corollary 9.4.3 for compact Poincaré duals, since its proof
uses Corollary 7.4.5, which does not generalize to the compact support cohomology.

The compact Poincaré dual has the very useful property that we can shrink the support of it
in arbitrarily small neighbourhoods of S in M.

Theorem 9.4.7 — Localization principle. Let M be an oriented manifold without boundary
whose De Rham cohomology is finitely dimensional.

Let S be a compact oriented submanifold without boundary of M.
Let W ⊂ M be an open subset containing S such that H•

DR(W ) is finitely dimensional.
Then there is a representative η ∈ Ω•

c(M) of the compact Poincaré dual ηS of S in M such
that suppη ⊂W .

R The finite dimension of H•
DR(W ) is automatic for the tubular neighbourhoods in Theorem

3.3.5, since in that case W is diffeomorphic to a vector bundle over S and then its De Rham
cohomology is isomorphic to the De Rham cohomology of S and then finitely dimensional
by the compactness of S.

Proof. Consider S as compact submanifold of the manifold W . Then S has a compact Poincaré
dual in H•

c (W ). Choose a representative η̃ ∈ Ω•
c(W ) of it.

Since η̃ has compact support, we can extend η̃ to a smooth form η ∈ Ω•
c(M) vanishing on

M \W .
Notice that ∀ω ∈ Ωk(M),

∫
S ω =

∫
W ω ∧ η̃ =

∫
M ω ∧ η . Then η is a representative of

the compact Poincaré dual ηS of S in M. Since its support is contained in W the proof is
complete. ■

Exercise 9.4.1 For each of the following oriented manifolds without boundary find closed
embedded submanifolds whose closed Poincaré duals form a basis of their De Rham coho-
mology.

- Rn;
- Sn;
- the torus Sn ×Sm;
- Rn \{0}.

Exercise 9.4.2 For each of the oriented manifolds without boundary of the previous exercise
find compact embedded submanifolds whose compact Poincaré duals form a basis of their
compact support cohomology.

Exercise 9.4.3 Show that if S is the boundary of a closed orientable manifold T embedded
in M, then its closed Poincaré dual is 0.

9.5 The Thom class

In this section we show how to concretely construct a representative of the Poincaré dual of
a closed oriented manifold S without boundary embedded in an oriented manifold without
boundary M.
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By the tubular neighbourhood Theorem 3.3.5 there is a neighbourhood W of S that is
diffeomorphic to the normal bundle NS|M.

If S is compact, by the localization principle Theorem 9.4.7 we can find a representative of
the compact Poincaré dual of S in M with support contained in W .

In this section we describe this representative rather explicitly as form on the manifold NS|M .
As we will see in Proposition 9.5.10 we will be able to do it even for the closed Poincaré dual,
without any compactness assumption on S.

We need to consider a new cohomology theory, coming from a differential complex contained
in the De Rham complex Ω•(NS|M) that contains Ω•

c(NS|M). This is a cohomology theory defined
on every vector bundle. Recall that, from Proposition 3.2.2 on, we are implicitly assuming that
all vector bundles have the natural differentiable structure considered there.

Definition 9.5.1 Let π : E → B be a real vector bundle of rank r over a manifold B.
A form ω ∈ Ω•(E) has compact support in the vertical direction if ∀K ⊂ B, K compact,

π−1(K)∩ suppω is compact.
The subspace of Ω•(E) of the forms with compact support in the vertical direction is

denoted by Ω•
cv(E). It is invariant by the standard differential d of the De Rham complex,

whose restriction makes then Ω•
cv(E) a differential complex with graded pieces Ω

q
cv(E) :=

Ω•
cv(E)∩Ωq(E).

We denote by H•
cv(E) its cohomology and by Hq

cv(E) the graded piece of degree q of
H•

cv(E).

The forms with compact support in the vertical direction are a natural place for generalizing
to vector bundles the integration along the fibres π∗ : Ω•

c(M×R)→ Ω•
c(M) considered in the

proof of the Poincaré Lemma for the cohomology with compact support Theorem 7.5.1. Indeed
if ω ∈ Ωr

cv(E), ∀p ∈ B, suppω|Ep is compact. Since we want to integrate on each Ep, we need to
consider oriented vector bundles.

For the sake of simplicity, as in the proof of Theorem 7.5.1, we give the definition of π∗ in
local coordinates, leaving to the reader to find an intrinsic definition to ensure that the definitions
are well posed, i.e. independent from the choice of the coordinates.

Definition 9.5.2 Let π : E → B be an oriented vector bundle.
Choose a trivialization {φα} associated to a cover {Uα} of B made of charts (Uα ,ϕα).

For each chart (Uα ,ϕα) let x1, . . . ,xn be the induced coordinates on Uα .
Consider the chart of E induced by Φα and ϕα

E|Uα

Φα−→Uα ×Rr ϕα×IdRr−→ Dα ×Rr

inducing coordinates x1, . . . ,xn, t1, . . . , tr on E|Uα
such that π∗xi = xi.

For every form ω of type f (xi, t j)dxi1 ∧ ·· · ∧ dxiq ∧ dt j1 ∧ . . .∧ dt js , s ̸= r, we define
π∗ω = 0.

For every form ω of type f (xi, t j)dxi1 ∧·· ·∧dxiq ∧dt1 ∧ . . .∧dtr we define

π∗ω =

(∫
Rr

f (xi, t j)dt1 · · ·dtr

)
dxi1 ∧·· ·∧dxiq

Since each form in Ω•
cv(E) is a sum of forms as above, this defines a map of graded vector

spaces

π∗ : Ω
•
cv(E)→ Ω

•(B)

of degree −r called integration along the fibres.
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Please notice that if the bundle is the trivial bundle of rank 1 then the map π∗ coincides
exactly with the map considered in the proof of the Theorem 7.5.1.

We will later need the following result

Lemma 9.5.3 — Projection formula. Let π : E → be an oriented real vector bundle over a
manifold B.

Then ∀ω ∈ Ωq(B), ∀τ ∈ Ω
q′
cv(E)

π∗(π
∗
ω ∧ τ) = ω ∧π∗τ.

Moreover, if B is oriented of dimension n, suppω is compact and E has rank q+q′−n, then∫
E

π
∗
ω ∧ τ =

∫
B

ω ∧π∗τ

Proof. The first statement is local on B. Since every bundle is locally trivial, it is enough if
we prove it for the trivial bundle U ×Rr → U where U is a chart with coordinates x1, . . . ,xn.
Then, setting t1 . . . , tr for the vertical coordinates, by linearity it is enough if we prove our
statement for every form τ of type f (xi, t j)dxi1 ∧ ·· · ∧ dxia ∧ dt j1 ∧ . . .∧ dt js , s ̸= r or of type
f (xi, t j)dxi1 ∧·· ·∧dxia ∧dt1 ∧ . . .∧dtr.

This is a straightforward computation: more precisely in the first case both π∗(π
∗ω ∧ τ) and

ω ∧π∗τ vanish, whereas in the second case both are equal to(∫
f dt1 · · ·dtr

)
ω ∧dxi1 ∧·· ·∧dxia .

The second statement, comparing the value of two integrals, is global. We consider a trivialization
{φα} related to a cover {Uα} made by charts, and a partition of unity ρi subordinate to it. Setting
ωi := ρiω then ω = ∑i ωi and∫

E
π
∗
ω ∧ τ = ∑

i

∫
E|U

α(i)

π
∗
ωi ∧ τ,

∫
B

ω ∧π∗τ = ∑
i

∫
Uα (i)

ωi ∧π∗τ.

Therefore it suffices to prove
∫

E|Uα (i)
π∗ωi ∧ τ =

∫
Uα (i) ωi ∧π∗τ . In other words, we can assume

that the bundle is trivial and the base is a chart.
We can then conclude by two explicit computations as in the previous case, checking the

equality for every form τ of type f (xi, t j)dxi1 ∧ ·· · ∧ dxia ∧ dt j1 ∧ . . .∧ dt js , s ̸= r or of type
f (xi, t j)dxi1 ∧·· ·∧dxia ∧dt1 ∧ . . .∧dtr.

Indeed in the first case both integrals vanish since both integrands vanish, whereas in the
second case both integrals equal∫

Uα

(∫
Rr

f (xi, t j)dt1 · · ·dtr

)
ω ∧dxi1 ∧·· ·∧dxia . ■

We show that π∗ is a chain map.

Proposition 9.5.4 Let π : E → B be an oriented real vector bundle. Then dπ∗ = π∗d.

Proof. It is enough to prove dπ∗ω = π∗dω for every form ω of type f (xi, t j)dxi1 ∧·· ·∧dxiq ∧
dt j1 ∧ . . .∧dt js , s ̸= r or of type f (xi, t j)dxi1 ∧·· ·∧dxiq ∧dt1 ∧ . . .∧dtr.

If ω = f (xi, t j)dxi1 ∧·· ·∧dxiq ∧dt j1 ∧ . . .∧dt js , s ̸= r then dπ∗ω = d0 = 0.
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If s ̸= r−1 then dω is a sum of forms of the same type, and then π∗dω = 0. If s = r−1
then ω = f (xi, t j)dxi1 ∧·· ·∧dxiq ∧dt1 ∧ . . .∧dtk−1 ∧dtk+1 ∧·· ·dtr and therefore

π∗dω = π∗d
(

f (xi, t j)dxi1 ∧·· ·∧dxiq ∧dt1 ∧ . . .∧dtk−1 ∧dtk+1 ∧·· ·dtr
)

= π∗

(
∂ f (xi, t j)

∂ tk
dtk ∧dxi1 ∧·· ·∧dxiq ∧dt1 ∧ . . .∧dtk−1 ∧dtk+1 ∧·· ·dtr

)
=±π∗

(
∂ f (xi, t j)

∂ tk
dxi1 ∧·· ·∧dxiq ∧dt1 ∧ . . .∧dtr

)
=±

(∫
Rr

∂ f (xi, t j)

∂ tk
dt1 · · ·dtr

)
dxi1 ∧·· ·∧dxiq

vanishes because, since ω has compact support in the vertical direction,
∫
R

∂ f
dtk

dtk = 0.

If ω = f (xi, t j)dxi1 ∧·· ·∧dxiq ∧dt1∧ . . .∧dtr then a straightforward computation shows that
both dπ∗ω and π∗dω equal

∑
k

(∫
Rr

∂ f (xi, t j)

∂xk
dt1 · · ·dtr

)
dxk ∧dxi1 ∧·· ·∧dxiq . ■

It follows

Corollary 9.5.5 The integration along the fibres defines a morphisms of graded vector spaces

π∗ : Hq+r
cv (E)→ Hq

DR(B)

of degree −r such that, for every closed form η ∈ Ω•
cv(E), π∗[η ] = [π∗η ].

A key very important result is the following generalization of the Poincaré lemma for forms with
compact support, whose proof we skip.

Theorem 9.5.6 — Thom isomorphism. If E is an oriented vector bundle on a manifold B of
finite type, then the integration along the fibres π∗ : Hq+r

cv (E)→ Hq
DR(B) is an isomorphism.

The Poincaré Lemma for the cohomology with compact support Theorem 7.5.1 corresponds
to the special case when B is compact (so Ω

q
cv(E) = Ω

q
c(E) and Hq+r

cv (E) = Hq+r
c (E)) and E is

trivial.
Theorem 9.5.6 allows us to give the following definition.

Definition 9.5.7 The Thom class of an oriented vector bundle π : E → B is

Φ(E) := π
−1
∗ (1) ∈ Hr

cv(E).

The following proposition shows how to recognize a representative of the Thom class.

Proposition 9.5.8 Let π : E → B be an oriented vector bundle of rank r and let Φ ∈ Ωr
cv(E)

be a closed form. Then the map f : B → R defined by f (p) =
∫

Ep
Φ is locally constant.

Moreover the following are equivalent
- the cohomology class of Φ is the Thom class of E;
- ∀p ∈ B,

∫
Ep

Φ = 1;
- ∃p ∈ B such that

∫
Ep

Φ = 1.

Proof. By definition of integration along the fibres π∗Φ = f . Therefore, by Proposition 9.5.4
d f = 0, and therefore f is locally constant. Then Φ is the Thom class if and only if f ≡ 1. ■
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We consider now a closed oriented submanifold without boundary S of dimension k of an
oriented manifold without boundary M of dimension n.

By the tubular neighbourhood Theorem 3.3.5 we can see every form ω on NS|M as a form
on a tubular neighbourhood W of S in M. If ω has compact support on the vertical direction,
then it vanishes near the boundary of its closure W , so we can extend it to a form in Ω•(M) that
vanishes on M \W . This defines a chain map from Ω•

cv(NS|M) to Ω•(M) inducing a graded ring
homomorphism

i′∗ : H•
cv(NS|M)→ H•

DR(M). (9.3)

If S is compact, then suppω , that equals the support of its extension in Ω•(M), is compact, and
then we get also a graded ring homomorphism

i∗ : H•
cv(NS|M)→ H•

c (M). (9.4)

The normal bundle of S in M is an orientable vector bundle (see Exercise 6.1.14). We need
to fix one orientation on it.

Definition 9.5.9 Let S be an oriented submanifold without boundary of the oriented manifold
without boundary M, dimS ̸= dimM.

Choose an oriented basis v1, . . . ,vk of TpS and complete it to an oriented basis v1, . . . ,vn

of TpM.
We define the induced orientation as vector bundle of NS|M as the one corresponding to

the basis of (NS|M)p given by the classes of vk+1, . . . ,vn.

Notice that the definition is well posed since it does not depend on the chosen bases, but only on
the orientations they induce.

Consider the Thom class Φ := Φ(NS|M) ∈ Hn−k
cv (NS|M) of the normal bundle NS|M oriented

as in Definition 9.5.9.

Proposition 9.5.10 Let S be a closed oriented submanifold without boundary of dimension k
of an oriented manifold without boundary M of dimension n.

Let Φ ∈ Hn−k
cv (NS|M) be the Thom class of NS|M oriented as in Definition 9.5.9.

Then i′∗Φ is the closed Poincaré dual η ′
S of S in M, where i′∗ is the map in (9.3).

If S is compact and M is of finite type then i∗Φ is the compact Poincaré dual ηS of S in M,
where i∗ is the map in (9.4).

Proof. By the tubular neighbourhood Theorem 3.3.5 there is an open neighbourhood W of S
in M such that W ∼= NS|M, and the inclusion of S in M is the composition of the zero section
s0 : S → NS|M with the inclusion W ⊂ M.

In the following we identify W with NS|M, so getting maps s0 : S →W (the inclusion) and
π : W → S. Since s0 ◦π is smoothly homotopic to the identity, by Corollary 7.4.5 (s0 ◦π)∗ =
IdH•

DR(W ).
Then, for every closed form ω ∈ Ωk(M), [ω|W ] = π∗s∗0[ω|W ] ∈ Hk

DR(W ). In other words
∃η ∈ Ω•(W ) such that ω|W = π∗i∗ω|W +dη = π∗ω|S +dη .

If moreover suppω is compact, by the Projection Formula 9.5.3 and Stokes’ Theorem 6.2.9,
choosing a representative Ψ ∈ Ω•(M) of i∗Φ∫

M
ω ∧Ψ =

∫
W

ω ∧Ψ =
∫

W
(π∗

ω|S +dη)∧Ψ =
∫

W
π
∗
ω|S ∧Ψ+

∫
W

dη ∧Ψ =

=
∫

W
π
∗
ω|S ∧Ψ+

∫
W

d(η ∧Ψ) =
∫

S
ω ∧π∗Ψ+0 =

∫
S

ω
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and therefore [Ψ] = i′∗Φ is the closed Poincaré dual of S in M.
If S is compact, then H•

cv(W ) = H•
c (W ) and therefore we can choose Ψ with compact support.

Then the same chain of equalities holds for every ω ∈ ΩdimS(M) showing that the class of Ψ in
H•

c (M) is the compact Poincaré dual of S in M. ■

An useful property of the Thom class is its good behavior with respect to the direct sum of
line bundles.

Proposition 9.5.11 Let E, F be two oriented vector bundles over the same base B and consider
the vector bundle E ⊕F with the induced orientation given in Definition 6.1.18.

Consider the natural projections πE : E ⊕F → E, πF : E ⊕F → F . Let ΦE ∈ Ωr
cv(E),

ΦF ∈ Ωr′
cv(F) be representatives of the respective Thom classes of E and F . Then

π
∗
EΦE ∧π

∗
FΦF

is a representative of the Thom class of E ⊕F .

Proof. First of all we notice that π∗
EΦE ∧π∗

FΦF has compact support in the vertical direction
(even if neither π∗

EΦE nor π∗
FΦF have compact support in the vertical direction) since its support

is contained in the fibre product of the supports of π∗
EΦE and π∗

FΦF .
Then π∗

EΦE ∧π∗
FΦF is closed. Indeed

d(π∗
EΦE ∧π

∗
FΦF) = dπ

∗
EΦE ∧π

∗
FΦF ±π

∗
EΦE ∧dπ

∗
FΦF =

= π
∗
EdΦE ∧π

∗
FΦF ±π

∗
EΦE ∧π

∗
FdΦF = 0±0 = 0.

Finally∫
(E⊕F)p

π
∗
EΦE ∧π

∗
FΦF =

∫
Ep⊕Fp

π
∗
EΦE ∧π

∗
FΦF =

(∫
Ep

ΦE

)(∫
Fp

ΦF

)
= 1 ·1 = 1

and the statement follows by Proposition 9.5.8. ■

Complement 9.5.1 Show that the integration along the fibres is well defined. More precisely,
show that the given definition of π∗ does not depend on the choice of the local coordinates
x1, . . . ,xn.
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10. Intersection theory

10.1 Transversal intersections
Let R,S be two submanifolds embedded in a manifold M. By sake of simplicity we ask that all
three manifolds R, S and M are without boundary.

Definition 10.1.1 Let p ∈ R∩S.
We say that R and S are transversal at ppp if TpR+TpS = TpM.
We say that R and S are transversal if they are trasversal at every point p ∈ R∩S.

R By Definition 10.1.1, if R and S are transversal at a point p ∈ R∩S then dimR+dimS ≥
dimM. In particular, if dimR+ dimS ≨ dimM, R and S are transversal if and only if
R∩S = /0.
Notice that when dimR+dimS = dimM the trasversality at a point p gives TpM = TpR⊕
TpS.

We will use the following Lemma, generalization of Proposition 2.4.6, without proving it.

Lemma 10.1.2 — Transversality Lemma. Let R and S be two embedded submanifolds
without boundary of a manifold M without boundary.

Assume that R and S are transversal at p. Set r = dimR, s = dimS, n = dimM.
Then there is a chart of M in p giving local coordinates x1, . . . ,xn such that locally

R = {xr+1 = . . .= xn = 0} and S = {x1 = . . .= xn−s = 0}.

From the Transversality Lemma 10.1.2 easily follows

Theorem 10.1.3 — Transversality theorem. Let R and S be two embedded transversal
submanifolds without boundary of a manifold M without boundary.

Then N := R∩S has a structure of manifold embedded in R, in S and in M so that ∀p ∈ N,
TpN = TpR∩TpS as vector subspaces of TpM. In particular

dim(R∩S) = dimR+dimS−dimM.
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Moreover, if R, S and M are orientable, then N is orientable too.

As in other similar situations, since every connected component of R∩S has two possible
orientations, it is convenient to choose once and for all an orientation on a transversal intersection
R∩S (so on every component N) induced by the orientations of R, S and M.

Let us start with the case dimR+dimS = dimM. Then by Theorem 10.1.3 R∩S is a discrete
set, and the orientation of a component (=point) p of R∩S is the choice of a sign.

Definition 10.1.4 Assume R and S are oriented transversal submanifolds without boundary
of the oriented manifold M without boundary such that dimR+dimS = dimM.

For every p ∈ R∩ S we define the induced orientation in ppp as follows: we pick an
oriented basis v1, . . . ,vr of TpR and an oriented basis v′1, . . . ,v

′
s of TpS and

• if v1, . . . ,vr,v′1, . . . ,v
′
s is an oriented basis of TxM we choose the sign +;

• else we choose the sign −.

In local coordinates, by Lemma 10.1.2 (up to exchange the sign of few coordinate functions xi),
we can assume that p is the origin of our system of coordinates, ∂

∂x1
, . . . , ∂

∂xr
is an oriented basis

of TpR and ∂

∂xr+1
, . . . , ∂

∂xn
is an oriented basis of TpS.

Then we orient p with + if ∂

∂x1
, . . . , ∂

∂xn
is an oriented basis of TpM, with − else.

In the general case

Definition 10.1.5 Assume R and S are oriented transversal submanifolds without boundary
of the oriented manifold without boundary M, and assume moreover dimR+dimS ≩ dimM.
The induced orientation on RRR∩∩∩SSS is the one such that, ∀p ∈ R∩S

• if v1, . . . ,va is an oriented basis of Tp(R∩S)
• once completed it to an oriented basis v1, . . . ,va,va+1, . . . ,vr of TpR
• and to an oriented basis v1, . . . ,va,v′a+1, . . . ,v

′
s of TpS

• then v1, . . . ,vr,v′a+1, . . . ,v
′
s is an oriented basis of TpM,

This gives an orientation of Tp(R∩S) which only depends on the orientations of TpR, TpS and
TpM, and then is globally "coherent", producing an orientation on R∩S.

By Lemma 10.1.2 we can assume that
∂

∂x1
, . . . , ∂

∂xn
is an oriented basis of TpM;

∂

∂x1
, . . . , ∂

∂xr
is an oriented basis of TpR;

∂

∂xn−s+1
, . . . , ∂

∂xn
is an oriented basis of TpS;

Then ∂

∂xn−s+1
, . . . , ∂

∂xr
is an oriented basis of Tp(R∩S).

Indeed following Definition 10.1.5 we complete if first to the oriented basis

∂

∂xn−s+1
, . . . ,

∂

∂xr
,

∂

∂x1
, . . . ,

∂

∂xn−s−1
,(−1)ra ∂

∂xn−s

of TpR and then to the oriented basis

∂

∂xn−s+1
, . . . ,

∂

∂xn

of TpS. We conclude observing that the resulting basis of TpM,

∂

∂xn−s+1
, . . . ,

∂

∂xr
,

∂

∂x1
, . . . ,

∂

∂xn−s−1
,(−1)ra ∂

∂xn−s
,

∂

∂xr+1
, . . . ,

∂

∂xn
,

is in the same orientation class of ∂

∂x1
, . . . , ∂

∂xn
.
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R Note that R∩ S equals S∩R as submanifold but possibly not as oriented submanifold.
More precisely the orientation is the same if and only if (dimM−dimR)(dimM−dimS)
is even.
In particular if M is a compact complex manifold and R,S are complex manifolds holo-
morphically embedded in M transversally, then R∩S = S∩R as real oriented manifolds.
Indeed in this case one can use a complex version of the Trasversality Lemma 10.1.2 to
show that R∩S has a structure of complex manifold holomorphically embedded in R, S
and M, and the orientation we have obtained is exactly the one induced by this complex
structure.

We can now prove

Lemma 10.1.6 Let R,S be transversal oriented submanifolds without boundary of the mani-
fold without boundary M, and consider R∩S with the induced orientation.

There is an isomorphism of vector bundles

NR∩S|M ∼= (NR|M)|R∩S ⊕ (NS|M)|R∩S (10.1)

Moreover, orienting the normal bundles NR∩S|M, NR|M NS|M as in Definition 9.5.9. con-
sider the natural induced orientations on (NR|M)|R∩S, (NS|M)|R∩S by restriction and then on
their direct sum (NR|M)|R∩S ⊕ (NS|M)|R∩S following Definition 6.1.18.

Then the isomorphism (10.1) preserves the orientation on each fibre.

Proof. For every point p ∈ R∩S let us consider oriented basis of Tp(R∩S), TpR, TpS and TpM
as in Definition 10.1.5 whose notation we borrow here.

Then by Definition 9.5.9, the classes of v′a+1, . . . ,v
′
s form an oriented basis of (NR|M)p.

Similarly an oriented basis of NR∩S|M is given by the classes of va+1, . . . ,vr,v′a+1, . . . ,v
′
s.

An oriented basis of (NS|M)p is given on each point by the classes of va+1, . . . ,vr−1,
(−1)(r−a)(s−a)vr (can you see why (−1)(r−a)(s−a)?), and the statement follows since the basis we
gave for NR∩S|M is orientedly equivalent to v′a+1, . . . ,v

′
s,va+1, . . . ,vr−1,(−1)(r−a)(s−a)vr. ■

We are now able to give an idea of the proof of the main result of this section, namely that
the wedge product is the Poincaré dual of the transversal intersection, that is almost a complete
proof. The only missing point, as you will read, is an argument at the beginning of the proof that
comes from the proof of the Tubular Neighbourhood Theorem 3.3.5, a Theorem that we did not
prove.

Theorem 10.1.7 Let M be an oriented manifold of finite type without boundary.
Let R,S be compact oriented manifolds without boundary transversally embedded in M.
Set ηR for the compact Poincaré dual of R in M, ηS for the compact Poincaré dual of S in

M and ηR∩S for the compact Poincaré dual of R∩S (with the induced orientation) in M. Then

ηR∩S = ηR ∧ηS.

Proof. (Sketch) By the proof of Theorem 3.3.5 one can choose a tubular neighbourhood WR of R
in M such that the isomorphism among WR and NR|M maps WR ∩S onto (NR|M)|R∩S. We choose
an analogous tubular neighbourhood WS ∼= NS|M of S in M.

More precisely near any point p ∈ R∩S there are local coordinates x1, . . . ,xn such that R and
S are locally given as in Lemma 10.1.2, coordinates chosen related with the orientations of R, S
and M as in the local description we gave of Definitions 10.1.4 and 10.1.5.

Moreover we can choose those coordinates and the tubular neighbourhoods so that

WR ={x2
i ≨ 1| ∀i ≥ r+1}, WS ={x2

i ≨ 1| ∀i ≤ n− s+1},
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and the bundle maps πR : WR → R, πS : WS → S are the projections

πR(x1, . . . ,xn) = (x1, . . . ,xr,0, . . . ,0), πS(x1, . . . ,xn) = (0, . . . ,0,xn−s+1, . . . ,xn).

We set W :=WR ∩WS. W is a vector bundle over R∩S, with bundle map given locally by the
projection on the central coordinates xn−s+1, . . .xr, isomorphic as vector bundle to (NR|M)|R∩S ⊕
(NS|M)|R∩S. Therefore, by Lemma 10.1.6, W is a tubular neighbourhood of R∩S in M.

The projections on the former addendum W → (NR|M)|R∩S is the restriction of πS to W . The
projections on the latter addendum W → (NS|M)|R∩S is the restriction of πR to W . In particular
the former addendum coincides, as subset of W , with R∩WS, and the latter addendum with
S∩WR.

Let us now choose a representative of the Thom class of NR|M . By the characterizing property
of the Thom class, we can pick any form ΦR of degree n− r such that the integral along the
fibres

∫
ΦRdxr+1 · · ·dxn, a function in the r variables x1, . . . ,xr, is the constant function 1. If ΦR

has this property then π∗
S (ΦR)|S∩W has the same property too. Then one can choose ΦR such that

(ΦR)|W = π∗
S (ΦR)|S∩W .

In other words we choose ΦR so that in the chosen local coordinates

ΦR = fR(xn−s+1, . . . ,xn)dxn−s+1 ∧·· ·∧dxn

do not depend on the first n− s variables; then
∫

fR(xn−s+1, . . . ,xn)dxn−s+1 · · ·dxn = 1.
Similarly, we can choose a representative ΦS of the Thom class of NS|M such that (ΦS)|W =

π∗
R(ΦS)|R∩W , so locally not depending on the last n− r variables:

ΦS = fS(x1, . . . ,xr)dx1 ∧·· ·∧dxr

with
∫

fS(x1, . . . ,xr)dx1 · · ·dxr = 1.
Then, by Proposition 9.5.11, a representative for the Thom class of NR∩S|M is

Φ := π
∗
S (ΦR)|S∩W ∧π

∗
R(ΦS)|R∩W = ΦR ∧ΦS

The thesis follows now from Proposition 9.5.10. ■

As first application, we compute the cohomology ring of all complex projective spaces.

Proposition 10.1.8 The graded ring H•(Pn
C) is isomorphic to the polynomial ring R[t]/(tn+1)

with the grading induced by setting deg t = 2.

Proof. Let (x0 : · · · : xn) be homogeneous coordinates on Pn
C and consider the hyperplanes

Hi := {xi = 0}. They are holomorphically embedded submanifolds of Pn
C biholomorphic to Pn−1

C ,
so their Poincaré duals ηHi belong to H2

DR(Pn
C).

First of all we show that all ηHi are equal. Let F be the biholomorphism

F(x0 : x1 : x2 · · · : xn) = (x0 + x1 : x1 : x2 · · · : xn).

F is homotopically equivalent to the identity, a homotopy being given1 by

H((x0 : x1 : x2 · · · : xn), t) = (x0 + tx1 : x1 : x2 · · · : xn).

By Corollary 9.4.3 ηH0 equals the Poincaré dual of F(H0) = H01 = {x0 = x1}. Replacing
F with the biholomorphism (x0 : x1 : x2 · · · : xn) 7→ (x0 : x0 + x1 : x2 · · · : xn), the same argument
shows that ηH1 equals the Poincaré dual of H01. Then ηH0 = ηH1 .

1H is well defined since, among other things, for all t ∈ [0,1], x0 + tx1 = x1 = x2 = · · · = xn = 0 implies
x0 = x1 = x2 = · · ·= xn = 0.
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Iterating the same argument for all pairs of variables we get2 ∀i, j ηHi = ηH j .

Since H0 and H1 are transversal, by Theorem 10.1.7 ηH0 ∧ηH0 = ηH0 ∧ηH1 = ηH0∩H1 . Since
H2 is transversal to H0 ∩H1 then η∧3

H0
= ηH0∩H1 ∧ηH2 = ηH0∩H1∩H2 .

Iterating this argument we obtain η∧n
H0

= ηH0∩···∩Hn−1 = ηp where p is the point of homoge-
neous coordinates (0 : · · · : 0 : 1). So

∫
Pn
C

η∧n
H0

=±1, sign depending3 on the orientation induced
on the point p.

Since η
∧n+1
H0

= 0 there is a graded homomorphism from R[t]/(tn+1) (with deg t = 2) to
H•(Pn

C) mapping t to ηH0 . Since
∫
Pn
C

η∧n
H0

̸= 0 then η∧n
H0

̸= 0 and then η∧k
H0

̸= 0 for all 1 ≤ k ≤ n.
This implies that our graded homomorphism is injective.

We conclude the proof showing that the two rings have the same Hilbert function, which
means that their graded pieces corresponding to the same degrees have the same dimension.

We have then to prove{
hq(Pn

C) = 1 if q is even and 0 ≤ q ≤ 2n
hq(Pn

C) = 0 else
. (10.2)

We prove it by induction on n. For n = 0, Pn
C is a point and the statement is trivial.

Then assume the statement true for all complex projective spaces of smaller dimension.
Consider the open subset U0 = {x0 ̸= 0} complement of the hyperplane H0. Note that

U0 ∼= Cn, via the biholomorphism

(x0 : · · · : xn) 7→
(

x1

x0
, . . . ,

xn

x0

)
.

Consider the point p′ ∈U0 of homogeneous coordinates (1 : 0 : · · · : 0) and set V0 = Pn
C \ p′.

Then V0 is homotopically equivalent to the hyperplane H0, with homotopy equivalence given by4

the map (x0 : x1 : x2 · · · : xn) 7→ (0 : x1 : x2 · · · : xn).
Then Pn

C is the union U0 ∪V0, with U0 ∼= Cn ∼ p′, V0 ∼ Pn−1
C , the intersection U0 ∼= V0 as

subset of U ∼= Cn ∼= R2n is the complement of a point and therefore homotopically equivalent to
a sphere S2n−1.

Then the cohomology exact sequence induced by the Mayer-Vietoris exact sequence for the
decomposition Pn

C =U0 ∪V0 has the form

· · · → Hq−1
DR (S2n−1) →

→ Hq
DR(Pn

C) → Hq
DR(p′)⊕Hq

DR(P
n−1
C ) → Hq

DR(S
2n−1) →

→ Hq+1
DR (Pn

C) → ···

and reader can easily complete the proof by induction on n. ■

Exercise 10.1.1 Show that P3
C is not diffeomorphic as real manifold to S2 ×S4.

2Actually the reader can now easily prove that every hyperplane has the same Poincaré dual.
3As in the Remark after Definition 10.1.5, since all Hi are complex manifold holomorphically embedded, one can

show that the orientation of p is + and therefore
∫
Pn
C

η∧n
H0

= 1. This is not necessary for this proof, so we do not run
this computation here.

4Note that the map cannot be extended continously to p′. This map is a retraction, the homotopy with the identity
of V0 being (x0 : x1 : x2 · · · : xn) 7→ (tx0 : x1 : x2 · · · : xn).
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Exercise 10.1.2 Show that if Pn
C, n ≥ 1, is diffeomorphic as a real manifold to a product of k

spheres Smi (possibly of different dimensions), then n = k = 1.

10.2 The Lefschetz fixed point formula

Let M be a compact oriented manifold without boundary.
Consider the manifold M×M with the induced orientation and the diagonal

∆ = {(p, p)|p ∈ M}.

The projections π1,π2 : M×M → M on the two factors restrict to ∆ to the same map, a diffeo-
morphism onto M. We consider ∆ with the orientation induced by it, and compute its Poincaré
dual. Note that since M×M is compact, closed and compact Poincaré dual coincide.

Lemma 10.2.1 Let M be a compact oriented manifold without boundary, consider M×M with
the induced orientation and the diagonal ∆ = {(p, p)|p ∈ M} embedded in M×M oriented so
that both projections π1,π2 : M×M → M preserve the orientation.

Fix a basis {ωi} of H•
DR(M) of homogeneous elements, and set qi = degωi. Consider its

dual (respecta to Poincaré duality) basis {τi} of H•
DR(M).

Then the Poincaré dual of ∆ in M×M is

η∆ = ∑(−1)qiπ
∗
1 ωi ∧π

∗
2 τi.

aIn other words, degτi = n−qi,
∫

M ωi ∧ τi = 1, and, if qi = q j, i ̸= j ⇒
∫

M ωi ∧ τ j = 0. Note that if qi ̸= q j,
deg(ωi ∧ τ j) ̸= n, so we can’t integrate ωi ∧ τ j on M.

Proof. By Künneth formula 8.2.3, a basis of HdimM
DR (M×M) is {π∗

1 ωi ∧π∗
2 τ j|qi = q j}. So there

are constants ci j such that

η∆ = ∑
(i, j) such that qi=q j

ci jπ
∗
1 ωi ∧π

∗
2 τ j.

Choose now k, l with qk = ql . Then, since (π1)|∆ = (π2)|∆∫
∆

π
∗
1 τk ∧π

∗
2 ωl =

∫
∆

π
∗
1 τk ∧π

∗
1 ωl =

∫
∆

π
∗
1 (τk ∧ωl) =

∫
M

τk ∧ωl = (−1)qk(n−qk)δkl,

so, using Complement 6.2.2,

δkl = (−1)qk(n−qk)
∫

∆

π
∗
1 τk ∧π

∗
2 ωl

= (−1)qk(n−qk)
∫

M×M
π
∗
1 τk ∧π

∗
2 ωl ∧η∆

= (−1)qk(n−qk) ∑
(i, j) such that qi=q j

ci j

∫
M×M

π
∗
1 τk ∧π

∗
2 ωl ∧π

∗
1 ωi ∧π

∗
2 τ j

= (−1)qk(n−qk) ∑
(i, j) such that qi=q j

(−1)nqici j

∫
M×M

π
∗
1 ωi ∧π

∗
1 τk ∧π

∗
2 ωl ∧π

∗
2 τ j

= (−1)qk(n−qk) ∑
(i, j) such that qi=q j

(−1)nqici j

∫
M×M

π
∗
1 (ωi ∧ τk)∧π

∗
2 (ωl ∧ τ j)
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If qi = q j is different from qk = ql then either ωi∧τk or ωl ∧τ j has degree strictly bigger than the
dimension of M and therefore equals zero; in particular in that case π∗

1 (ωi∧τk)∧π∗
2 (ωl ∧τ j) = 0.

So

δkl = (−1)qk(n−qk) ∑
(i, j) such that qi=q j=qk

(−1)nqici j

(∫
M

ωi ∧ τk

)(∫
M

ωl ∧ τ j

)
= (−1)qk(n−qk) ∑

(i, j) such that qi=q j=qk

(−1)nqici jδikδ jl

= (−1)qk ckl

and then η∆ = ∑(i, j) such that qi=q j ci jπ
∗
1 ωi ∧π∗

2 τ j = ∑i(−1)qiπ∗
1 ωi ∧π∗

2 τi. ■

Let F : M → M be a smooth map and consider its graph

ΓF := {(p,F(p))} ⊂ M×M,

oriented so that the diffeomorphism (π1)|ΓF : ΓF → M preserves the orientation.
We have then two oriented submanifolds ∆ and Γ := ΓF of M ×M and corresponding

Poincaré duals η∆ and ηΓ = ηΓF .

Definition 10.2.2 Let M be a compacta manifold , and let F : M → M be a smooth map;
consider its pull-back maps

Hq
DR(F) := F∗ : Hq

DR(M)→ Hq
DR(M)

The Lefschetz number of F is defined by

L(F) := ∑(−1)q trace(Hq
DR(F)).

aIn fact the definition extends obviously to manifolds of finite type and more generally to manifolds with
finitely dimensional De Rham cohomology

R The last summand in the definition of L(F) is, up to a sign, the degree of F!
In fact, consider a connected oriented manifold without boundary M of dimension n and a
proper smooth map F : M → M. Then hn

c(M) = 1 and by Definition 9.2.1, ∀ω ∈ Hn
c (M),

F∗
ω = (degF)ω

so Hn
c (F) is the multiplication by degF . In particular detHn

c (F) = traceHn
c (F) = degF .

If M is a compact oriented manifold without boundary of dimension n, for every smooth
map F : M → M,

det(Hn
DR(F)) = trace(Hn

DR(F)) = degF

R The first summand in the definition of L(F) equals 1. It does not depend on F!

Indeed, H0(M) is the space of the constant functions, on which F∗ (that acts on functions
by F∗ f = f ◦F) acts trivially!

Proposition 10.2.3 Let M be a compact oriented manifold without boundary and let F : M →



182 Chapter 10. Intersection theory

M be a smooth map. Then∫
∆

ηΓF = L(F).

Proof. By the definition 9.4.1 of Poincaré dual, using the explicit formula for η∆ in Lemma
10.2.1∫

∆

ηΓF =
∫

M×M
ηΓF ∧η∆

= (−1)n
∫

M×M
η∆ ∧ηΓF

= (−1)n
∫

ΓF
∑(−1)qiπ

∗
1 ωi ∧π

∗
2 τi

= ∑(−1)n+qi

∫
ΓF

π
∗
1 ωi ∧π

∗
2 τi

= ∑(−1)n+qi

∫
M

(
(π1)

−1
|ΓF

)∗
π
∗
1 ωi ∧π

∗
2 τi

= ∑(−1)degτi

∫
M

ωi ∧
(

π2 ◦ (π1)
−1
|ΓF

)∗
τi

= ∑(−1)degτi

∫
M

ωi ∧F∗
τi

= ∑
q
(−1)q

∑
i|qi=n−q

∫
M

ωi ∧F∗
τi.

In the last equality we have grouped the terms by q := n−qi.
By definition of the basis {τi}, for all cohomology class η of degree q = n−qi,

∫
M ωi ∧η

equals the coefficient of the term τi in the expression of η in the basis {τ j}.
Applying it to η = F∗τi

∑
i|qi=n−q

∫
M

ωi ∧F∗
τi = trace(Hq(F)). ■

It follows that the Lefschetz number of a function is related to its fixed points: indeed, if it does
not vanish, there is at least a fixed point somewhere!

Definition 10.2.4 — Fixed Locus. Let F : M → M be a function of a set on itself. Then the
fixed locus of F is

Fix(F) = {p ∈ M|F(p) = p}.

Corollary 10.2.5 — Weak version of Lefschetz Fixed-point Formula. Let M be a compact
oriented manifold without boundary and let F : M → M be a smooth map. Assume that
L(F) ̸= 0.

Then Fix(F) ̸= /0.

Proof. We argue by contradiction. If F has no fixed points, then ΓF ∩∆ = /0, so (M×M)\∆ is
an open subset of M×M containing ΓF . By the localization principle5 9.4.7 we can assume that
suppηΓF ⊂ (M×M)\∆, so L(F) =

∫
∆

ηΓ = 0. ■

5It is not difficult to show that (M ×M) \∆ has finitely dimensional cohomology by using the cohomology
exact sequence induced by the Mayer-Vietoris exact sequence obtained by writing M as union of it and a tubular
neighbourhood of ∆.
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We can say more: the Lefschetz number ’counts’, in some sense, the fixed points of F .
We consider smooth maps F : M → M whose graph ΓF is transversal to the diagonal ∆.

Notice that if p is a point of M such that F(p) = p, then dFp is an operator on TpM and therefore
we can consider its determinant, trace, characteristic polynomial, spectrum, eigenvalues and
eigenvectors.

Definition 10.2.6 Let F : M → M be a smooth map, p ∈ Fix(F).
We say that p is a non-degenerate fixed point of F if 1 is not in the spectrum of dFp.
If p is a non-degenerate fixed point then IdTpM −dFp is invertible and therefore we can

define

σp := signdet(IdTpM −dFp) ∈ {±1}.

The main motivation for Definition 10.2.6 comes from the following Lemma.

Lemma 10.2.7 Let M be a manifold without boundary, and let ∆ ⊂ M×M be the diagonal.
Let ΓF ⊂ M×M be the graph of a smooth function F : M → M.

Then ΓF and ∆ are transversal if and only if all p ∈ Fix(F) are non-degenerate.
If moreover M is oriented, consider ΓF and ∆ with the induced orientation, so that the

diffeomorphisms π1|∆ and π1|ΓF preserve the orientation, and M×M with the natural product
orientation.

Then if ΓF and ∆ are transversal, ΓF ∩∆ is a discrete set and the induced orientation on
each point (p, p) ∈ ΓF ∩∆ equals σp.

Proof. The points of ΓF ∩∆ are the points (p, p) for p ∈ Fix(F).
Choose a chart of M×M near (p, p) given by a chart in p of M (for the given orientation)

taken twice. This gives local coordinates u1, . . . ,un on M and x1, . . . ,xn,y1, . . . ,yn on M×M such
the ∆ = {x j = y j}.

In these coordinates

T(p,p)∆ =
n⋂

j=1

ker
(
(dx j)(p,p)− (dy j)(p,p)

)
has a basis of the form(

∂

∂x1

)
(p,p)

+

(
∂

∂y1

)
(p,p)

, . . . ,

(
∂

∂xn

)
(p,p)

+

(
∂

∂yn

)
(p,p)

. (10.3)

Similarly, since ΓF = {Fj(x1, . . . ,xn) = y j}

T(p,p)ΓF =
n⋂

j=1

ker
(
(dFj)(p,p)− (dy j)(p,p)

)
has a basis of the form(

∂

∂x1

)
(p,p)

+∑
i

∂Fi

∂u1
(p)
(

∂

∂yi

)
(p,p)

, . . . ,

(
∂

∂xn

)
(p,p)

+∑
i

∂Fi

∂un
(p)
(

∂

∂yi

)
(p,p)

. (10.4)

Then ΓF and ∆ are transversal at (p, p) if and only the 2n vectors in (10.3) and (10.4) are
linearly independent in TpM, i.e if the block matrix

A =

(
In In

J(F)p In

)



184 Chapter 10. Intersection theory

is invertible, where In is the identity matrix of order n, and J(F)p is the Jacobi matrix of F in p
with respect to the coordinates u1, . . . ,un.

By a standard Gauss elimination detA equals the determinant of the matrix(
In In

J(F)p − In 0

)
.

So ΓF and ∆ are transversal at (p, p) if and only if J(F)p − In is invertible. In other words if and
only if 1 is not in the spectrum of dFp.

Moreover, since the basis(
∂

∂x1

)
(p,p)

, . . . ,

(
∂

∂xn

)
(p,p)

,

(
∂

∂y1

)
(p,p)

, . . . ,

(
∂

∂yn

)
(p,p)

,

is compatible with the chosen orientation of M×M and the bases (10.3) and (10.4) are compatible
with the chosen orientations of ∆ and Γ then if ΓF and ∆ are transversal at (p, p), its induced
orientation equals, by Definition 10.1.4, the sign of detA, i.e. of

det
(

In In

J(F)p − In 0

)
= (−1)n det

(
In In

0 J(F)p − In

)
= (−1)n det(J(F)p − In)

= det(In − J(F)p) . ■

Let us now further assume the compactness of M, in order to apply Proposition 10.2.3.

Theorem 10.2.8 — Lefschetz fixed point formula for nondegenerate fixed points. Let M
be a compact oriented manifold without boundary, and let F : M → M be a smooth map with
only non-degenerate fixed points. Then

L(F) = ∑
p

σp.

Proof. By Lemma 10.2.7, ΓF and ∆ are transversal and each point (p, p) in ΓF ∩∆ has induced
orientation, as connected component of ΓF ∩∆, equal to σp.

Then by Proposition 10.2.3

L(F) =
∫

∆

ηΓF =
∫

M×M
ηΓF ∧η∆ =

∫
M×M

ηΓF∩∆ =
∫

ΓF∩∆

1 = ∑
p

σp. ■

If M is a complex manifold and F is holomorphic, det(IdTpM −dFp) can’t be negative by
the argument of the proof of Theorem 6.1.7. Therefore in this special case, always under the
assumption that 1 be not in the spectrum of dFp, the number of fixed points of F equals exactly
L(F).

Exercise 10.2.1 Use Corollary 10.2.5 to write a simple proof that the antipodal map A : Sn →
Sn preserves the orientation if and only if n is odd.

Exercise 10.2.2 Let M be a connected manifold, F : M → M any smooth function.
Show that H0(F) = IdH0

DR(M).
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Exercise 10.2.3 Show that every holomorphic map from Pn
C to itself has a fixed point.

Exercise 10.2.4 Show that, if F : M → M is smoothly homotopic to IdM , then L(F) = e(M).

Exercise 10.2.5 Let F be a biholomorphism of P1
C with only non-degenerate fixed points.

Show that F has exactly 2 fixed points.
Construct an example of a biholomorphism of P1

C with exactly two fixed points.
Construct an example of a biholomorphism of P1

C with exactly one fixed point.

Exercise 10.2.6 Let F be a biholomorphism of Pn
C with only non-degenerate fixed points.

Show that F has n+1 fixed points. Construct an example of a biholomorphism of Pn
C

with exactly n+1 fixed points.

10.3 The intersection multiplicity

Let us now consider two compact oriented manifold without boundary R and S embedded in an
oriented manifold without boundary M of finite type, such that dimR+dimS = dimM, without
any transversality assumption.

Then we may not consider ηR ∧ηS ∈ ΩdimM
c (M) as the Poincaré dual of a submanifold of M,

but we can still integrate it on M.

Definition 10.3.1 If R and S are compact oriented manifolds without boundary embedded
in an oriented manifold without boundary M of finite type of dimension dimR+dimS we
define the intersection number of RRR and SSS to be

R ·S =
∫

M
ηR ∧ηS.

Note that R ·S = S ·R unless both R and S have odd dimension, in which case R ·S =−S ·R.
If M is a complex manifold, and R and S are complex manifolds holomorphically embedded in
M, then R ·S = S ·R.

If R and S are transversal, then by Theorem 10.1.7, R ·S = ∑p∈R∩S εp where εp equals 1 or
−1 according to the orientation of p. In particular R ·S ∈ Z. This is however still true even in
weaker hypotheses.

Definition 10.3.2 Let R and S be compact oriented manifolds without boundary embedded in
an oriented manifold without boundary M of finite type of dimension dimR+dimS.

Assume that p ∈ R∩S is an isolated intersection point, so open in the topology of R∩S.
Then we define the intersection multiplicity of R and S at p as

multp(R,S) =
∫

W
ηR ∧ηS.

where W is a connected component of the intersection of a tubular neighbourhood of R and a
tubular neighbourhood of S chosen small enough so that W ∩R∩S = {p}.

If R and S are transversal at p, then by Theorem 10.1.7, multp(R,S) equals 1 or −1 according
to the orientation of p.

In general multp(R,S) ∈ Z. Indeed choose a tubular neighbourhood WR of R small enough
such that, if Sp is the connected component of WR ∩S containing p, then R∩Sp = {p}.

Let π : WR → R be the bundle map given by the identification of WR with NR|M.
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Let U ⊂ R be an open subset diffeomorphic to a disc centered in p, small enough so that(
NR|M

)
|U is a trivial bundle. Let WU := π−1(U). Then WU ∼= U ×RdimS. Here we choose a

diffeomorphism compatible with the orientation of the bundle NR|M.
Then we have a second projection π̄ : WU → RdimS.
Since S is compact π̄|S∩WU : S∩WU →U is proper, so its degree (Definition 9.2.1) is well

defined and

Proposition 10.3.3 multp(R,S) = deg π̄|S∩WU .

Proof. By the localization principle we can choose representatives
ηR of the compact Poincaré dual of R in M and
ηS of the compact Poincaré dual of S in M

with support shrinked in suitably small tubular neighbourhoods of R and S respectively.
Arguing as in the proof of Theorem 10.1.7, we can assume that there esists η ∈ Ω•

c(RdimS)
such that (ηR)|S∩WU

= π̄∗
|S∩WU

(η) and
∫
RdimS η = 1.

Then

multp(R,S) =
∫

W
ηR ∧ηS

=
∫

WU

ηR ∧ηS

=
∫

S∩WU

ηR

=
∫

S∩WU

π̄
∗
|S∩WU

(ηR)

=
(
deg π̄|S∩WU

)∫
RdimS

η

= deg π̄|S∩WU . ■

Example 10.1 Assume that M, R and S are complex manifolds of complex dimensions
dimC R = dimC S = 1. If locally R = {x = 0} and S = {x = yk}, then the intersection point p
has coordinates (0,0) and π̄(x,y) = y.

It follows multp(R,S) = deg π̄|S∩WU = k.

This produces a bunch of straightforward consequences.

Corollary 10.3.4 Let R and S be compact oriented manifolds without boundary embedded in
an oriented manifold without boundary M of finite type of dimension dimR+dimS.

Assume that R∩S is finite. Then R ·S ∈ Z.
If R and S are transversal, then the cardinality of R∩S is at least |R ·S|, and their difference

is even.

Corollary 10.3.5 Let R and S be compact oriented complex manifolds holomorphically
embedded in a complex manifold without M of finite type of dimension dimR+dimS. Assume
that p ∈ R∩S is an isolated intersection point.

Then multp(R,S) ∈ N.

Corollary 10.3.6 Let R and S be compact oriented complex manifolds holomorphically
embedded in a complex manifold M of finite type of dimension dimR+dimS.
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Assume that R∩S is finite. Then R ·S ∈ N.
The cardinality of R∩S is at most R ·S.
If R and S are transversal, then R ·S equals the cardinality of R∩S.

We can now state a Lefschetz fixed point formula in weaker assumptions. First we need

Definition 10.3.7 — Multiplicity of an isolated fixed point. Let M be a compact oriented
manifold without boundary, let F : M → M be a smooth map and let p be an isolated fixed
point of F (in other words {p} is a connected component of Fix(F)).

Then define the multiplicity of p as fixed point

σp := mult(p,p) (ΓF ,∆) .

If 1 is not an eigenvalue of dFp then Definition 10.3.7 reduces to Definition 10.2.6.
If M is a complex manifold and p is an isolated fixed point of a holomorphic function

F : M → M then σp ≥ 1. Rewriting the proof of Theorem 10.2.8 in the weaker assumption that
Fix(F) be discrete using Definition 10.3.7 we obtain the following two results.

Theorem 10.3.8 — Real Lefschetz fixed point formula for isolated fixed points. Let M be
a compact oriented manifold without boundary, and let F : M → M be a smooth map such that
Fix(F) is a discrete set.

Then the Lefschetz number of F is an integer.
More precisely L(F) equals the sum on the fixed points of F of their multiplicity as fixed

points of F :

L(F) = ∑
p

σp.

Theorem 10.3.9 — Complex Lefschetz fixed point formula for isolated fixed points. Let
M be a complex manifold and let F : M → M be a holomorphic map such that, Fix(F) is a
discrete set.

Then the Lefschetz number of F is a natural number and more precisely it equals the sum
on the fixed points of F of their multiplicity as fixed points of F :

L(F) = ∑
p∈Fix(F)

σp.

A further application is a proof of the following well known result.

Theorem 10.3.10 — Bézout theorem on the plane. Let R,S ⊂ P2
C be holomorphically

embedded compact submanifold set-theoretically defined as zero locus of a homogeneous
polynomial (in the homogeneous variables z0,z1,z2) of respective degrees dR and dS.

Then R ·S = dRdS.
In particular,
• if R∩S is finite then its cardinality is at most dRdS.
• If R and S are transversal then R∩S is a set of dRdS points.

Proof. By the proof of Proposition 10.1.8 all hyperplanes H, defined by the vanishing of a
homogeneous polynomial of degree 1, have the same Poincaré dual, ηH0 , who generates the
whole cohomology ring.

Then there are constants aR,aS ∈ R such that the Poincaré dual of R, ηR, equals aRηH and
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he Poincaré dual of S, ηS, equals aSηH .
Since H ·H = 1, aR = aRH ·H = ar

∫
ηH ∧ηH =

∫
ηR ∧ηH = R ·H. Chosing H general, H

and R are transversal and eliminating one variable using the equationg of H one sees that H ∩R
is defined by the vanishing of a homogeneous polynomial of degree aR without multiple roots.
So aR = dR. Similarly aS = dS.

Finally

R ·S =
∫

ηR ∧ηS =
∫

dRηH ∧dSηH = dRdS

∫
η
∧2
H = dRdS. ■

Exercise 10.3.1 Let ∆ ⊂ M ×M be the diagonal. Show that the tangent bundle of ∆ is
isomorphic to the normal bundle of ∆ in M×M.

Exercise 10.3.2 Let M be a Riemann surface of genus g, i.e. a torus with g holes, and let ∆

be the diagonal in M×M with the natural orientation. Show

∆ ·∆ = 2−2g.

Exercise 10.3.3 Constructs , fo all n ≥ 1, a biholomorphic map ϕ : Pn
C → Pn

C with exactly
one fixed point. Compute the multiplicity of it.

Exercise 10.3.4 Let M be a compact complex manifold of dimension 1.
Assume that there exists a complex biholomorphism ϕ : M → M smoothly homotopic to

the identity, ϕ ̸= IdM.
Show that then the genus of M is 0 or 1.

Exercise 10.3.5 — The first Hirzebruch surface F1. Consider P1
C×P2

C with coordinates
((t0 : t1),(x0 : x1 : x2)), F1 ⊂ P1

C×P2
C defined as {t0x1 = t1x0}.

1) Show that F1 is a complex manifold of complex dimension 2 embedded in P1
C×P2

C;
2) Show that the formula f (t0 : t1),(x0 : x1 : x2)) = ((t0 : t1),(t0x2 : t1x2 : t0x0 + t1x1))

defines a reversing orientation diffeomorphism.
Consider E ⊂ P1

C×P2
C defined as {x0 = x1 = 0}. Then

3) Show that E is a complex manifold of complex dimension 1 embedded in F1.
4) Showa that the self intersection of E as submanifold of F1 is

E ·E =−1.
aHint: use 2)

Exercise 10.3.6 Let M = P1
C×P1

C. Consider homogeneous coordinates (x0 : x1) on the first
factor, (y0 : y1) on the second factor.

Let F ∈ C[x0,x1,y0,y1]. We will say that F is bihomogeneous of bidegree (d,e) if F
is homogeneous of degree d as polynomial in the variables (x0,x1) (with coefficients in
C[y0,y1]) as well as homogeneous of degree e as polynomial in the variables (y0,y1) (with
coefficients in C[x0,x1]).

Show that the zero locus {F = 0} is well defined if and only if F is bihomogeneous.
Let R,S ⊂ M be holomorphically embedded compact submanifold set-theoretically de-
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fined as zero locus of a bihomogeneous polynomial of respective bidegrees (dR,eR) and
(dS,eS).

Show that R ·S = dReS + eRdS.

Exercise 10.3.7 — Bézout Theorem in higher dimension. Let X1, . . . ,Xn ⊂ Pn
C be em-

bedded submanifold, and assume that ∀i, Xi is exactly the zero locus of a homogeneous
polynomial (in the homogeneous variables z0, . . . ,zn) of degree di.

Assume that X1 ∩·· ·∩Xn is finite. Show that its cardinality is at most d1 · · ·dn.
Assume that each Xi is transversal to the intersection X1 ∩ . . .∩Xi−1. Show that then

X1 ∩·· ·∩Xn is a set of d1 · · ·dn points.

10.4 The Poincaré-Hopf Theorem
Definition 10.4.1 Let π : E → M be an oriented vector bundle and consider its Thom class
Φ(E) ∈ Hr

cv(E).
Let s0 : M → E be the zero section. Then the pull back s∗0 of forms define a degree zero

chain map s∗0 : Ω•
cv(E)→ Ω•(M), and therefore a degree zero graded ring homomorphism

s∗0 : H•
cv(E)→ H•

DR(M).
The Euler class e(E) of E is the cohomology class s∗0Φ ∈ Hr

DR(M).

The Euler class is connected to the Euler number as follows.

Theorem 10.4.2 Let M be a compact oriented manifold without boundary. Then

e(M) =
∫

M
e(T M).

Proof. Let ∆ ∼= M be the diagonal of M×M.
As the reader can easily prove (Exercise 10.3.1) the tangent bundle T ∆ is isomorphic as

oriented vector bundle to the normal bundle N∆|M×M.
Every bundle is a tubular neighbourhhod of the image of its zero section, and therefore we

can write e(N∆|M×M) = Φ(N∆|M×M)|∆.
By Proposition 9.5.10 any representative of the Thom class Φ(N∆|M×M) is also a representa-

tive of the Poincaré dual η∆ of ∆ in M×M.
Summing up, by the expression of η∆ in Lemma 10.2.1∫

M
e(T M) =

∫
∆

e(T ∆) =
∫

∆

e(N∆|M×M) =
∫

∆

Φ(N∆|M×M) =

=
∫

∆

η∆ = ∑
i
(−1)degωi

∫
∆

π
∗
1 ωi ∧π

∗
2 τi = ∑

i
(−1)degωi

∫
M

ωi ∧ τi = ∑
i
(−1)degωi

and the result follows since the number of ωi in each Hq
DR(M) equals its dimension. ■

As the Lefschetz number is an obstruction to the existence of smooth maps F : M → M
without fixed points, the Euler number is an obstruction to the existence of vector fields without
zeroes on M. This allows us to prove the following generalization of the Hairy Ball Theorem
9.2.3.

Theorem 10.4.3 — Weak version of Hopf’s Theorem. Let M be a compact orientable
manifold without boundary. Assume that M can be combed flat, i.e., it admits a smooth vector
field without zeroes. Then e(M) = 0.
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Proof. The vector field is a smooth section of the tangent bundle, so it is an embedding v : M →
T M, and the condition about the zeroes ensures v(M)∩ s0(M) = 0, where as usual s0 denotes
the zero section. We write ηv for the compact Poincaré dual of v(M), and η0 for the compact
Poincaré dual of s0(M): ηv and η0 are both elements in HdimM

c (T M) which equals, M being
compact, HdimM

cv (T M).
Considering the embedding s0 of M in T M, a tubular neighbourhood of s0(M) in T M is T M

itself and Proposition 9.5.10 implies

η0 = Φ(Ns0(M)|T M) = Φ(T M) ∈ Hn
cv(T M) = Hn

c (T M).

Let now Φ ∈Ωn
c(T M) be a representative of Φ(T M). Since both s0◦π and v◦π are smoothly

homotopic to the identity, s∗0 = v∗ : Hq
DR(T M)→ Hq

DR(M). Since the integral of a closed form
only depends on its De Rham cohomology class, it follows

∫
M v∗Φ =

∫
M s∗0Φ.

Then, by the localization principle 9.4.7,

0 =
∫

v(M)
η0 =

∫
v(M)

Φ =
∫

M
v∗Φ =

∫
M

s∗0Φ =
∫

M
e(T M) = e(M).

■

As in the case of the Lefschetz fixed point formula, the statement can be refined by consider-
ing the case when s0(M) and v(M) intersect trasversally: in that case we say that the vector field
has only nondegenerate zeroes.

Under such assumption the same argument shows that e(M) equals a sum on the zeroes of v
of 1s and −1s, where the sign is the orientation of the point as transversal intersection of s0(M)
and v(M).

More generally, we can count the number of zeroes of a vector field with only isolated zeroes.

Definition 10.4.4 — Index of a vector field at a zero. Let v ∈ X(M) be a vector field
and p ∈ M be an isolated zero of v; in other words we are assuming that {p} is a connected
component of its zero locus.

Then we define the index of the vector field v at p as the intersection multiplicity at the
zero of TpM, say 0p, of s0 and v:

i(v)p := mult0p(s0(M),v(M)).

The index i(v)p in an integer, and equals −1 or 1 if s0(M) and v(M) are transversal at 0p.
Following the same ideas one proves the following

Theorem 10.4.5 — Hopf’s Theorem. Let M be a compact orientable manifold without
boundary, and let v ∈ X(M). Then

s0(M) · v(M) = e(M).

In particular, if v has only isolated zeroes. Then

e(M) = ∑
p|v(p)=0

i(v)p

So every vector field on a sphere of even dimension with isolated zeroes has exactly two
zeroes if counted with multiplicity (here multiplicity=index). Indeed in the picture in the front
page of these notes you see represented a vector field on S2 with just one zero, and you may
deduce by the picture that the index at that point is two.



10.4 The Poincaré-Hopf Theorem 191

As usual, as for most results in this notes, we deduce also a complex version of the statement,
by recalling that the holomorphic tangent bundle is isomorphic, as a real vector bundle, to the
real tangent bundle (Proposition 3.4.3). Then for a holomoprhic vector field v the index i(v)p is
positive and so

Corollary 10.4.6 A holomorphic vector field on a compact complex manifold of dimension 1
and genus g has 2−2g zeroes, counted with multiplicity.

In particular,
• holomorphic vector fields on P1 have exactly two zeroes (counted with multiplicity) or

vanish identically;
• holomorphic vector fields on a complex torus either vanish identically or have no zeroes

(combing them also from a complex point of view, the homolorphic tangent bundle of a
complex torus is trivial);

• every holomorphic vector field on a curve of genus g ≥ 2 is identically zero.

Proof. If a holomorphic vector field has a zero that is not isolated then it must be identically
zero by standard complex analysis. Else we apply Theorem 10.4.5. ■

Exercise 10.4.1 Prove that every compact orientable manifold without boundary of odd
dimension has Euler number zero.

Find a compact manifold with Euler number zero and one with Euler number different
from zero for every possible even dimension.

Exercise 10.4.2 Let M1, . . . ,Mk be real manifolds diffeomorphic to complex projective
spaces (possibly of different dimensions). Show that M1 ×·· ·×Mk cannot be combed flat.

Exercise 10.4.3 Show that a product of spheres can be combed flat if and only if one of the
factors has odd dimension.





Bibliography

[1] Bott, Raoul; Tu, Loring W. Differential forms in algebraic topology. Grad. Texts in Math.,
82 Springer-Verlag, New York-Berlin, 1982. xiv+331 pp.

[2] Narasimhan, R. Analysis on real and complex manifolds. Reprint of the 1973 edition North-
Holland Math. Library, 35 North-Holland Publishing Co., Amsterdam, 1985. xiv+246 pp

[3] Warner, Frank W.(1-PA) Foundations of differentiable manifolds and Lie groups. Corrected
reprint of the 1971 edition Grad. Texts in Math., 94 Springer-Verlag, New York-Berlin, 1983.
ix+272 pp.


	Manifolds (with boundary)
	Introduction
	Topological manifolds
	Constructing a manifold from its transition functions

	Differentiable structures

	Tangent vectors and differentials
	Tangent spaces
	The differential of a function
	Submanifolds
	The local diffeomorphism Theorem

	The tangent bundle(s)
	Fibre bundles
	Vector bundles
	Tangent and normal bundles
	Real and holomorphic tangent bundles

	Vector fields
	Vector fields and flows
	Lie brackets
	Frobenius Theorem

	Differential forms
	Multilinear algebra
	Operations on vector bundles
	The algebra of the differential forms
	The holomorphic q-forms

	Pull-back and exterior derivative of forms

	Orientability and Integrability
	Orientability
	Integrating forms
	Integrating functions

	De Rham cohomology
	De Rham cohomology and compact support cohomology
	Exact sequences
	The Mayer-Vietoris short exact sequence
	The Poincaré lemma
	The Poincaré lemma for the compact support cohomology

	Manifolds of finite type
	The dimension of the cohomology
	The Künneth formula
	Double complexes
	Presheaves of abelian groups and Cech cohomology

	The Poincaré duality
	The Poincaré duality
	The degree of a proper map
	The orientation covering
	The Poincaré duals of a closed submanifold
	The Thom class

	Intersection theory
	Transversal intersections
	The Lefschetz fixed point formula
	The intersection multiplicity
	The Poincaré-Hopf Theorem

	Bibliography

