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Most students of this course have met the differentiable manifolds in the previous years of their
undergraduate studies. In this chapter we will develop their theory, considering at the same time
complex manifolds and real manifolds with boundary. To be precise, we will mostly discuss the
slightly more complicated real case, where we need to consider boundaries, and give indications
on how to rewrite everything in the complex case.

Before setting the first formal definition, let us try to give some general ideas. A topological
manifold without boundary is a topological space which is locally euclidean: in other words
something which "locally" can’t be distinguished by R”. The surface of a sphere, S2, is a typical
example: we know that the surface of the Earth is approximatively a sphere, locally we can’t
topologically distinguish a sphere from a plane and indeed our ancestors were convinced that the
Earth was flat.

We are interested in a slightly more general class of objects: a typical example is the closed
ball B = {(x.y,2) € B2 +y2 +2 < 1.

B3 is not locally euclidean because of its boundary. Indeed, if we consider a point p € B3 of
norm 1 there is no neighborhood of p (in the topology of B*) homeomorphic to an open set of
R3. To include B? in our class of objects we need to modify the definitions to allow a boundary.

Note that B* may be decomposed as disjoint union of its boundary dB> and its interior B> as
follows

B = {2 eRZ+y +2 < 1}
0B = {(x,y,2) eR}>+y*+2=1}.

We remark that B is a topological manifold without boundary (is an open set of R*!), and dB>
is the sphere S? and therefore it is also a topological manifold without boundary, although of
different dimension. Similarly we will decompose every manifold with boundary as the disjoint
union of two manifolds without boundary: its interior and its boundary.

Topological manifolds

First, we introduce the model space in the real case.
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Notation 1.1. We will denote by R’} the halfspace of the points of R" whose last coordinate is
nonnegative:

R = {(x1,...,x4) € R"|x, > 0}.

Similarly R" = {(x1,...,x,) € R"x, <0}
The symbol R means: R", R or R".

A topological manifold with boundary (sometimes just topological manifold for short) of
dimension 7 is a topological space M which
* is locally homeomorphic to R” (thatis: Vp € M, 3U open set containing p homeomorphic
to an open set of R"”, R or R™)
* is Hausdorff;
+ admits a countable basis of open sets?.

| Example 1.1 Every open set of R’} is a topological manifold with boundary.

Recall that an open covering of a topological space M is a family 4: = {U;}c; of open
sets of M with the property that | J;; U; = M. The first property in the definition of topological
manifold means that there is an open covering of M made by sets that are homeomorphic to open
subsets of R}

Example 1.2 The closed interval B! := [—1,1] C R is a topological manifold with boundary
of dimension 1. B' is Hausdorff, and has a countable basis of open sets, so to prove our
statement we need only to construct a covering of M made of open sets homeomorphic to
open sets of e.g. Rl = [0, +c0). The easiest choice seems to be B! = [—1, %) U (—%, 1].

Figure 1.1: The lattice Z> C R?
T2 A

Z1

I'This is the key property. Unfortunately, this property is not enough to have something that locally "looks like" an
affine space, as shown by some of the examples in the Complement 1.2.2.

2Some authors remove this assumption too. It is equivalent to requiring the manifold to be embeddable in an affine
space (Whitney Embedding Theorem). Without this assumption, the theory becomes more complicated, because the
existence of the partitions of unity that we will later use may fail.
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Figure 1.2: To the left the square [0, 1] x [0, 1], to the right the torus

(0,1) (1,1)
(O’O)'..) ...... [ (1,0)

Example 1.3 — The torus. We consider the lattice Z? of the points of R? with integral
coefficients as in Figure 1.1. This is a subgroup with respect to the group structure of R?
given by the sum. The group quotient T:=R? /Z? with the quotient topology is a topological
manifold, the torus.

In fact, see Figure 1.2, the square [0,1] x [0, 1] maps surjectively to 7, sending the 4
vertices to the same point. Moreover each edge is mapped to a circle through that point, and
parallel edges map to the same circle. The internal part of the square maps homeomorphically
to a dense open subset of 7', the complement of the two circles.

Each translated of the internal square (a,a+ 1) x (b,b+ 1) maps homeomorphically on a
dense open subset of 7. The reader can easily check that 4 of those squares are sufficient to
cover the torus.

Figure 1.3: A torus with a "hole"

Example 1.4 — The torus with a hole. Removing the image of a small open disc internal to
one of these squares, one obtains a topological manifold with boundary like in Figure 1.3.

Note that since we removed an open disc, the points in the boundary of that disc maps to
points of the manifold having a small neighbourhood homeomorphic to an open subset of
R%r, but not homeomorphic to any open subset of R?. These points form the blue curve in the
picture.

Let M be a topological space. A chart (U, @) on M is given by an open set U C M and a
homeomorphism ¢ : U — D, onto an open set D of R’}

Note the analogy with the road maps, which are functions from a piece of the surface of the
Earth to a piece of paper.

A chart allows us to use the coordinates of R” to identify a point of the mapped object (U),
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as when we see on a road map that "Rome is in E7". From now on we will denote by u; the i-th
coordinate function on R”

U R — R
(wl,...,wn) = Wi

Each chart {(U, @)} induces local coordinates (xi,...,x,) defined by
xi:=ujo@: U —R.

If you have traveled by car, you probably had to "move" from a map to another. For example,
using google maps, to compare the map on the screen of your device with the map on the screen
of the mobile phone of one of your friends.

To follow your path you need to find the coordinates, in both maps, of the same point, your
position in that moment.

Consider for example M = B! = [~1,1]. Example 1.2 suggests two charts (U, ¢;) and
(Ua, @) on B':

U= (10,015 [-1h > 0D sventy 1) =1+ 1
Us = (=1,1], 21 (=1,1] = [0,3) given by g»(1) = 1 —1.

The point p = % € B' has coordmates (coordinate: B! has dimension 1) % for (Uy, @) and
3 for (Ua, ¢2).

How do the coordinates change? For every ordered pair of charts (Uy, @) and (Ug, @g) we
define the associated transition function

Ppa = (9p)|Uaru © ((pa)r(pi(UaﬂUﬁ): ¢a(Ue NUg) — @5 (Ua NUp)

Figure 1.4: The transition function @g, is defined only on the green region of Dy, mapping it
homeomorphically onto the green region of Dg.

PBa

In our example Uy NU, = (—l, l) and the transition functions ¢, and ¢y, are easily
computed: @1 = @p2: (3,3) — (5% g) is given by @2 (1) = @12(t) = 2 —t. These functions
allow us to compute the coordinates of a point in one of the charts from the coordinates in the
other chart: ¢, ( ) I 3 and 012 (%) = %.
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Notation 1.2. The definition of @pq is heavy, because we had to restrict the domains of all
functions to be able to compose them.

From now on we will use the following convention. Let f and g be functions such that the
image of f and the domain of g do not coincide but are subsets of a "common universe'. Then by
go f we mean the composition of the restriction of [ and g to the biggest possible subsets such
that the composition is possible.

With this convention, the definition "reduces” to the easier @gq := Qg o Qg L

Similarly, if we write an inequality among two functions which do not share the same domain,
we mean that the two functions coincide on the points were both are defined.

By definition every topological manifold with boundary M may be covered by a set of charts
{(Uq, ®a) } aer; in other words 46 := {Uyg } we; is an open covering of M.

Assume you have charts of the whole surface of the Earth, and some glue (I mean, anything
one can use to glue two sheets of paper). Then start gluing all your charts in such a way that two
points are glued if and only if they represent the same point on the Earth. You will end up with a
paper-made sphere: you have constructed something homeomorphic to the surface of the Earth,
and the drawings on it make the homeomorphism explicit.

Similarly, we can reconstruct any manifold (well, something homeomorphic to it), by taking
the images of the charts, and gluing them using the transition functions. This gives a very
concrete method to construct manifolds.

Constructing a manifold from its transition functions

Take a family {Dg } ¢cs of open sets of R”, R or R” and denote by N the topological space
obtained as disjoint union

N = HDa.

Give, for each pair o, B € I, open subsets Dgo C Dy, Dyp C Dg, with Do = D¢, for all a, and
a homeomorphism @gq: Dgg — Dgg-
Assume that the set of functions @g,, has the following properties (see Complement 1.2.3)
e Vo €l, ogq =1dp,;
*Va.B el gop = Pp
s Va,B,YEL Qop © Ppy = Pay-
Then we say that xq € Dy is equivalent to xg € Dpg if and only if @gg (xa) = xp.

Xo ~ Xg & Ppo(Xa) = Xp

The reader should check that under the above assumptions the equivalence just defined is an
equivalence relation. Denote by M the quotient of N by this equivalence relation:

M: =N/~

In general, M is neither Hausdorff nor it admits a countable base of open sets. But if these
properties are verified, M is a topological manifold with boundary, and {(i¢(D¢),ig!) }acr is a
set of charts covering M. Here iy : Dy — M is the composition of the inclusion of Dy in N with
the projection of N onto its quotient M.

Example 1.5 — A circumference. We apply the above method to construct a manifold.
Set I = {0, 1}, so our family will be made of exactly two open sets.
Set Do =R, D; =R. These are then two distinct copies of R. To avoid misunderstandings
we will denote by x( the natural coordinate of Dy and by x; the natural coordinate of D;.
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Then set
Do =Dy \ {0} = {xo S D0|X() 7& 0} Dy = D, \{0} = {x1 € D \xl 7é 0}

Then we choose the following transition functions

%02D0—>D0 (p112D1—>D1
X0 > Xo X1 =X
¢10: D1o — Do1 @o1: Do1 — D1o
1 1
X() — — xl — —
X0 X1

Complement 1.2.1 Show that the following topological spaces are topological manifolds
with boundary, by checking all the properties in the definition

* the open ball B":= {(x1,...,x,) € R"|¥;x? < 1};
s the closed ball B" := {(x1,...,x,) € R" Y;x? < 1};
* the sphere S" := {(x1,...,x,) € R"|¥;x? = 1};

¢ the n—dimensional torus 7" := R" /~ where the equivalence relation is the relation
(X1, sXn) ~ (V1,.--,¥n) & Vix;—y; € L.

People commonly write this as 7" = R" /Z".

boundary. Determine, for each of them, exactly which of the properties in the definition of
topological manifold with boundary fail.
* The cross {(x,y) € R?|xy = 0,max(|x],[y|) = 1};
» {(x,y) € R2x(x2+y2 — 1) = 0}:
* The line with two origins R][IR/~ where ~ is defined as follows. We write by x; the
point in R [R belonging to the i—th copy of R with coordinates x: so —11, 52, 31, 32,

01, 0, are six different points of R ] [R. We say that x; ~ y; if x = y # 0; in other words
—1; ~—15,3; ~ 3, but 0 74 0,.

* The closed long ray. If X is a totally ordered set, the order topology on X is a topology
whose basis is given by the open intervals (a,b) = {x|a < x < b}. Let ®; be the first
uncountable ordinal @;, with its well ordering. Consider the half-open interval [0, 1)
with the standard ordering of the real numbers. Take their product ®; x [0,1) with the
lexicographical order, and put the corresponding order topology on it.

Complement 1.2.3 Let {(Uq, ¢«)} aer be charts on M. Show
® VOC € I, (paa :Id,

* Vo, B €1, @ap = 95

| Complement 1.2.2 The following topological spaces are not topological manifolds with
| s Va,B,7 €1, Qup © Pgy = Pay.
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Complement 1.2.4 Show that the equivalence relation in subsection 1.2.1 is an equivalence
relation on N since each of the properties in Complement 1.2.3 guarantees one of the properties
required by an equivalence relation: reflexivity, symmetry, transitivity.

Complement 1.2.5 Take a topological manifold with boundary M’, cover it with a set
of charts {(Ugy, ®q)}aci- Consider the open sets Dy := ¢y (Uy) and the corresponding
transition functions @,5. Note that we can apply to it the construction 1.2.1, to construct
a new topological space M. Construct a bijective map from M to M’, and show that it is a
homeomorphism.

Figure 1.5: More topological manifolds dominated by the square

!......<.....................! '......<..............u-----'
! Lo :
A Al A
o Ol "
! P !
! o !
! P !
: R/ :
! P !
1 1 1 1

Exercise 1.2.1 Figure 1.5 shows two ways to identify the opposite sides of a square that
are different from the identification presented in Figure 1.2. Show that both quotients are
topological manifolds by checking the properties of the definition.

Exercise 1.2.2 For which values® of (p,q) € N2, is the (p,q)-cusp I’ , := {(x,y) € R}x? =
y?} a topological manifold with boundary? Motivate your answer.

“Hint: Look at the map 7 +— (¢9,7)
Exercise 1.2.3 Prove that the topological space N constructed in Example 1.5 is a topological
manifold homeomorphic to the circumference
St = {(u,v) e R*|u* +v* =1}
Exercise 1.2.4 — The Blow Up of the real affine plane at the origin. Pick I = {0,1},

Dy = D = R?. To avoid confusion, Vj € I we denote by (x;,y;) the coordinates of D;. Then
set

Do =Dy \ {xo = 0}, Do1 =D; \ {y1 = 0}.
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Figure 1.6: A picture of the blow up of the real affine plane at the origin

Consider the map @9: D19 — Do defined by

1
010(x0,y0) = (XO)’Oa > .
X0

1. Show that ¢;¢ is a homeomorphism by producing an explicit formula for its inverse.

2. Notice that there is a unique set of functions @, as in subsection 1.2.1 containing the
given @y and use it to construct the manifold Bly(R?) := (Do [[D1)/ ~.

3. Verify that the functions Fj: D; — R? defined as

Fo(x0,y0) = (x0y0,Y0) Fi(x1,y1) = (x1,X11)
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fulfill Fy = Fy o @10, and use that to extend both F; to a function F : Blo(R?) — R2.
4. Show that F is continuous and that, Vp # 0, #F ~(p) = 1.
5. Show“ that F~1(0) 2 S' (so the point 0 has been “blown up” to a circumference).

“Hint: pick any line / through the origin and compute explicitely F~! (/). Look at the result: does it allows
you to associate to / a point of £~1(0)? If so, this is a map from P} to F~1(0).

Exercise 1.2.5 — The Blow Up of the complex affine plane at the origin. Construct
a topological manifold Bly(C?) of dimension 4 by substituting, in the construction of the
Exercise 1.2.4, Dy and D; with two copies of C?> = R* and considering (x;,y;) as com-
plex coordinates. Construct an analogous continous map F : Bly(C?) — C? and prove that
F~1(0) = 52

1.3 Differentiable structures

First of all we need to introduce the class of functions we are working with.

Definition 1.3.1 — Smooth and holomorphic functions. Let U C R”, V C R" be open sets.
A function F: U — V is smooth if all its components have continuous partial derivatives of
all orders in U.

Similarly, if U € C" and V C C™ are open, we will say that F: U — V is holomorphic
if all its components have continuous (complex) partial derivatives of all orders in U'.

We will denote respectively by C*(U) and €'(U) the set of smooth and holomorphic
functions from an open subset U of K" to K.

We note that C*(U ) and &'(U ) have a natural structure of K—algebra where K is respectively
Ror C.

Despite the analogy in our definition, the reader should be aware that smooth functions and
holomorphic functions are very different. Standard complex analysis shows the holomorphic
functions are automatically analytic, so "rigid" in some sense. For example a holomorphic
function that vanishes on an open set will automatically vanish on any connected component of
its domain intersecting it. In contrast it is easy to build smooth functions not identically zero that
vanish on large open subsets, and they have a major role in the theory of differentiable manifolds.

We will see some occurrences of this phenomenon later on.

We extend the definition of smooth function from R" to the other model spaces R’} and R" .

Definition 1.3.2 Let U be an open set of R’,.. A function F: U — R" is smooth if there is
an open set V C R” with VNR/. = U and a smooth function G: V — R™ which extends F,
i.e. such that Gy = F.

A function among manifolds induces many maps between open sets of R’} (resp. C")
by composing it with two charts, one from the domain manifold, one from the codomain
manifold. The natural idea for extending the definition of smooth (resp. holomorphic) function
to the category of manifolds is to declare a function smooth (resp. holomorphic) if all these
compositions are smooth (resp. holomorphic). To ensure that the identity is smooth (resp.
holomorphic), we need all transition functions to be smooth (resp. holomorphic), and this
motivates all the following definitions.

Definition 1.3.3 An atlas (resp. complex atlas) for a topological space M is a family of charts
{(Ua, ®a) }aer on M such that |Jye; Ug = M and all transition functions @gg = @ © (p[;1 are
smooth (resp. holomorphic).
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Two atlases (resp. complex atlases) are equivalent if their union is an atlas (resp. complex
atlas). A differentiable structure (resp. complex structure) on M is an equivalence class of
atlases for M.

A real manifold with boundary (resp. complex manifold; in both cases we will
sometimes just say manifold for short) is given by a topological manifold with boundary M
and a differentiable structure (resp. complex structure) on it.

The maximal atlas of a manifold is the union of all the atlases in the differentiable
structure (resp. complex structure.

A chart (V,y) is compatible with an atlas (resp. complex atlas) {(Uq, @) tacr if
{(Ug, @) }aer U{(V,y)} is still an atlas (resp. complex atlas).

Note that the maximal atlas of a manifold is an atlas in its differentiable or complex structure.
A maximal atlas is obtained by any other atlas in its differentiable (resp. complex) structure by
adding all charts compatible with it.

Usually one uses a small atlas to determine the differentiable (or complex) structure. For
example the two charts for B! in the previous section form an atlas and therefore determine a
differentiable structure. However, once the differentiable structure is determined, we can use any
compatible charts for our computations. So, in the example, we may also use, if convenient, the
compatible chart given by the open set (—1, 1) with map given by its natural inclusion in R.

Example 1.6 R", 8", B" and R’, are real manifolds. For example, the atlas {(U;, (pi)},-e{m}
for B! = [—1,1] described in the last section gives a differentiable structure on it, since the
transition functions are smooth.

Example 1.7 Consider the topological torus, the topological manifold in Example 1.3. The
transition functions of the atlas given there are translations, and therefore smooth. This gives
a differentiable structure on the torus, making it a differentiable manifold of dimension 2.

Identifying R? with the set of the complex numbers C, we can see the topological torus
as the group quotient C/ {a + bila,b € Z}, a complex manifold of dimension 1.

a field K. Then
B(V):= (V\{0}) /~

where the equivalence relation is the relation
x~y< 3IA €K, A #0, such that x = Ay.

Note that P(V') can be naturally identified with the set of the 1 —dimensional subspaces of V.
If dimV is finite and K = R or C, it is easy to give a structure of real (resp. complex)
manifold over P(V) of dimension dimV — 1 by fixing a basis of V.

We write the charts explicitly for V = R"*! in the example below.

Example 1.8 The n—dimensional real projective space is P}, := P(R"1).

We say that a point p € P}, has homogeneous coordinates (xo : x; : -~ : x,) if p is the
class of the point (xg,x1,...,x,) € R**1,

Note that every point can be represented by infinitely many different homogeneous
coordinates, pairwise related by the multiplication by a scalar. However

| Definition 1.3.4 — The projective space of a vector space. Let V be a vector space over
| 1. The open set U; := {x; # 0} is well defined” for all ;.
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2. The maps @;: U; — R" defined via

Q;(X0 X1t xy) = (xO, Rl md N7 2 S ,x">
Xj Xj Xj Xj
are well defined.
3. {(Uj, q’j)}je{o,...,n} is an atlas for Py
Note that the complement H; := {x; = 0} of U; (a reference hyperplane) is naturally
homeomorphic to IP”?R_1 .

“Notice that e.g. the set {x; # 1} is not well defined.

p) Since the sphere §" C R"*! intersects each 1—dimensional subspace in two opposite points,
P = §"/~ where the equivalence relation is the relation x ~ y < x = +y.

Example 1.9 The n—dimensional complex projective space is P := P (C"*1).
It is a complex manifold of dimension n with homogeneous coordinates (xo : xj : -+ : xp),
reference hyperplanes H; and atlas {(U;, ¢;) }o,....» analogous to those given in Example 1.8.

The complex analogous of the previous remark showing P, as a quotient of §” is the Hopf
fibration §2"+1 — Pt. We will discuss in the Example 3.4 the case n = 1.

Note that every holomorphic function among open sets of C" and C™ can be seen as a smooth
function among open sets of R?" and R?”. Therefore, every complex manifold has an underlying
structure of real manifold, obtained by considering only the real structure of the codomains of its
charts. In particular, IP{- is also a real manifold of dimension 2n.

The n—dimensional projective spaces parametrize the 1—dimensional vector subspaces
of a vector space V. The Grassmann manifolds are the natural generalization of this idea,
parametrizing vector subspaces of fixed dimension.

Definition 1.3.5 — The Grassmann manifolds. Let V be a vector space over a field K. Then
Gr(k,V) := { vector subspaces W C V|dimW =k}

is the Grassmann manifold of the k—subspaces of V. Note that P(V') can be naturally
identified with Gr(1,V).

We set’ Grg (k,n) := Grg (k,K"), so P} resp. P{. is identified with Grg(1,n+1) (resp.
Gre(1,n+1)).

If dimV is finite and K = R or C, we can extend the structures given to the real and
complex projective spaces to give a structure of real resp. complex manifold to all Grg (k,V).

“Some authors use Gry (k,n) for the set of the k—dimensional linear subspaces of the projective space Pj.
The linear subspaces of dimension k of P are (by definition) the images of the vector subspaces of dimension
k41 of K"™*1. So their Gr(k,n) correspond to our Gr(k+1,n+1).

p ) ByExercise 5.1.14 Gr(g,V) may also be interpreted as the subset of P(A?V') corresponding
to the tensors of the form vi A+« Avy.

We do an explicit example.

Example 1.10 — The Grassmann manifolds. Let Wy, be the set of the k x n matrices of
maximal rank . It is an open subset of M; ,(KK), the set of all k x n matrices, isomorphic to
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K. Bach matrix A € Wy, determines a point H4 € Grg (k,n), the subspace generated by its
rows, thus defining a surjective map

CI3k7nZ Wk,n — GrK(k,n).

Moreover Hy = Hp if and only if there is an invertible matrix C € GL;(K) such that A = CB.

In other words, ®y , is the quotient by the left action of GL(K) on Wy ,, identifying its
orbits with the Grassmannian Grx (k, 7).

We give a differentiable (or complex) structure on Gry (k,n) via charts that are (partial)
right inverses of ®; , as follows.

Let Dy C Grg(k,n) be the subset of the matrices whose left k x k submatrix is the
identity, i.e. the matrices of the form

10 - 0 mygr - mug
0 1 0 mopyr -+ moy
0 0 - 1 mgpr1r - mpy

»

setting Uy i := Dy ,(D; . x) its inverse gives a map
Ok Ul kg =Dy = K=

thus giving the first chart (U; _x, @1.... k)

Similarly, for all 1 < j; 5 --- 5 jx < n we consider the subset D, _; C Grg(k,n)
of the matrices containing the identity as the submatrix given by the columns ji,..., ji
and Uj, __j, = Pyu(Djy,..j;,). We get a chart (Uj, ., ®j,. ) by defining @j, ... j, :=

{(Ujlw-v]'k’¢j1:'“7jk)|1 <Jj é é Jk < n}

gives a differentiable or complex structure (depending on K) on Gr (k,n).

We may finally introduce the smooth (resp. holomorphic) functions. Note that the assumption
that all transition functions are smooth (resp. holomorphic) is crucial, as it makes the definition
of smoothness of f in p independent of the choice of the charts.

Definition 1.3.6 Let M be a manifold with atlas {(Ugy, ¢¢) } acr and N a manifold with atlas
{(Vs, vp)}per-

A function F': M — N is smooth (resp. holomorphic) in a point pc M if, given a chart
(Uq, @o) With p € Uq, and a chart (Vg, ) with F(p) € Vg, the function yg o F o @, ! is
smooth (resp. holomorphic) in @y (p).

A function F': M — N is smooth (resp. holomorphic) if it is smooth (resp. holomorphic)
in every point p € M.

Definition 1.3.7 A diffeomorphism is an invertible smooth function whose inverse is smooth.
A biholomorphism is an invertible holomorphic function whose inverse is holomorphic.

Two open sets U and V are diffeomorphic, respectively biholomorphic, if there exists a
diffeomorphism, respectively biholomorphism, F: U — V.
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Example 1.11 Let A be an invertible matrix with real coefficients.

Then (see Exercise 1.3.5 for more details) A defines a diffeomorphism from IP’%*1 to
itself, mapping a point with homogeneous coordinates v (as column vector) to the point with
homogeneous coordinates Av.

Similarly an invertible matrix with complex coefficients define a biholomorphism from
P! to itself.

Notice that there is natural diffeomorphism between Grg(1,7) and P?R_l and a natural
biholomorphism between Grg(1,n) and P4

Example 1.12 Let M be a manifold, ¢: U — K’} a chart, D := ¢(U).

Then U and D are open sets of the manifolds M and K’ , and therefore they have a natural
structure of manifold (see Complement 1.3.3): an atlas for U is given by the single chart
¢: U — K'; the differential structure of D has an atlas given also by a single chart, the
inclusion i: D — K.

Then we can consider ¢ as function among two manifolds. It is easy to check that it is a
diffeomorphism.

An important case is given by the smooth (resp. holomorphic) functions from a manifold M
to K. In the real case denote it by

C”(M) :={f: M — R|f is smooth}.

In the complex case the standard notation is &'(M). Note that it is a real (resp. complex) vector
space, with the operations induced by those of the codomain R (resp. C).

Example 1.13 Let M be a manifold, ¢: U — D C K’ a chart. Consider the local coordinates
x; :=u;o@. Then x; € C*(U) (resp. O(U)).

p) This course will never consider two different differentiable structure on the same topologi-
cal manifold, but the student should be aware that it is possible.

It is indeed easy to construct two different differentiable structures on S2, but one can prove
(although this is not always easy) that the two resulting manifolds are diffeomorphic. Note
that the diffeomorphisms will not be the identity: if we consider two different differentiable
structures on the domain and on the codomain, the identity map is not smooth!

The situation in higher dimension is more complicated. Kervaire and Milnor constructed 28
different differentiable structures of S7, which give 28 differentiable manifolds which are
pairwise not diffeomorphic. In this course we are going to consider only one differentiable
structure on each sphere S¥; we just mention that all other differentiable structures are
referred to in the literature as exotic spheres.

Fintushel and Stern proved that a certain topological manifold of dimension 4, the Kummer
4-fold, admits at least a countable number of pairwise not diffeomorphic differentiable
structures. We will not further investigate this problem in these lectures.

From this point of view the complex case is simpler, since it is not difficult to construct
infinitely many pairwise not biholomorphic complex structures on S' x S', but we will not
show this in these lectures.

Complement 1.3.1 Put a differentiable structure on each of the topological manifolds of
Complement 1.2.1

Complement 1.3.2 Put two different differentiable structures on R such that the two result-
ing manifolds are diffeomorphic and contruct the diffeomorphism between them.



20 Chapter 1. Manifolds (with boundary)

Complement 1.3.3 Let M be a manifold. Prove that every open subset U C M has a natural
induced differentiable structure.

Exercise 1.3.1 Write an explicit atlas for S! formed by two charts obtained considering the
stereographlc projections S' \ P — R where P is either the north pole (0, 1) or the south pole

). Write all the transition functions and show that they provide a differentiable structure
on S 1

Exercise 1.3.2 Write an explicit atlas for S> formed by two charts obtained considering the
stereographic projections §? \ P — R? where P is either the north pole (0,0, 1) or the south
pole (0,0,—1). Write all the transition functions and show that they provide a differentiable
structure on S2.

Now consider your charts as complex charts identifying R? with C in the natural way.
F1nd a suitable (as simple as possible) modification of these charts giving a complex atlas for

Exercise 1.3.3 Show that the complex projective line JP’(}: is diffeomorphic as a real manifold
to the sphere S? with the differentiable structure of Exercise 1.3.2.

Exercise 1.3.4 Let M, N be two real (resp. complex) manifolds, and assume dM = (. Then
show that M x N has a natural induced real (resp. complex) structure, by constructing an atlas
for M x N using an atlas of M and an atlas of N. What goes wrong if both manifolds have a
boundary?

Exercise 1.3.5 — Projectivities. Fix a field K € {R,C}, and consider a square matrix
A € M, (K). We wish to associate to A a map @y : Pk — Pk such that

=|[". | = @alxo,x1,....x%0) = (o, y1,- -, Vn)-
Yn

1. Show that @4 is a well defined if and only if A is invertible.

2. Show that @4 is the identity map if and only if A is a multiple of the identity matrix.
In particular, since the multiples of the identity matrix form a normal (in fact central)
subgroup of GL, (KK), this defines a faithful action of the quotient

PGL,(K) := GL,(K) /K*

on [Pg.
3. Show that every element of PGL,(R) (respectively PGL,(C)) is a diffeomorphism
(respectively biholomorphism) of P, (respectively P¢.) .

Exercise 1.3.6 Consider the standard complex torus, the complex manifold of dimension 1
in Example 1.7, the group quotient C/ {a + bi|a,b € Z}.
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Show that for every complex number A the map
[z] = [z4+A]

is a biholomorphism of the complex torus to itself. Show that it is the identity if and only if A
has integral both the real and the imaginary part.
Finally, show that in all other cases, it has no fixed points.

Exercise 1.3.7 Consider the standard complex torus.
Show that, given a complex number A, the map

e = [z- 2]

is well defined if and only if A has integral both the real and the imaginary part.

Determine all A € C for which the above map is not constant. Show that they give exactly
four maps. Show that they are biholomorphisms and compute the number of fixed points of
each of them.

Exercise 1.3.8 Construct a differentiable structure on each of the two topological manifolds
constructed in Exercise 1.2.1.
Find out which one is diffeomorphic to ]P’%R.

Exercise 1.3.9 Let M be a manifold, and let (U, @) be a chart on it, D = ¢(U). Then by
Complement 1.3.3 both U and D are manifolds with the differentiable structure respectively
induced by M and by R’; . Show that ¢ is a diffeomorphism among them.

Exercise 1.3.10 Prove thatif G: M — N and F: N — N’ are smooth, then also Fo G: M —
N’ is smooth.
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2. Tangent vectors and differentials

2.1 Tangent spaces

We start introducing germs

Definition 2.1.1 — Germs of smooth or holomorphic functions. Let p be a point in the
real or complex manifold M.

If K =R we consider for each open subset U C M the space of the smooth functions
C=(U) ={f: U — R} and the space

&,:={feC(U)|Uisopenand pc U}/ ~

where the equivalence relation is the following: two functions f,g are equivalent if there
exists an open set W > p contained in the domain of both functions such that fjy = g;w. An
equivalence class for this relation is a germ of smooth function at p. &), is the stalk at p of
the sheaf of smooth functions.

If K = C we consider the stalk at p of the sheaf of holomorphic functions

Oy, :={f: U — C holomorphic [U isopenand pc U}/ ~
with the analogous equivalence relation.

The set &), is an R-algebra with the following operations.
sum: Given two germs «, f3 in &), we define their sum ot + 8 € &), as follows.
We choose two representatives f, g such that & is the germ of f and f3 is the germ of g. So
fec=(U), ge C(V) for some open sets U,V C R”" containing p. Then their common
domain W := U NV is an open set containing p and we define the sum of & and f3 as the
germ of the sum of the restriction of the representatives to W:

a+p= [f|W +8|W]
This operation is well defined since, if £ and g are different representatives respectively of

o and B with common domain W, then Jiw +gw and f|W +8w coincide on W N W and

therefore | fiw +gw] = {fIW —|—g|W} .
product: Given two germs «, 3 in &), we define their product o8 € &), in a similar way
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by using the product of functions instead of the sum of functions

of = [fiw-gw]

The same argument as in the sum shows that product is also well defined.
product by a scalar: Given a scalar A € K and a germ « in &), we define their product
Ao € &), as the germ of the function A f for any representative f € C* of ¢. The operation
is well defined since the germ A o does not depend on the choice of the representative f.
The analogous definitions in the complex case furnish &), of a C-algebra structure.
We alert the reader that from now we will often use a letter, such as f or g, for germs as well
as for functions.
Note that, given a germ f € &), or 0), f(p) € K is well defined since all the functions in the
same equivalence class have the same value at p. This is important in the next definition. On the
contrary, Vg # p, f(q) is not well defined.

Definition 2.1.2 — Tangent vectors. A tangent vector or derivation at p is a linear
application v: &, — R (in the real case) or v: &), — C (in the complex case) such that for
each pair of germs (f,g) the Leibniz rule

v(fg) = f(p)v(g) +&(p)v(f)

holds.
The tangent space of M at p is the K-vector space T,M formed by the derivations at p
with the operations defined by
sum: For each pair (v,w) of derivations at p we define their sum v 4 w by imposing
that, for all f € &,, (v+w)(f) =v(f) +w(f).
product by a scalar: For each scalar A € K and for each derivation v at p we define
Av by imposing, for each germ f, (Av)(f) = Av(f).
We leave to the reader the (easy) check that v+ w and Av are derivations.

R Recall that if U is an open subset of a manifold M, it has a natural induced differentiable
structure by Complement 1.3.3. If p is a point of U, the spaces of germs &, if p is
considered as a point of U or of M, are naturally canonically isomorphic. So in the
following we will identify them. Consequently, we can and will identify 7,,U and T,M.

The first example of derivation comes from the partial derivatives in K”". If two functions
f,g: K" = K coincide in a neighborhood of a point p, then for each i between 1 and n their

partial derivatives % coincide also in the same neighborhood. In particular there is a function

d
(8x,->p' & —R

((%)p : 0, — C in the complex case) well defined by the expression

() 0 =5Ew)

The reader should not find it difficult to verify that all (%) are derivations. We will in fact
“p
prove that they form a basis of 7,,K".

We need the following lemma
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Lemma 2.1.3 Consider an open subset U C R”, a function f € C*(U) and a point p € U.
Then there exists an open subset W C U containing p and functions f; € C*(W) such that

fip)= (%) (7)) and

n

vp' ew f(P") = f(p)+ Y (x(p) —xi(p) fi(P')

1

The analogous statement obtained by replacing R by C and C* by & holds as well.

Proof. We choose W = Bg(p), the ball of radius & centered at p with 6 small enough to
ensure W C U. Having fixed p’ € W we consider the straight path y: [0,1] — W defined by
v(t) = p+1t(p’ — p) connecting p and p’. By the Fundamental Theorem of Calculus and the
Chain Rule

f(p')—f(P)=(fOY)(l)—(fOY)(O):/Ol(foy)’(z)dz:
= /Olii{ij;(?’(f))(xiow’(t)dt = /Oli_iii(y(t))(x,-(p') —xi(p))dt

Then we define, for each i, the function f; € C*(W) by

7= [ SE it - pa

and deduce

£ —F(p) =Y. ) () —xi(p))

1

The stated expression for f;(p) is an obvious consequence of the definition of f;. |

Now we can prove

Theorem 2.1.4 The set { (%) [1<i< n} is a basis for 7, K". In particular dim7,K" = n.
'/ p

Proof. We need to prove that the vectors (%) are linearly independent and generate 7,K".
Xi P

The linear independence is easy. Assume that ) ;a; (%) = 0. Then by evaluating this
p

expression at every coordinate function x; we obtain

o= (xe(35), Jor=xa(52), -

and the linear independence is proved.
To prove generation, pick any v € 7,K".
First we notice that v vanishes at the germ of any constant function. In fact

<
—~~
T
=
I
<
—~~
=
T
=
I

L-v([1) + 1-v([1]) = 2v([1]) = v([1]) = 0

and then v([c]) = cv([1]) = O for any constant ¢ € K as well.
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By Lemma 2.1.3, for the germ of any smooth function f,

n

A=)+ Y (] = [ (p)])A]

and then
1) =L ol ) = X (57 ) Ui
1 1 /' p
! d
=2 ()
and the proof is complete. |

The same proof show the analogous statement for 7R’} .

Note that 7,R", = R" even when p lies on the boundary {x, = 0}: a common mistake is to
consider only half of it.

We will extend this result to general manifolds in the next section.

Exercise 2.1.1 Define the germs of the C” functions analogously to the definition of germs
of C* functions and determine if it has a natural structure of R—algebra.

Exercise 2.1.2 In the definition of &), can we simplify the equivalence relation as follows?
We could say that f ~ g if and only if f and g and all their first partial derivatives have
the same values at p.
Is that equivalent to the definition we gave? Is that an equivalence relation? Is there an
R—algebra structure on the quotient?

2.2 The differential of a function

The main tool of this section is the differential of a function.
Definition 2.2.1 Let F': M — N be a smooth (resp. holomorphic) function among real (resp.
complex) manifolds.
The differential of F' in a point p € U is the linear application dFy,: T,M — T, N
defined by

dFp(v)(f) =v(foF).
for all f € & () respectively Op(,).

Here by f o F we mean the germ at p of the composition of any representative of f with F.

We leave to the reader to check the consistency of the definition of dF),. In other words
the reader should show that our definition of f o F' € &F, does not depend on the choice of the
representative of the germ f, then that v(f o F) defines a derivation at F(p), so that we defined a
map dF,: T,M — Tr,)N . Then he/she should prove that dF), is linear.

The following general version of the Chain Rule holds.



2.2 The differential of a function 27

Proposition 2.2.2 — Chain Rule. Given two smooth/holomorphic functions F: N — N/,
G: M — N and a point p € M, then

d(FoG), = dFg)cdG,

Proof. Forall v € T,M, for all f € &r(g(p))»

(dFg(p) 0dGp)(v)(f) = (dFgp) (dGp(v))(f) =
=dG,(v)(foF)=v(foFoG)=d(FoG),(v)(f)

The differential of a diffeomorphism (respectively biholomorphism) at a point p of the
domain is automatically invertible. In fact, if F': M — N is a diffeomorphism, there is a smooth
function F~': N — M and by Proposition 2.2.2

FloF =Idy = d(F " p(p 0 dF, =(d1dy), =1dz,u
FoF ' =Idy = dFyod(F~")p(y) =(d1dn)p(p) = 1dz, N

showing that dF), is an isomorphism by exhibiting an inverse of it:
(dFy) "' =d(F)p(y)

It follows that if F': M — N is a diffeomorphism then dF), is an isomorphism between the
vector spaces T,M and Ty ,)N.
Since the charts are diffeomorphisms, we can use them to give bases of the tangent spaces.

Definition 2.2.3 Let M be a manifold, p € M, (U, @) a chart of M in p, i.e. a chart in
the differentiable structure such that p € U. Let uy,...,u, be the coordinate functions of
@(U) C R". Then we define

P > | P
5= =d(e7 )y )( ) :
<9xi b PN ) o)

It follows

Theorem 2.2.4 The set {(aax) [1<i< n} is a basis for 7,M. In particular dim7,M =
/p
dimM.

Note that (Bixi) ) : &, — Ris by definition given by

Why did we choose the notation a ? Recall the local coordinates introduced in the Example
1.13: the chart (U, ¢) induces coordinates X1y--y Xy on U by x; :=u;j0 Q.
Then!

'Here we use the usual Kronecker symbol: §; jequals 1 if i = j, whereas it vanishes if i 7 j.
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We are now able to compute 5% (p) for every function f € C*(U) which we can explicitly
write "in coordinates near p".
This means, given a function, we choose a chart (U, ¢) in p and consider the induced

coordinates xp,...,x,. If we can express f as combination of the x;, since —a‘i_) is a derivation
1
p

af
X

<%> x;j = 6;j we can compute (%) f formally as if x; were coordinates in R”. For example,
“/p '“/p

if f = x2x,, then

<a(9xl>pf:(2x1x2)(p), <8‘9xz)pf=x%(p)-

By linearity, once we have fixed bases of T, K" and Tr(,) K™, we can describe dF), by the
corresponding matrix.

Definition 2.2.5 Let U C K", V C K" be open sets, and let F': U — V be a smooth (or
holomorphic) function. Let p € U.

The Jacobi matrix of F at p is the matrix having as (i, j)-entry (i/"th row and ;' " column)
the partial derivative of the i/ component F; := y; o F of F with respect to the j'* coordinate,

computed at p: (aix/) F;.
i p

Proposition 2.2.6 Let U C K", V C K™ be open sets, and consider a smooth/holomorphic
function F': U — V. We will use coordinates xi,...,x, on U and coordinates yi,...,y;; on V.
Fix a point p € U. Then dF, is represented, with respect to the bases

(), G} = {0, ().}

by the Jacobi matrix of F' computed in p.

Proof. We denote by M; ; the (i, j)-entry of the matrix of dF), in the given bases. By definition

d d
“* <a'x]>p - Zi:Mi"j <ayi)F(P) 7

and therefore

= (fyk)w () = dF, (9‘9) () = (;7) (ioF)

and the proof is complete. |

Now that we have given bases to every T,M, so we can associate a matrix to every dF),. The
matrix can be computed by exactly the same method used for Proposition 2.2.6. The result is the
following.

Proposition 2.2.7 Let M and N be manifolds of respective dimensions n and m, and let
F: M — N be a smooth function. Let p € M. Choose charts (U, @) in p for M and (V, y) in
F(p) for N, and the respective associated local coordinates xp, ..., x, and yi,..., V.

Then the matrix associated to the linear application dF), with respect to the bases

(Ga), ) o G (30,0
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is the Jacobi matrix of o F o ¢! computed in ¢(p). Equivalently, it is the matrix

Proof. Inaneighborhood of p, F = y~!o(yoF o¢~!)o ¢ and therefore dF, = d(wil)w(p(p)) o

d(yoF o)y, 0dg,.
Therefore the matrix we are looking for equals the product of matrices MM, M3 where

* M, is the matrix of d(y ') (p(,)) With respect to the bases { (3%,-> VW) } and { (%) . };
R . . -1 . i i .
M, is the matrix of d(yoFo@~")(,) with respect to { (au[_) (p(p)} and { (au,-) VFG)) },

* M3 is the matrix of d¢@, with respect to { (%) } and { (%) ( )};
“Jp " op
By Definition 2.2.3, M| and M3 are both identity matrices (resp. m X m and n X n), and
therefore the matrix we are looking for equals M», which was computed in Proposition 2.2.6. W

Now we can give an answer to the following natural question. Why do we call derivations
also "tangent vectors"? Tangent to what? Here is an answer by a simple example.

Consider a connected open subset J C K containing 0 and a smooth/holomorphic map (a
path)

y: J— K"

This induces a derivation . in Ty, K™, the velocity of y as follows. To ease the notation we
write here only the real case.
For every germ f € &) we define

r() =2 )

Here in the right-hand term we are denoting by ¢ the standard coordinate in K and implicitly
replacing the germ f with one of its representatives: it is obvious that the result does not depend
on the choice of the representative. It may not appear immediate that 7, is a derivation. A quick
way to show that is by noticing

(7)) 0=(a),on="5"0 = w=m((3))

In particular, by Proposition 2.2.6, setting by yy,...,y, the coordinates of K" and by
% 1= y; o v the i"" component of ¥,

v dY d
Y= ZE(O) (3})l> 0

It is usual to draw the tangent vector %"’ as an arrow with the rearmost end at the point p
and arrowhead at p + v, so overlapping the image of the path y”", see Figure 2.1. So ¥, will be
always drawn tangent to the curve image of y. In the picture below we have consider the velocity
of the path y(r —1y) = (cos(t —ty),sin(t —ty)) for two different values of #y. The image of the
paths (they have the same image!) is drawn in black, the velocity vectors in red.

It is easy to show that every tangent vector can be obtained in this way. In fact, for every pair
p,v of points of K™ we can consider the "straight" path y”"(t) = p +tv and easily compute ¥,
as follows.
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Figure 2.1: The velocity vectors look very tangent

We know by Theorem 2.1.4 that ¥"" = ¥ a; ((%_) for some constants a;. We compute the
p

a; by evaluating 7" on the coordinate functions:

J d(yjo¥)
aj=) ai (<9yi>p () =" 0y) = =5 (0) =v;
where v; is the j" component of v = (vy,...,vy).

So every tangent vector can be obtained by a straight path. Different paths give the same
tangent vector if and only if they share at zero the same value and the same first derivatives, in
other words if the paths are tangent.

p ) Consider, Vg € N the inclusion map i;: N — M x N defined by i,(p) = (p,q).
By Exercise 2.2.1, i, is smooth and the map d (i), is injective.
We can then identify T,M with its image d(iy), (T,M) in T, ;) (M x N). With this abuse
of notation the last equality in Exercise 2.2.1 can be written

T (M x N) =T,M &T;N.

Complement 2.2.1 Let M be a manifold and let U C M be an open subset with the differen-
tiable structure induced by the differentiable structure of M. Leti: U — M be the inclusion
map, and fix a point p € U.

Prove that di,: T,U — T,M is an isomorphism.

Complement 2.2.2 Use Corollary 3.0.1 to prove that {(TU,d¢)|(U, @) is a chart for M} is
an atlas for TM, so giving to TM a differentiable structure of manifold of dimension 2dimM.

Exercise 2.2.1 Let M,N be manifolds, M without boundary. Consider M x N with the
differentiable structure in Exercise 1.3.4. Then

* Show that the projections 7wy : M X N — M and mp: M X N — N are smooth.

* Consider, Vg € N the inclusion map iy : N — M x N defined by i,(p) = (p,¢). Similarly
consider, Vp € M the inclusion map i,,: N — M x N defined by i,(¢) = (p,q). Prove
that both maps i, i, are smooth.

* Show that Vp € M, Vg € N, d(71)p.q)> d(T1)(p q) are surjective whence d(ip)4, d(iy)p
are injective

* Show that Vp € M, Vg € N, the image of d(i)), equals kerd(7; ), ). Similarly the
image of di, equals kerd(m) ) 4)-



2.3 Submanifolds 31

» Show thatVp e M, Vg €N, d(ﬂ:l)(p,q) o (diq)p = IdTpM, d(ﬂz)(pﬂ) o (dip)q = IquN
« Show that T,y (M x N) = d(iy), (T,M) &d(iy), (T,N).

Exercise 2.2.2 Under the assumptions of Proposition 2.2.2 write, for all i and j, an explicit
expression for

a(FOG),'
Xj

(p)

in terms of the partial derivatives of F and G.

Submanifolds

In this section we discuss injective maps among manifolds M — N with good properties, called
embeddings. We will need to use some results which we will state without proof.

Definition 2.3.1 Let M, N be manifolds and let F': M — N be a smooth function. Then
* acritical point of F is a point p € M such that the rank of the linear application dF), is
different from min(dimM,dimN), the maximal possible rank.
* acritical value is a point ¢ € N that is the image ¢ = F(p) of a critical point p.
* aregular value is a point ¢ € N that is not a critical value.

Note that by definition every point which is not in the image of F is a regular value. Indeed,
Sard’s Lemma shows that the set of regular values Reg(F) is very big, and more precisely it is
an open dense subset of V.

A very important special case is the case Reg(F) = N, when no point is a critical point. This
is the case of the immersions (when dimM < dimN), the submersions (when dimM > dimN)
and the embeddings (when moreover the map is a homeomorphism among of M with its image).

Definition 2.3.2 Let M, N be manifolds and let F: M — N be a smooth function. Then

* F is an immersion if Vp € M, dF), is injective.

* I is a submersion if Vp € M, dF), is surjective.

* F is alocal diffeomorphism if Vp € M, dF), is invertible.

* F is an embedding if F is an immersion and a homeomorphism among M and F (M),
where F (M) is considered with the topology induced by N.
If F is an embedding then we often identify M with its image F (M) C N, and say that
M C N is a submanifold.

The following is a famous simple example of embedding.

Example 2.1 — The rational normal curves. The map P! < PY*! defined by
(xo 1 21) > (o xd Ty o x) (2.1)

is an embedding, whose image is called rational normal curve of degree d.

Let us prove that (2.1) is an embedding.

We first note that the definition (2.1) is well posed.

In fact if we change the homogeneous coordinates of a point in the domain, replacing
(xo @ x1) with, say, (Axp : Ax) for some A € K\ {0}, then the homogeneous coordinates
of the image get multiplied by the same constant A, and therefore define the same point;
moreover it is not possible that simultaneously xg = xg’lxl =...= xoxf’l = x‘i’ = ( since
that would imply xo = x1, a contradiction.
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Then we show that (2.1) is an injective immersion. Let us first consider the chart
Up = {xo # 0} of P! with local coordinate % = ;—(‘) If we call the homogenous coordinates of
the codomain yy, ...y, the image of {xyp # 0} is contained in the affine open subset {yo # 0}

having local coordinates y; = 2 ... y,; = % and the map is locally

Yo’ 0
% (5,22,...,59)

that is obviously an injective immersion. The analogous computation on the chart U; =
{x1 # 0} shows that (2.1) is an injective immersion too.

Finally, recalling that every continous bijective map from a compact space to a Hausdoff
space is a homeomorphism, we conclude that (2.1) is an embedding.

It is not difficult to show that the rational normal curve of degree 2 is an irreducible conic,
the conic y% = yoy2 n the coordinates above. See Exercise 2.3.2 for a description of the rational
normal curves of higher degree.

We give now few other classical examples of embeddings. In all cases it is possible to show
that they are embeddings by arguments similar to those in Example 2.1. We leave the details to
the reader.

Example 2.2 — The Veronese surface. The map P? < P> defined by
(x0:x1:x2) (x% : X0X1 :x% I XX 1 X1X2 :x%)
is an embedding, whose image is called Veronese surface.

The two previous examples are special cases of the following general construction.

Example 2.3 — d—Veronese embeddings. Consider the homogeneous coordinates of Py
as n+ 1 “variables” xg, ..., x,.
Fix an integer d > 1 and set N := (";d) + 1. Fix a bijection among the “variables’

B

Y0y ---,YN Of IP’% and the monomials of degree d in the variables x;: xgo - xdn with Yiodj=d.
This defines a map

de : P% — IP)%

The map is well defined since
* if you change the homogeneous coordinates of a point p, they are multiplied by the
same factor A € K\ {0}: then the values of all chosen monomials are multiplied by
the same factor A¢ and then they define the same point in PY.
* for every point p € P, chosen homogeneous coordinates of it, the monomials of
degree d evaluated in them cannot vanish all simultaneously.
It is not difficult to prove that it is an embedding.

p) Ifd=1the mapsV, are (uninteresting) diffeomorphisms.
The rational normal curves are the images of Vy 4.
The Veronese surface is the image of V5 5.

The following two examples of embeddings come by a similar idea.

I Example 2.4 — Segre varieties. Consider two projective space P and PX with respective
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homogeneous coordinates (xo : -+ :xp), (o : -+ : ¥x), The monomials x;y; define a map
Oni: ]Pyh X]P)k _>]P)(h+l)(k+l)fl
that is called Segre embedding of P x P*. Its image is the Segre variety Yhke

Example 2.5 Consider k copies of P! with respective homogeneous coordinates (x;0 : Xp1 ),
h=0,...,k.The 2 monomials X0igX1i, - - - Xki, define a map

Si: (PY' ¥
that is called Segre embedding of (Pl)k.

Example 2.6 — Pliucker embeddings. We have seen in the Remark after Definition
1.3.5 that the Grassmann manifold Gr(k,V) is in bijection with the elements of P(A*V)
corresponding to tensors of the form vi Ava A -+ Avg. This defines the Pliicker embedding

P: Gr(k,V) — P(A*V).

We conclude this section by considering the boundary of a manifold.

Definition 2.3.3 Let M be a manifold. Then
- the interior of M is the open subset M° := {p € M such that 3 a chart (U, @), pc U,
with @(U) open in K" }.
- the boundary of M is IM := M\ M°.
M is without boundary if oM = 0.

It is easy to show that M° is an open subset of M, so it is a manifold of the same dimension
of M. Moreover M° is without boundary. Note that all complex manifolds are without boundary,
so this definition really makes sense only in the real case.

Something similar holds for the boundary. Note that IR" = 0, JR". = JR" =R""!.

We will use the following lemma without proving it.

Lemma 2.3.4 Let U, V be open subsets of R'}, and let F: U — V be a diffeomorphism.
Consider Up := U NJRY, Vg := VN IRL. Then F(Uy) C Vo and Fiy,: Up — Vo is a diffeo-
morphism.

Note that in particular, if Uy is not empty, then also Vj is not empty. Let now M be a manifold,
p € M. Then assume that there is a chart (U, @) such that ¢(p) € @(U)NJIR.. Then, since
every transition function is a diffeomorphism, by Lemma 2.3.4 for each other chart (V, y) with
p eV, y(p) € IRL. It follows

dM = {p € M such that there exists a chart (U, @) with ¢(p) € IR’ }
= {p € M such that for all chart (U, ¢) with p € U, ¢(p) € IR".}

The boundary dM has a natural differentiable structure making it a real manifold of dimension
n— 1 as follows. Take an atlas {(Ug, @) }acr- Let I’ C I be the subset of the indices ¢ such that
Uy NIM # 0. Then @y (Uy MIM) is a nonempty open subsets of R = R"~!. Then we can
consider the maps (@q )|y,nonm as maps onto open subsets of R 1

It is now easy to see that {(Uy N IM, (@) |y,nom) faer is an atlas for M, making oM a
manifold of dimension dimM — 1. Since the images of all charts in the atlas are open subsets of
R"~!, 9M has no boundary. So doM = 0.
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Example 2.7 We have just seen two examples of embeddings, the inclusions M° < M and
dM — M. Similarly, if U C M is an open subset, the inclusion U < M is an embedding.

Exercise 2.3.1 Consider the torus 7 := R?/Z? with the differentiable structure in Example
1.7 and observe that the quotient map 7: R? — T is a local diffeomorphism.

Consider aline / = [, . := {ax+by+c =0} C R? and observe that / is a submanifold
of R?. Consider the induced map F := m;: [ — T. Show that

1. F is an immersion.

2. If £ ¢ Q, F is injective and its image is dense in T'.

3. If § € Q, F is not injective and its image is a compact embedded submanifold of

dimension 1 of T diffeomorphic to S.

Observe that in particular F is never an embedding.

Exercise 2.3.2 Show that the rational normal curve in P¢*!, with homogeneous coordinates
(Yo :y1:---:yq), is the locus where the 2 x 2 minors of the matrix

()’0 Yoo Ye—1 >
yr o y2 - Yk
vanish.

Exercise 2.3.3 Show that the image of the Segre embedding of (]P’l)z is a quadric of P3, i.e.
is the set of points where a homogenous polynomial of degree 2 in the coordinates of P
vanish.

Exercise 2.3.4 Show that the Veronese surface in P> is the zero locus of six quadrics,
and precisely the 2 x 2 minors of a symmetric 3 X 3 matrix with entries the homogeneous
coordinates of IP3.

Exercise 2.3.5 Show that the image of the Pliicker embedding of Gr(2,4) is a quadric? of
P>,

“Hint: Restrict first to a chart computing the image of a point of Gr(2,4) corresponding to a matrix of the form

1 0 a b
0 1 ¢ d)’
If you choose the natural homogeneous coordinates in P (A2K4) you will find out that the image of such point is

always contained in a specific chart, and fulfill an obvious (inhomogeneous) relation of degree 2 among its affine
coordinates.

Exercise 2.3.6 Show that
1

R 2 .2 2
(P(xo - X1 -xz) = &2 2 (xo,)ﬁ,Xz,xoxlaxoxz,xwz)
Zj:oxj

defines an embedding of P% in RS,
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Exercise 2.3.7 1. Show that

1 2 2
O (x0:x1:x)= 27)62 (xo fxl,xoxl,xoxz,xlxz) 2.2)
=0

defines an embedding of IP’]%g in R,

therefore IP cannot be holomorphically embedded in any affine space C".
Take your solution of the previous two exercises, substitute R with C (and then smooth
with holomorphic) and find out where exactly it becomes wrong.

Exercise 2.3.9 Construct a smooth function F € C*(R) such that Reg(F) is exactly the
complement of the image of F.

Exercise 2.3.10 Show that the map F : R — R? defined by F(¢) = (cost,sint) is an immer-
sion and is not an embedding.

Exercise 2.3.11 Consider the function F: (0,27) — R? defined by F(t) = (sint,sin2t).
Show that it is injective immersion but it is not an embedding.

Exercise 2.3.12 Show that {(x? 4+ x3 +x3 +3)? — 16(x} +x3) = 0} is a manifold without

| Exercise 2.3.8 Since IP’% is compact, every holomorphic function on IP is constant and
| boundary embedded in R3. Can you recognize the underlying topological manifold?

The local diffeomorphism Theorem

We have noticed that the differential of a diffeomorphism is invertible.

This remark is inverted, in some sense, by the famous Inverse Function Theorem stating that,
if the differential of a smooth (respectively holomorphic) function is invertible, then it is a local
diffeomorphism (respectively local biholomorphism). In other words, we can shrink suitably
domain and codomain to obtain a diffeomorphism (respectively biholomorphism). We give now
a precise statement, considering only the real case for sake of simplicity. The complex version of
the statement is completely analogous.

Theorem 2.4.1 — Inverse Function Theorem. Let U be an open subset of R"” and let
F: U — R™ be a smooth function.

Assume that p € U is a point such that dF), is an isomorphism of vector spaces.

Then there exists an open subset W of U containing p such that the induced map

Fiw: W — F(W)

is a diffeomorphism.

We will not prove the Inverse Function Theorem but we will prove two less famous corollaries
showing that, if the differential of a smooth (resp. holomorphic) function has maximal rank, then
locally up to a coordinate change the function is given by some coordinate functions.



36 Chapter 2. Tangent vectors and differentials

Corollary 2.4.2 Let U be an open subset of R” and let F: U — R be a smooth function.
Assume that p € U is a point such that dF), is a surjective.
Then there exists an open subset W of U containing p and a diffeomorphism G: W — W’
such that

FoG LW = R"
is the projection on the first coordinates

(X1 e e ey Xn) = (X1, 3 X0m)

Proof. We denote by K C T,R" the kernel of dF}, and choose any projection 7: T,R" — K. So
7 is a linear surjective map that is the identity on K.

Choose a basis ki, ..., k,—, of K. We introduce a map F; : R" — R"™" by setting

n a n—m
| Ya| =Y bjk; & Fi(ai,...,ay) =(b1,...,bypm)
i=1 0x; P J

=1
Then, using the natural identification R” & R"™™ = R", we define the map
GIZF@(FI)V]: U—TR"

We can then write G(x) = (F(x), Fi(x)).

The matrix of dG, with respect to the natural bases is, by Proposition 2.2.6, the Jacobi matrix
of G at p.

The first m rows form the Jacobi matrix of F at p.

The remaining n — m rows form the Jacobi matrix of F; at p. Since Fj is linear, its Jacobi
matrix (at any point) coincides with the matrix of F; with respect to the standard bases, which

equals the matrix of & with respect to the bases { (%) } and v;. Then
p

kerdG, = kerdF, Nkerm = KNkermw = {0}.

So dG, is injective and therefore, by a dimension count, an isomorphism of vector spaces.

Applying the Inverse Function Theorem 2.4.1 we find an open subset W containing p such
that G)yy is a diffeomorphism onto the image W' := G(W). Since F o (Gy) ! is the projection
on the first m coordinates by definition of G, we conclude the proof by renaming G\ as G. W

Corollary 2.4.3 Let U be an open subset of R” and let F: U — R be a smooth function.
Assume that p € U is a point such that dF), is a injective.
Then there exist an open subsets W of U containing p and a diffeomorphism G: F(W) —V
such that

GoF:W—V
is the injective map given by the first coordinates

(X1yee ey ) = (X150 00 ,%,,0,...,0)
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Proof. We choose a basis hy, ..., hy—, of a subspace H C T(,)R™ supplementary to the image
of dF), and define a map Fy: R"™" — R"™ by

a n—m
Y b <a> =Y ajh; & Fi(ai,...,amn) =(b1,...,by)
Yi/ F(p)

J=1

Then, considering the open subset U" := U &R " of R" & R" " = R™, we define the map
G': U — R" by

G (x,v) = F(x)+F (v)

We note that the first n columns of the Jacobi matrix of G” at p form the Jacobi matrix of F at p
and the remaining columns form the Jacobi matrix of F] at p, so the image of d G;, is the sum of
the images of dF, and d(F),. Since by definition the latter equals H, a supplementary of the
first, then dG;, is surjective and therefore by a dimension count an isomorphism. We conclude
then by the Inverse Image Theorem 2.4.1 choosing as G the inverse of a suitable restriction of
Gi. |

By the Inverse Function Theorem 2.4.1 and its corollaries it easily follows the following
results.

Theorem 2.4.4 — Local diffeomorphism theorem. Let M, N be manifolds, let F: M — N
be a smooth (resp. holomorphic) function and fix a point p € M°.

Assume that dF), is invertible.

Then there exists open subsets U C M,V C N suchthat pe U, F(U) =V, and Fjy: U =V
is a diffeomorphism (resp. biholomorphism).

If dF, is surjective, in local coordinates F is the projection on the first coordinates up to change
the chart in the domain.

Proposition 2.4.5 Let M, N be manifolds, F: M — N a smooth (resp. holomorphic) function,
p € M°. Assume that dF, is surjective. Then for every chart (V,y) in F(p) there exists a
chart (U, @) in p such that o F o @~ ! is the projection on the first coordinates:

WoFo@ '(xy,....x,) = (X1,...,%n)-

If dF), is injective, in local coordinates F' is the inclusion of a coordinate subspace up to change
the chart in the codomain.

Proposition 2.4.6 Let M, N be manifolds, F: M — N a smooth (resp. holomorphic) function,
p € M°. Assume that dF), is injective. Then there exists a chart (U, @) in p and a chart (V, y)
in F(p) such that yo F o ¢! is the immersion of the first coordinates:

woFo@ '(x1,....,x,) = (x1,...,%4,0,...,0).

A couple of not trivial consequences of Proposition 2.4.6 can be used to construct manifolds.
The following holds only in the real case.

Theorem 2.4.7 — Regular Value Theorem 1. Let M be a real manifold with dM = 0, and
choose a function f € C*(M). Let y € R be a regular value of f and set N := f~!((—o0,y]).
Then either N is empty or N has a differentiable structure such that the inclusion N <— M is an
embedding, dimN = dimM and ON = f~1(y).

Note that N may have several connected components.
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Example 2.8 The function f = Y'x? € C*(IR") has only one critical point, the origin, so it
has only one critical value, zero. Theorem 2.4.7 induces then a differentiable structure on
each closed ball of positive radius.

Choosing y = 1 we obtain then differential structures on B" and $"~! such that the
respective inclusion maps in R” are embeddings.

Note that, since composition of embeddings is an embedding, by Example 2.7, in the situation
of Theorem 2.4.7, f~!(y) is embedded in M.
The complex version of Theorem 2.4.7 is

Theorem 2.4.8 — Regular Value Theorem 2. Let M be a complex manifold, and choose a
function f € O(M). Let y € C be a regular value of f. Then f~'(y) has a complex structure
such that the inclusion in M is an embedding and dim f~!(y) = dimM — 1.

If we construct a manifold as preimage of a regular value, we can represent its the tangent
spaces as hyperplanes of the corresponding tangent spaces of M. This is what we do when
we draw the tangent line of a plane curve, for example. The next proposition show that this
hyperplane is the kernel? of the differential of the function.

Proposition 2.4.9 Let M be a manifold. In the real case we assume dM = 0. Let f €
C=(M) (in the complex case: 0(M)), y € Reg(f). Set X := f~!(y) with the differentiable
structure induced by Theorem 2.4.7 (in the complex case: 2.4.8), i: X — M the corresponding
embedding and choose a point p € X. Then di,, is injective and di,(T,X ) = kerd f,.

Proof. The function foi € C*(X) is the constant function, assuming in each point the same
value y. Therefore df odi = d(f oi) =0, so the image of di is contained in the kernel of df:
di,(T,X) C kerdf,.

Since i is an embedding, di, is injective. Since dimX = dimM — 1, di,(T,X) has codimen-
sion 1. On the other hand, since y is a regular value, p is not a critical point, and therefore d f),
has maximal rank 1, so kerd f,, has codimension 1 too. Since the first space is contained in the
second one, they coincide. |

We will usually write 7,X C T,M, identifying each vector of 7,X with its image in 7,M.
This gives an embedding TX — TM.

We can then construct vector fields on X if we know how to construct vector fields on M.
Take a vector field v: M — TM with the property that Vp € X, v, € T,,X. Then the image of vy
is contained in TX, so vx(X) C TX. It is not difficult to show using Proposition 2.4.6 that if
v € X(M) then vy € X(X) (if v is smooth, its restriction to X is smooth t00).

If M = R" we can then see the tangent space of X as the orthogonal of the gradient of f.
Using the function in example 2.8, we see that for each point p = (p1,...,p,) € S"~1,

T,(s" 1) = {Zvl(au,> 1Y pivi=0 }

There is a different version of the regular value theorem, which applies to manifolds with
boundary.

2Some authors prefer to describe it as the orthogonal to the gradient, but in these notes (since we are doing
differential topology and not Riemannian geometry) we do not find it convenient to insert a scalar product since it is
not strictly necessary.
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Theorem 2.4.10 — Regular Value Theorem 3. Let M, N be real manifolds, dimN < dimM,
F: M — N a smooth function, y € Reg(F) NReg(Fjyy). Then F~'(y) has a differentiable
structure such that the inclusion F~!(y) <+ M is an embedding, and dF ~!(y) = dM NF~(y).

It is not difficult to show, exactly as in the other case, that the differential of the inclusion
identify 7,X with kerdF),. In particular dimX = dimM — dimN.

The regular value theorems can be also used to prove the existence of a structure of embedded
submanifold of loci that may be only locally represented as preimage of a regular value for a
smooth/holomorphic function, as in Exercise 2.4.2.

Definition 2.4.11 — (Smooth) Cartier divisors. Let M be a real (resp. complex) manifold
without boundary.

A Cartier divisor in M is a closed subset X such that for all x € X there exists an open
subset U C M containing x and a smooth (resp. holomorphic) function f;; on U such that
XNU equals f;'(0).

If 0 is a regular value for all f; then X is a closed submanifold of codimension 1. In this
case we say that X is a smooth Cartier divisor.

Exercise 2.4.1 Prove that every closed submanifold of dimension 1 is a smooth Cartier
divisor.

{(xo:xlz...,xn) E]P’fé|2x?=0}
=0

is a smooth” Cartier divisor in Pf..

“Warning: the expression ):;?Zox‘; does NOT define a function from P, to C.

Exercise 2.4.3 For K =R, C consider the locus Blp(K?) C K? x Pl defined by the equation
xoy1 = x1y0 Where (xo,x;) are the standard coordinates of K? and (yo : y;) are the induced
homogeneous coordinates in PL.

Prove that Blo(K?) is a smooth Cartier divisor in K? x PL.

Prove that Bly(IK?) is homeomorphic to the topological manifold of Exercise 1.2.4 or

‘ Exercise 2.4.2 — The Fermat hypersurface. Show that for all d,n € N the locus
| 1.2.5, depending on the choice of K.
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3. The tangent bundie(s)

Now we introduce the vector fields.

Roughly speaking, a vector field on a manifold M is the datum, for every point p € M,
of a tangent vector v, € T,M. A natural way to do it (locally) is by choosing a chart (U, @),
denoting by xi,...,x, the induced local coordinates and finally by writing something of the
form Y, fia%i for some functions f;: U — R: this associates to each point p € U the vector

" filp) (%) . We would like to say that the vector field is smooth at p if all f; are smooth.
“p
Is that independent from the choice of the chart?

If we have two charts containing the same point p € M, they induce two different bases of

T,M. We need to understand the relation between them. It can be computed applying Proposition
2.2.7.

Corollary 3.0.1 Let M be a manifold, p € M, and let (Uq, ¢o) and (Ug, @g) be two charts
with p € Ug NUg. We denote with (x1¢;,...,Xnq) and (xig,...,X,s) the respective local
coordinates.

Consider a vector v € T,M, and let v;q, resp. v;g be the coordinates of v in the basis

{((%ia)p},resp. {(axam)p}, so that
& d d
V—;Via <8x,a> —Z"jﬁ (axjﬁ>p

p i=1
Then
V1B Via 9 Via
= (Ppa)eutp) | 1| = ((axia> xjﬁ)
VB Vho 2 Vaa

where J(@g¢) g, (p) denotes the Jacobi matrix of the application @, at the point Qg (p).
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Proof. Obviously

Vig Via
Vnp Vno

for the matrix M representing the identity map of 7,,M in the bases { (%) } in the domain and
P

{ <£7) p} in the codomain. Since /dr,y = d(Idy), for the identity map Idy : M — M, we can
compute M by Proposition 2.2.7, obtaining the Jacobi matrix of the map ¢g o Idy o o' = PBa
in Qo (p). u

We could now define the smoothness of our "roughly defined" vector fields using their
expression in local coordinates, using Corollary 3.0.1 to prove that our definition does not depend
on the choice of coordinates.

We will instead follow a longer way, putting them in the more general contest of vector
bundles.

Fibre bundles
Definition 3.1.1 Let F, B be topological spaces.

A fibre bundle over a base B with fibre F is a pair (E, ) where E is a topological space,
the total space, and 7w: E — B is a continous map, the projection, such that there exists an
open cover {Uq } qer, and homeomorphisms ¢ : Ey, := 7' (Uy) — Ug X F such that the
diagrams

Ep, % L U,xF (3.1)

N A

commute, where 7y : Uy X F — Uy is the projection on the first factor.
In other words we ask & = 7; o ¢,.
The set {¢o: Ejy, — Uq X F }qer is a trivialization of the bundle.
We denote, Vp € B, by E,, or F, the "fibre over p": 7~ 1(p).
By (3.1) all E,, are homeomorphic to F.

Example 3.1 The simplest example is the product of topological spaces, with the projection
on one factor: E:=BXxF,n=m:BxF — Bthemap n(b,f)=0>

Example 3.2 — The "closed" Moebius Band. Consider the closed square Q := [0, 1]> and
identify the two vertical edges by the equivalence relation (0,¢) ~ (1,1 —1¢)). The closed
(Moebius) band is the quotient topological space M := Q/ ~. Note that it has a natural
differentiable structure.

The map (x,y) — x induce a map M — [0,1]/(0 ~ 1) = S'. This is a fibre bundle with
fiber [0, 1].

An interesting case is the case when F is a discrete set, leading to the theory of the fopological
coverings. For example
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Figure 3.1: A representation of the closed Moebius band as fiber bundle over S'

_
% (7

Example 3.3 Fixd € Nand take E =B =S' := {(cos 0,sin8)} C R> and 7: E — B defined
by

7 (cosO,sinO) = (cosdB,sindB).
This is a fibre bundle with fibre a discrete set of cardinality d.

Similarly the natural maps §" — Pf, are fibre bundles with fibre a discrete set of cardinality
2. The following interesting example is a complex analogous of that.

Example 3.4 — The Hopf fibration. Consider the sphere S° as the subset of C? of the pairs
(x0,x1) of complex numbers such that ||xo||* + ||x;||*> = 1. The map 7: S*> — PL defined by

TL'(X(),xl) = (X() le)

is a fibre bundle with fibre S!.

Indeed, recall that the sets U; = {x; # 0} define an open cover {Uy,U; } of PL. Then,
identifying S' with the subset of C of the complex numbers of norm 1 a trivialization is given
by the maps ®;: 7~ !(U;) — U; x S! defined by

D (x0,x1) = <(x0 ml)’HZH) '

The stereographic projection of center p mapping S° \ {p} to R3 sends every fibre of the
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Figure 3.2: A representation of the Hopf fibration through the stereographic projection of S* to
R3

Hopf fibration not containing p to a circle in the 3-space. This gives a graphical representation
of the Hopf fibration as in figure 3.2.

Roughly speaking, a fibre bundle is locally a product as well as manifolds are locally affine
spaces. So, as for the theory of the manifolds, also the theory of the fibre bundles have its
transition functions as follows.

Definition 3.1.2 The transition functions of the fibre bundle are? the maps, Vo, € I,
Pop == ¢ao¢[;1; (UaNUp) x F — (UgNUg) X F.

They are, by (3.1), of the form ¢y (p, f) = (P, gap(p)(f)) for some maps gqp5: U NUp —
Aut(F) where Aut(F) is the group of self-homeomorphisms of F. {g,p} is a cocycle of the
bundle, and verifies the three cocycle conditions:
i) Va€l,Vp € Ug, gaa(p) =1dr;
ii) Yo, B €1,Yp € Uy NUg, g45(P) = gpa(p) s
iii) Yo, B,y €1, Vp € UsNUgNUy, gap (p) Ogﬁy(P) = gay(p)-

“Note the similarities with the transition functions of a differentiable structure

In the following we will often identify the bundle with its total space or its projection,
speaking about "a bundle E" or "a bundle w: E — B".
As in every category, once determined the objects, we have to choose which maps among
them we want to consider.
Definition 3.1.3 Consider two fibre bundles 7: £ — B, n': E' — B'.
Let g: B — B’ be a continous map. A morphism of bundles covering g or morphism of
bundles over g is a continous map f: E — E’ such that the diagram
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commutes. In other words, such that gon = 7’ o f.

If B= B, i.e. if the two bundles have the same base, a morphism of bundles over B
f: E — E'" is a morphism of bundles covering the identity Idg of B. Then a morphism of
bundles over B may be seen as a commutative diagram

E—>E’

N

An isomorphism of bundles is a morphism f: E — E’ of bundles over B that is also a
homeomorphism. If an isomorphism of bundles f: E — E’ exists we say that E is isomorphic
to E’. A bundle is trivial if it is isomorphic to the bundle 7;: B x F — B.

A first remark is that the cocycle determines the bundle up to isomorphisms; this follows
essentially by the same argument used in subsection 1.2.1 to show the analogous property of the
transition functions of a differentiable structure.

There are few more definitions we need.

Definition 3.1.4 Let 7: E — B be a fibre bundle. A section of E is a continous map s: B — E
such that T os = Idp.

Definition 3.1.5 Let G be a subgroup of Aut(F). A G—bundle is a fibre bundle with fibre F
provided with a trivialization whose cocycle is contained in G:

Va,B € I,Yp € UsNUg,8ap(p) €G.

If E, B and F are all real (resp. complex) manifolds we will, unless differently specified,
consider all the above definitions moved to the corresponding category. So all continous map
will be implicitly supposed smooth (resp. holomorphic).

We conclude this section by an important construction, the base change, also known as fibre
product.

Definition 3.1.6 Consider two functions with the same codomain f: A — C, g: B— C.
The fibre product of f and g, usually denoted by A x¢ B is the subset of the product
A X B of the elements that "agree on C" in the following sense:

AxcB:={(a,b) € AxB|f(a) =g(b)}.

We denote by g’, f’ the restrictions to A X ¢ B of the two natural projections A x B. This gives
a diagram

Achf—>B

gL

A——C

that is commutative by definition of A X ¢ B.

Note that, for all p € A, (g) "' (p) = {(p,b)|g(b) = f(p)} = {p} x g~ ' (f(p)). In this sense
we can say that ¢’ and g (and similarly f” and f) have the same fibres.

Indeed, it is not difficult to show that if B is a G—bundle over C with fibre F and projection
g, then also A x¢ B is a G—bundle over A with fibre F and projection g’.
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Definition 3.1.7 The pull-back bundle of a bundle g: B — C by a continous map f: A — C
is the bundle g’: f~'B:=A x¢B — A. This is a base change in the sense that the pull-back
bundle is a bundle with the same fibre but different base.

If f is the inclusion of a subset A C C, then A x¢ B is naturally homeomorphic to g~ (A).
Therefore in this case f ~1B is called restriction of B to A, and denoted by Bs.

Complement 3.1.1 Prove that the cocycle determines the bundle up to isomorphism. In
other words, reconstruct E and 7 from (B, F,{Uqa },{gap })-

Complement 3.1.2 Let E be a G—bundle and E’ be a G’-bundle on the same base B (the
fibres may be different). Show that they admit two trivializations { ¢y } of E and {¢/,} of E’
which share the same open cover {Uy } q¢; Of B.

Exercise 3.1.1 Write a trivialization of the fibre bundle given by the natural map of the
Moebius band onto S' and the corresponding cocycle.

Show that the smallest of order of a subgroup G of Aut(S') for which this is aG—bundle
is respectively 2.

Exercise 3.1.2 Let S' C C? be the subset of the complex numbers z having norm ||z|| = 1.
Note that for each A € S' the map z + Az is an automorphism, so defining an injective map
St < Aut(S"). Set H C Aut(S") for its image. Note that H is a subgroup of Aut(S').

Show that the Hopf fibration is a H-bundle.

Exercise 3.1.3 Show that, if (E, 7r) is a trivial bundle, then f~'E is trivial for every continous
function f.

Exercise 3.1.4 Consider the Moebius band M as bundle on S' as in the previous exercise.
Let f: S' — S! be defined by f(cos0,sin0) = (cos286,sin20). Show that f~'M is trivial as
fibre bundle over S'.

Exercise 3.1.5 Consider, for each fixed d € N, the map S' — S in Example 3.3.
Determine for which d € N the pull-back of the Moebius band by it is a trivial bundle.

3.2 Vector bundles

Definition 3.2.1 A real (resp. complex) vector bundle over B of rank r is a G—bundle with
fibre R" (resp. C") where G is the group of the invertible linear applications GL(R") (resp.
GL(C")). A line bundle is a vector bundle of rank 1.

Again, the simplest example of a vector bundle is the product B x V where V is a vector
space.
The following is more interesting

I Example 3.5 — The fautological bundle over . Let E be the subset of P% x K" union
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of Pj x {0} with the points of the form

((x0 1+ 1 20), (05, Xn))-

The restriction of the first projection to E is a map 7: E — [P} such that the pair (E, )
is a (real or complex according to the choice of K) line bundle.
Note that the fibre 77! (xo : - -+ : x,,) is the line generated by (xo, ..., ;).

p) Similarly there is a tautological rank k vector bundle over each Grassmannian Gr(k,n) (see
Example 1.10).

For all a, Vp € Uy, ¢ induces a bijection ¢y ,,: F, — K" via ¢ (v) = (p, @, p(v)). This
gives a structure of vector space on F), via Vv,w € F,, Ve € K, v+w 1= @5}, (@0,p (V) + @ap (W),
V= Py, (P p(V))-

The given vector space structure on F), does not depend on the choice of a. Indeed, if
p € UgNUp, since gop(p) = Pap© (pl.;L € GL(K"), ¢@q.,(v) = 84p(p) (c@p »(v)) and then
(p(;}p (cPa,p(v)) = (p[;;7 (c¢ﬁ7p(v)). Similarly one shows Vv, w € F),, (PO_C}, (@ p(V) + Qo p(w)) =
95, (95.,5(v) + @5, (W)

So we can see a vector bundle as a way to attach to each point of B a vector space of fixed
dimension r "in a continous way".

In particular we can consider the neutral element of the sum, 0,, on each E,,. This defines a
smooth section so: B — E, the zero section , by so(p) = 0,,.

The group GL(R") (resp. GL(C")) of the invertible operators on R” (resp. C”) is naturally
identified with the set of the square matrices GL(r,R) with real (resp. complex) coefficients
of order r whose determinant differs from zero. This gives a differentiable (resp. complex)
structure on GL(R") (resp. GL(C")) as open subset of R” * (resp. C). So if B is a real (resp.
complex) manifold one may inquire whether the maps g4p: Uq NUp — GL(IR")(resp. GL(C"))
are smooth (resp. holomorphic); in other words that the vector space varies "in a smooth (resp.
holomorphic) way".

We have seen in Complement 3.1.1 that every fibre bundle is determined by its cocycle. The
same idea gives the following.

Proposition 3.2.2 Let B be a manifold, let 4l := {Uy}qe; be an open cover of B, r € N.
Assume we have Va, B € I, a smooth (resp. holomorphic) map gqp: Uy NUg — GL(RR")
(resp. GL(C")) such that
i) Vael,Vp € Uy, gaa(p) =1d;
ii) Vo, B €1,Vp € UsNUp, 8ap(P) = 8pa(p)
iii) Yo, B,y€1,Vp € Uq NUgNUy, gaﬁ(p)gﬁy(p) = gay(p)‘
Then there is a unique, up to isomorphisms, real (resp. complex) vector bundle E of rank
r over B having a trivialization with cocycle {g4p}. Moreover E has a natural structure of
(complex) manifold such that the projection 7: E — B and the zero section so: B — E are
smooth (resp. holomorphic).
Moreover dimE = dimB +rk E = dim B + r, the differential of 7 is surjective at every
point and the differential of s is injective at every point.

Proof. The total space E is defined, as topological space, as the quotient of the disjoint union
X of all products Uy x R" by the equivalence relation naturally induced by the gq4: a point
(Pasva) € Uy x R" and a point (pg,vg) € Ug x R” are equivalent if and only if py = pg (in B)
and gop5(pa)(vp) = va-
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The map m: E — B associating to the class of (pg,ve) € Uy X R” its first component pq is
well defined and give a fibre bundle structure on E.

For fixed a, consider an open subset Q C U, x R”. For every 3, consider the subset
Qg of Ug x R" of the pairs (pg,vg) that are equivalent to some (pg,ve) in . Then the
function (p,v) — (p,gqp(p)(v)) maps Qg homeomorphically onto the intersection of Q and
(UaNUp) x R” in Uy x R". Then, considering the quotient map : X — E, &' (7()) is open
in X. This implies that 7 is an open map.

Since B is a manifold, its topology has a countable basis of open subsets {U, },,cn. Without
loss of generality, we can assume! that the covering {U’},cy is a refinement of {Ug}ges. In
other words, for all n € N Ja(n) such that U, C Ug(yn). Let {V, },en be a countable basis of R”.
Then for all pairs of natural numbers i, j, U] x V; is an open subset €; ; of Ug(iy X R". Since T is
an open map, all subsets U; j := 7 (Q; ;) are open in E. It is easy to prove that U ; is a basis for
the topology of E. So E admits a countable basis of open subsets.

Now consider the equivalence relation as a subset R of X x X:

R:= {((pa,va),([’ﬁ,vﬁ)) cX XX’(pOhVOt) ~ (pﬁ7vﬁ)}

We show that R is closed by proving that its complement is open. In fact if (pg,ve) and (pg,vp)
are not equivalent,

e either po # pg in B

* or pg = pp in Band g4p(pa)(vp) # Va-
In the first case we can find two disjoint open subsets U, of U, and U/’3 of Ug such that
Pa € Uq and pg € Ug. Then (Uy x R”) x (Ué X R’) is an open subset of (Ug x R") x (U x R")
containing ((pa,va),(pg,vp)) disjoint from R. In the second case we obtain the same result
by considering two disjoint open subsets Vi and Vg of R containing respectively vy and
8ap(Pa)(vg) and considering the open subset ((Ug NUg) X Vi) X Q of (Ug x R") x (Ug x R")
where Q is the image of (Uy NUg) x Vg via the obvious map.

So E is the quotient of a Hausdorff space via a closed equivalence relation such that the
quotient map is open. This implies that E is Hausdorff.

Set b for the dimension of B. We can assume, up to substitute i{ by a refinement of it, that
all open sets Uy come from charts. In other words, we can assume that for each o there is a
homeomorphism @y : Uy — Dy Where Dy, is an open subset of R%.. Denoting by V,, the open
subset T(Uy x R"), we obtain homeomorphisms Yy : Vo — R x Dy C Ri’b .

Then {(Vi, Wa) } s gives a differentiable structure on E. Note that we need the assumption
of smoothness of the gqp to ensure the smoothness of the transition functions Y o Vg L

The projection & maps Vi, onto Uy. In the local coordinates given by the charts (Vy, Wy ) and
(Uay @a)s T(X1, -y Xpib) = (Xrp1y e ooy Xppp) and so(xy, ..., x5) = (0,...,0,x1,...,xp): it follows
that both maps are smooth, the differential of 7 is surjective at every point and the differential of
o is injective at every point. ]

This is the situation we are interested in. So, for sake of simplicity, from now on we are
implicitly assuming that B is a real (resp. complex) manifold, all maps gqp: Uy NUpg — GL(RR")
(resp. GL(C")) are smooth (resp. holomorphic) and E has the differentiable (resp. complex)
structure in Proposition 3.2.2. Moreover all morphisms of bundles and sections are implicitely
assumed to be smooth (resp. holomorphic).

IReplacing {U!} with the set of all the intersections {U] N Ugq} we obtain a new basis of the same topology that is
arefinement of {Ug } from which we can extract a countable subfamily that is also a basis for the given topology, see
John L. Kelley, General topology, Exercise F at page 57.
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Definition 3.2.3 Let E, E’ two vector bundles on respective bases B and B’

A morphism of vector bundles (over g resp. over B) is a morphism of fibre bundles
f: E — E' (over g resp. over B) such that Vp € B, the map fig,s Ep — Eé(p) is a linear
application.

An isomorphism of vector bundles is a morphism of vector bundles that is an isomor-
phism of fibre bundles. Two vector bundles are isomorphic as vector bundles if there is an
isomorphism of vector bundles among them.

A trivial vector bundle is a vector bundle isomorphic as vector bundle to the vector bundle
m: BxK"— B.

The concepts of vector subspace and quotient vector space naturally extend to vector bun-
dles:
Definition 3.2.4 Let 7': E’ — B be a vector bundle. A subbundle E of E’ is the datum of a
vector bundle 7: E — B with an injective morphism of vector bundles f: E — E’ over B.
Let m: E — B be a subbundle of a vector bundle 7’': E’ — B. The quotient bundle
T: E'/E — B is the vector bundle whose total space is the quotient of E’ by the equivalence
relation

Vi~ e ' (v) =7 (v2) =t pandvi —v, € E,

Here the difference v — v, is the difference in the vector space E ;,.
Setting 7£: E' — E'/E for the projection on the quotient, then 7 is defined by 7’ = T o 7.

So, if E is a subbundle of E’, for all p € B it is naturally to identify E, with the subspace
f(Ep) of E,, and (E'/E), with the quotient of vector space E,,/E, = E,/ f(E,).

To a Cartier divisor one associates naturally a line bundle

Definition 3.2.5 — Line bundle associated to a smooth Cartier divisor. Let X be a Cartier
divisor in M.

By definition, there is a family of open subsets {U;} of M whose union contains X and
smooth/holomorphic functions f; on U; such that X N Uj is f j’l (0) and 0 is a regular value.
By Proposition 2.4.5 we may then assume that U; is a chart with local coordinates

i i
s es Ty

and fj = z5,.

Without loss of generality we may assume that {U;} is an open cover of M by adding to
the family the open subset M \ X with the constant function 1.

Now consider the ratio % This defines a smooth/holomorphic function on (U;NU;) \ X
that never vanishes. Choose any point in X NU; NU;. Writing the Taylor expansion of f; with
respect to the variables z{ yeen ,zf;fl , 7 we notice that, since fi vanish along zh =0, 7} divides
fi- So the function f;/ f; extends to a smooth/holomorphic function on U; N U;. Reversing the
role of i and j we deduce similarly that f;/f; never vanishes on U;NU;.

We have than a family of maps

gij: ﬁ U,‘ﬂUj-)GL](K).

:fj

that obviously respects the cocycle conditions, so they define a (real respectively complex)
line bundle on M.
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I Example 3.6 — The hyperplane bundle. The hyperplane bundle of Pk is the line bundle
associated to the smooth Cartier divisor Hy.

I Complement 3.2.1 Write the missing details of the proof of Proposition 3.2.2.

Exercise 3.2.1 Show that the tautological bundle over P is a line bundle by writing a
suitable trivialization and the corresponding cocycle.

Exercise 3.2.2 Show that a line bundle E over B is trivial if and only if it has a section
s: B — E which never vanishes: in other words Vp € B, s(p) # 0 € E,,.

Exercise 3.2.3 Show that every section of the tautological bundle over IP’ﬁg vanishes at least
at a point. In other words dp € IP’]%Q such that s(p) = 0 € E,. In particular, the tautological
bundle over P}, is not trivial.

Exercise 3.2.4 Show that the tautological bundle over P}, is homeomorphic to a Moebius
band.

Exercise 3.2.5 Show that the zero section is the only holomorphic section of the tautological
bundle over P¢.

Exercise 3.2.6 — Frames and ftriviality. Show that a vector bundle E of rank r over B is
trivial if and only if it has r sections s: B — E forming, Vp € B, a basis of E,,.
Such sections are sometimes called a frame.

Exercise 3.2.7 Show that the line bundle associated to a Cartier divisor X has a smooth (resp.
holomorphic) section vanishing exactly at X.

Exercise 3.2.8 Let H be a hyperplane of P, the locus

Zajszo

where the a; € K are not all zero. Show that
1. H is a smooth Cartier divisor;
2. the line bundle associated to H is isomorphic to the hyperplane bundle.

3.3 Tangent and normal bundles

We can now define the tangent bundle TM = M through its cocycle.

Definition 3.3.1 Let M be a manifold of dimension n. Choose an atlas {(Uq, @) }aci-
Then the tangent bundle TM X M is the vector bundle of rank n given by the cocycle.

8ap(P) = J(Pap)gp(p)- (3.2)

if M is a complex manifold, we may consider it as real manifolds, which gives two
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different definition of tangent bundle on it. When we will need to distinguish them we will
call them respectively holomorphic tangent bundle and real tangent bundle.

There is a natural way to identify each tangent space 7,M to the fibre (TM),,.

The construction in Definition 3.3.1 gives a trivialization { @ } gcr of TM.

Let pe M, v € (TM),. Choose a chart (Ug, @q) from the atlas used in Definition 3.3.1 such
that p € Ugy. Then @¢(v) = (p, (v1,...,vn)) € Ug x K". Set then x1,.. ., x, for the induced local

coordinates near 7(v). We associate to v the derivation Y v, <%) eT,M.
‘Jp

This gives an isomorphism of vector spaces among (TM),, and T,M that, by Corollary 3.0.1,
does not depend on the choice of the chart containing p. Note that here the choice of the cocycle
(3.2) is crucial: no other cocycle would have worked!

By a similar argument one proves that the definition does not depend, up to isomorphisms,
on the choice of the atlas.

p) LetF:M—N be a smooth function.

The differentials dF),: T,M — Tp(,)N naturally glue to a morphism of vector bundles over
F

™ £ TN

|

M——N

defined by dF (v) := dFy,)(v) € T (z(v))N C TN.

Moreover, if G is a further smooth function from N to another manifold, then d(Go F) =
dGodF.

There is an important construction related to embeddings and tangent bundles, the normal bundle.
Let f: X — M be an embedding. Geometrically, if we think to X as a subset of M, to each point
of X we have associated the vector space T,M, and its subspace T,X, identifying every tangent
vector to X with its image by d f.

Then we can consider the quotient space (Ax|u)p := T,M/T,X. This is the normal space of
X in M at p.

All these spaces naturally glue to a bundle on X: we start from the vector bundle TMx :=
f~'TM, which is a vector bundle on X such that every fibre is canonically isomorphic to the
tangent space of M at that point. Then 7X is naturally a subbundle of TM|x via df and the
construction of the quotient bundle produces

| Definition 3.3.2 The normal bundle of X in M is the quotient bundle A%y :=TM|x /TX.

For Cartier divisor it holds the following

Proposition 3.3.3 Let X be a smooth Cartier divisor in a manifold M. Then the normal bundle
of X in M is isomorphic to the restriction to X of the line bundle on M associated to X.

Proof. Choose on each U; a coordinate system (', ..., z},) such that U; N X is given by the equation
7 =0, so that f; = z', . The normal bundle x| is then given by the cocycle

ai
{l’l,’ji U,'ﬁUjﬂX-)GLl(K)’nij = azl}
n
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The line bundle on M associated to X is defined by the cocycle
p

{g,’ji U,'ﬂUj — GLl(K)’gij = 7} .

Zn

Taking partial derivatives with respect to z) of the equality 7/, = Zﬁg,- j yields g—z =g&ij z. 2"’;’ .

Restricting this to X, recalling that Zo=0onXNU ; we get the cocycle {n,- j}. This proves the
claim. |

This has the following interesting consequence.

Corollary 3.3.4 Let M be a manifold, f € C*(M), y € Reg(f), X = f~'(y). Then the normal
bundle of X in M is trivial.

Proof. The line bundle over M associated to X is trivial, and therefore so is its restriction to
X. |

We will later need the following result, which we state without proof.

Theorem 3.3.5 — Tubular neighbourhood theorem. Let X, M be manifolds without
boundary, and let i: X — M be an embedding.

Then there is a neighbourhood W of i(X) in M and a diffeomorphism v: 4%y — W, such
that i = v osg.

Exercise 3.3.1 Show that the group quotient” R" /Z" has a natural structure of manifold such
that the differential d7, of the quotient map 7: R" — R"/Z" is invertible at each point.
Show that with this differentiable structure R"/Z" is diffeomorphic to (S!)".
Show that its tangent bundle is trivial®.

“with respect to the sum
bNotice that it follows that all A7(T (S)")* are trivial for all g.

vectors that are linearly independent over R.

The group quotient C" /A has a complex structure such that the differential of the quotient
map m: C" — C"/A is invertible at each point. These complex manifold are called complex
tori.

Show that the complex tangent bundle of a complex torus is trivial.

Exercise 3.3.3 Show that the holomorphic tangent bundle of lP’(IC is not trivial.

Exercise 3.3.4 Prove that Zf:l (uzl-ﬁ —Up; | %) defines a smooth vector field on §%~!

which never vanishes. We have combed flat all spheres of odd dimension.

| Exercise 3.3.2 A lattice A C C" is a subgroup, with respect to the sum, generated by 2n
I Exercise 3.3.5 Show that the normal bundle of a Moebius band embedded in R? is not trivial.
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Real and holomorphic tangent bundles

Let M be now a complex manifold of dimension n, p € M. Then there is a tangent space 7,M
which is a complex vector space of dimension n. Since M has an induced real structure of
dimension 2n, it has also a tangent space as real manifold, which we denote (to distinguish it
from the other one) by T;RM , of dimension 2n.

We have then constructed two different tangent bundles for M, the one as complex manifold,
the holomorphic tangent bundle 7 M, a complex bundles of rank 7, and the one as real manifold
(the real tangent bundle), say 7™M, a real vector bundle of rank 27 . One is naturally tempted
to try to find some canonical isomorphism of real vector bundles among them.

Set local coordinates z; = x; +iy;, j=1,...,n ata point p € M, so defined on a chart U > p.

Then the real tangent space T’}RM is generated by the partial derivatives <aix/_) , (%,) .
p p

Note that the action of the vectors in TPRM on &, may be naturally extended to complex
valued function f = g+ ih, g, h smooth, by setting
v(g+ih) :=v(g)+iv(h) € C.
Then define

(2) -4((2) +(2))

Wait, this does not make any sense! We can’t multiply an element of a real vector space by i!
In fact this makes sense as an element of the complexification of TPRM .

Definition 3.4.1 — Complexification. Let V be a real vector space. We define its complexi-
fication V ®g C (or just V ® C for short) as follows.

As real vector space, V ®g C is the abstract direct sum of two copies of V. A general
element of V ®g C is given by two vectors vi,v, € V. We will write it* as v; + iv,. This is
also summarized by the notation

VerC=VaiVv

Please note that the notation induces a natural inclusion of V in V ®g C mapping each vector
v on... v.

V ®r C has a natural canonical structure of complex vector space induced by the multi-
plication

i- (V] + iVQ) =—vy+iv

Note that dimg V = dim¢ (V ®g C).

“We will later see the notation v ® 1 4+ v, ®1i for vi +ivy.

Then (a%) is an element of the complex vector space TPRM ®r C.
p
Note that

<aazj>p(g+ih) :;<<§i§y};> +i(§x};+§5j>> (p).

Then, by definition? of holomorphic function, g + ik is holomorphic if and only if Vj,
d(g+ih)
7

2The reader that has not done any complex analysis in several variables should take this as definition of holomorphic

=0.
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Now define

d 1(/ 9 e, R
<az,->,,— 2 ((ax),,"(ayj)) Ty Ment

If f = g+ ih is holomorphic then

d 1 dg dh dh dg dg dh
— ) (g+ih) =5+ )+i[=——5> = (5> +iz—
(921'),, i) =5 <<9xj 3yj'> <9xj 9yj>) (?) <3xj ox; @)
showing that (%) coincides with the complex derivative in the direction of the variable z;.
7/p
Indeed

07k (o + ivy) 1/ /dxx Oy Oy Oxk
) o ) T2\\ay ey ) ey, ey, ) ) T o
zi/, zj , 2 xj  dyj xj  dyj
The complexification, as most of the construction in linear algebra, may be extended to
bundles.
Definition 3.4.2 — Complexification of a real vector bundle. If E is a real vector bundle

with cocycle gqp, then, since every matrix with real coefficients is also a matrix with complex
coefficients, the same cocycle gqp gives also a complex vector bundle” Ec.

“In this case, even if E is a smooth manifold, we are not claiming that E¢ has any structure of complex
manifold.

Then, for every p € B, the fibre (E¢ ), is canonically isomorphic to the complex vector space
E, ®r C.

We define the complexified real tangent bundle (7%M)¢ as the complexification TRM ® C
of the real tangent bundle 7®M. Note that it naturally contains T*M as (real) subbundle.

It contains all (9%') , (5%') . This identifies the complex subbundle 7/ C (T®M)¢ gen-
i)p i)p

erated pointwise by the (%) with the holomorphic tangent bundle TM of M. The complex
i) p

conjugation is well defined on (T®M)c. Since ((%j) = <a%,> , T" C (T®M)c is pointwise
p 1/ p
generated by the (%) . T’ is the antiholomorphic tangent bundle.
7p
It follows
(T*M)ec =T' & T’ (3.3)

in the sense that 7’ and 7’ are subbundles of (T®M)¢ such that, for all p € M, ((T*M )C)p is

the direct sum of its vector subspaces Tlﬁ and Fp.
We deduce

function. The reader that has done complex analysis in one variable will recognize the Cauchy-Riemann relations

dg  _ dh
dx ~ dy
Jdg _  oh

dy —  ox

Note that

(%) _ (M) _1 ((%,%)+i(@+%)> _o:
9z » 9z » 2 dx; dyj dx;  dy; ’

the local coordinates are holomorphic functions.
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Proposition 3.4.3 The real tangent bundle, the holomorphic tangent bundle and the antiholo-
morphic tangent bundle of a complex manifold M are isomorphic as real vector bundles.

Proof. The decomposition (3.3) (T®M)c = T’ @ T’ induces surjective morphisms of vector
bundles (T®M)c — T’ and (T®M)c — T’ whose restrictions to the real tangent bundle T®M,
since T"MNT' = TRM NT’ = {0} are injective and therefore, by a dimension count, isomor-
phisms. |

Complement 3.4.1 Prove that the definition of the tangent bundle does not depend, up to
automorphisms, on the choice of the atlas.

Exercise 3.4.1 Compute, Vj,k

(aazj) (zx), (;@) (2x), <8az]) (Zk), (82) (Zk)-

Deduce that (8%,) , (a%) is the local frame (compare Exercise 3.2.6) dual to the functions
Z j,z e
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To ease the notation we consider in this chapter only the real case.

4.1 Vector fields and flows
Definition 4.1.1 A vector field on a manifold M is a section v: M — TM of the tangent
bundle. A vector field is smooth if it is smooth as a map among manifolds. The smooth
vector fields form the vector space X(M).

We are only interested in smooth vector fields, so, unless differently specified, all vector
fields are from now on assumed to be smooth.

For every vector field v, every chart (U, ¢) for M may be used to represent the vector field v
onU: vy. If xy,...,x, are the local coordinates given by the chart, there are functions v;: U — R

such that Vp € U, v(p) = Y. vi(p) (%) . We will write vy as Zvi%.
1 p 1
Vector fields bring naturally to the definition of integral curve.
We first allow the vector fields to vary in time.

Definition 4.1.2 — Variable vector fields. Consider an open subset J C R with 0 € J.
A smooth variable vector field is a function v: J — X(M) such that, given any chart
(U, @), writing its local coordinates as xj,...,x,, then for all p € U

z”: J
V(t)p: Vi(pat) < >
i=1 ax,- p
with all functions v;: U x J — R smooth.

Vector fields can be seen as a special case of variable vector fields by taking constant
functions v. In other words, they correspond to functions v; that do not depend on ¢.

Definition 4.1.3 — Integral curves. Consider an open subset J C R containing 0 and a
smooth variable vector field v: J — X(M).
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We say that a smooth path y: J — M is an integral curve of v if

d
VipeJ dy, <dl> = v(t0) y(10)
fo

The starting point of v is 7(0).

In other words the velocity vector of the path 7y at each time equals the value of the vector
field at the point where the path is at that same time.

The integral curves of a variable vector field are locally the solutions of a system of differential
equations. In fact, restricting to a chart and writing the definition of integral curve we obtain that
the integral curves are solutions of Cauchy problems, as follows.

Definition 4.1.4 — Cauchy problem. Consider two open subsets J C R, U C R" and
assume 0 € J. For all § > 0 we denote by Jg the open interval (—6,8). If § is small, J5 C J.
We consider a smooth function V': U x J — R" and write its components as v; as follows

V(X1 X)) = i((xn, ooy xn)58) 5o ooy van((X1, .oy X0), 1))

Having fixed & such that Js C J and a point p € U we say that a function y: Jg — U
satisfies the Cauchy problem for V with initial point p if

av:
70) = p and d—}t/l:v,-(}/(t),t) Vi=1,...,n
The functions 7 that satisfies the Cauchy problem for V are the integral curves of the vector
field v(r) = Xjy vi(-1) £ € X(U).

An important result in this framework is the following

Theorem 4.1.5 — Existence and uniqueness of solutions of Cauchy problems. For every
smooth function V: U x J — R" and for every p € U there is a § > 0, an open subset U’ C U
containing p and a smooth function g: U’ x Js — U such that for all g € U’ the following
holds: the function y(z) = g(q,t) satisfies the Cauchy problem for V with initial point g.

The solution is unique in the sense that, if g: U’ x Js — U and g': U” x Jss — U are two
such functions, they coincide in the common domain (U’ x Jg) N (U" x Jg).

We explain the roles of U’ and § by an elementary example, which will illustrate in particular
that there is no hope of generalizing Theorem 4.1.5 with U’ = U.

Example 4.1 SetJ = (—1,1)and U =J x R" 1 CR". So U = {(x1,x2,...,%,)||x1] < 1}.
Choose as V the constant function (1,0,0,...,0). Then we claim that the function

g(g,t) =q+(t,0,...,0)

gives the unique solution of the Cauchy problem for V with initial point g.

This claim is "essentially" correct, as the reader can easily check by computing the right
derivatives.

However we haven’t specified the domain of g, since we haven’t specified neither § nor
U'. If we try to set U’ = U then, doesn’t matter how small we choose &, the image of g will
not be contained in U, and so the claim becomes wrong since V is defined only on its domain,
UxJ.

To make our claim correct we ned to get a well defined g: we need then to fix § > 0 and
choose U’ C (—1,1—38) x R* 1.
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I Different choices of § and U’ give formally different solutions, coinciding in the common
domains as stated in theorem 4.1.5.

Since all solutions coincide in the common domains, we may glue all of them to get a "main",
solution g, that we will denote as flow of V (resp. v). The domain Q of the flow will no more be
of the product form U’ x Js.

Proposition 4.1.6 — Flows. Consider open subsets J C R, U C R" and assume 0 € J.

Consider a smooth function V: U x J — R" and the corresponding variable vector field
v:J— X(U).

Let Q C U x J be the union of all possible open subsets U’ X Jg arising in Theorem 4.1.5.
Then there is a unique function g: Q — U such that for all p € U, g(p,0) = p and the curve
v(t) = g(p,t) is integral for v.

Moreover g is smooth.

Note that Q is open and it contains U x {0}.

Lifting these results to manifolds, we get naturally the following definitions.
Let U be an open subset of M and let Q be an open subset of U x R containing U x {0}.
Consider a smooth map

g:Q—-M
We induce, for all ¢ € R, for all p € U, smooth functions
g —->M gpidp—M
by
8(p) =gp(t) = g(t,p)
We haven’t specified the domains €; and J, of the maps g; and g, yet. They are the biggest
possible domains for which the definition makes sense, defined by:

QN(U x{r}) = x {t} QN({p} xR) ={p} xJ,

Note that the €, are open subsets of M whereas the J,, are open subsets of R containing 0.

Definition 4.1.7 — Local one parameter groups. Let U be an open subset of M and let Q
be an open subset of U x R containing U x {0}. A smooth map

g:Q—-M

is a local one parameter group of smooth transformations of U into M if all maps
g Q; — M are embeddings (so diffeomorphism with their image) and moreover

8s+:(p) = &s(8:(p))
whenever possible, so when (p,s+1),(p,t),(g(p),s) all belong to Q.

We note that if g is a local one parameter group automatically g(p,0) = go(p) equals p for
all p. In other words g is the identity of Qg =U.

We associate to every local one parameter group g of smooth transformations of U into M
a smooth vector field on U as follows: it is the unique vector field v € X(U) such that, for all
peUand feC(U)

(fogp)

() = 1080 )
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In other words, if xy,...,x, are local coordinates at p for M, we consider natural induced local
coordinates xj, . ..,x,,t at (p,0) for Q and

Shortly, writing g;(x1,...,X,,t) for the i’ component of g,
" dg;, . d
8i
— 0)—
' ; ar %,

In particular, the maps g, are integral curves of v with starting point p.
Now we see that conversely every vector field is induced as above by a local one parameter
group, and precisely by its flow.

Proposition 4.1.8 Let M be a manifold without boundary, and consider a point p € M and a
vector field v € X(M).

There is a neighborhood U of p, a 0 > 0 and a local one parameter group g: U X Js — M
of smooth transformations of U into M such that v is induced by g as above.

If g, ¢’ are two local one parameter groups inducing the same vector field, then g = g’ in
the common domain.

Proof. The statement being local, we can restrict to a chart in p giving local coordinates xi, ..., x;.
In other words, we can assume M to be an open subset of R”.
Then we can write

“ d
V= 1:21 v j&—xj
By Theorem 4.1.5 there is 8 > 0, a neighborhood U of p and a smooth map
g:UxJs—=M
such that for all ¢ € U, g(¢,0) = g and

gf(q,t) = (11(8(q.1)), - v(g(q.1))).

We claim that g is a local one parameter group. For fixed s € Js set g1(q,t) = g(q,t +s) and
g2(q,t) = g(gs(q),t). Then both g; and g, satisfy the same Cauchy problem

3”((570 = (1(u(g,1))s - vn(u(g, 1)) 4(2.0) = &:(q)

and then by the uniqueness assertion in Theorem 4.1.5 g1(q,t) = g2(q,t). So g1+5(q) = g1(gq,t) =
82(q,t) = 810 8s(q):
8i+s = 81 ©8s-

In particular, for all € Js, grog_, = g—, 0 g = go is the identity, so all g; are embeddings.
It is obvious that g induces v. The uniqueness assertion follows by the uniqueness assertion
in Theorem 4.1.5. |

It is natural to ask, if, given a vector field, one can obtain a "global" one parameter group, a
local parameter group with U = M and Q =M x R.
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Definition 4.1.9 — One parameter groups. We say that a smooth map
g-MXR—-M

is a one parameter group of smooth transformations if all g, are diffeomorphisms of M and
moreover for all 5,7 € R

8s+t = 859 &1

Note that in particular g is the identity of M and g;! = g_. This leads to the natural interpreta-
tion of one parameter groups as maps ¢ — g;: group homomorphisms from R (seen as abelian
group with the operation +) and the group AutM of the diffeomorphisms of M into itself (seen
as a group with the operation o).

The example 4.1 shows that in general integrating a vector field does not give a (global) one
parameter group, but only a local one. However, if the support of the vector field is compact one
can prove the following.

Theorem 4.1.10 Let v be a smooth vector field and assume that its support

suppv = {p € Mlv, # 0},

the closure of the complement of the vanishing locus of v, is compact.
Then there exists a unique one parameter group g: M x R — M of transformations of M
which induces v. Moreover g(p,t) = p for all # when p does not belong to suppv.

Proof. Set K := suppv.
By Proposition 4.1.8, for any p € K there is neighborhood U, of p, a positive number
d(p) > 0 and a local one parameter group

g\ Uy x J5(p = M
inducing v on U,,. Since K is compact, there are finitely many points py, ..., p, such that
r
KcU:=JU,,.
j=1

We set 0 :== mind (p;) Then, by the uniqueness assertion in Proposition 4.1.8, ¢Pi) and g(r)
coincide on (U p; U Pk) x Js. Hence we can define

g UxJs—M

g(q,1) =g (q,1)

for any p; such that g € Up,.
We note that if ¢ € U \ K, X vanishes in a neighborhood of ¢ and then by the uniqueness
assertion in Proposition 4.1.8, g(g,7) = ¢ for all . Hence extending g to a function

g MxJs—M

by setting g(gq,t) = ¢ for all ¢ ¢ K we obtain a smooth function.
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Now recall that if ¢, 5, + s € Jg then g, = g; 0 g;. We use it to extend g to a one parameter
group

gMXR—-M

by choosing, for arbitrary 7 € R, a positive integer k such that [¢| < k3, and then define
8 = 8/kO8/kO 08k = &k

It is immediately seen that g is a well defined! one parameter group inducing v. |

Exercise 4.1.1 Let v be a variable vector field and let g be its flow. Prove
L g () . = ()
p, ox; (p,O) ox; p

PP
2. dg(pp) (E>(p,o) =v(0)g(p0)

Exercise 4.1.2 Consider the matrices

A= <(1) i) € GL(R)

1. Show that

aton = (5) =)

defines a map
.l 1
8t ]P)R = ]P)R

that is a diffeomorphism.
2. Show that the map g: M x R — M defined by g(p,?) := g;(p) is a one parameter group.
3. Setve X (Pﬁ%{) for the vector field associated to g. Compute the locus

{p €Pg|v, =0} C Py

Exercise 4.1.3 Compute the one parameter groups g of the vector fields in Exercise 3.3.4.
Find all # € R such that g; = Idgi-1.
Find all # € R such that g; is the antipodal map p — —p. In other words for which ¢ is
g/(—p) = pforall p in S*~12

4.2 Lie brackets

The vector fields act on C*(M): if v is a vector field and f € C* (M), the function v(f) is naturally
defined by

11t does not depend on the choice of & since different choices give solutions to the same Cauchy problem, so they
coincide in the common domain
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In local coordinates, if v, = Zvi%, then v(f)(p) = Xvi(p) (%) f, which we shortly write
1 1 p

f):Zvigj:i. 4.1)
If ve X(U) then v(f) is obviously smooth and therefore we have defined a map
X(U)xc>(U) — C(U)
wf) = v(f)

This associates to each vector field a map from C*(M) to itself. The image is the space of
derivations of C*(M), special operators on C*(M). If v: C*(M) — C*(M) is a derivation then

v(fg) =v(f)g+fv(g) 4.2)

This map is obviously linear and injective since a non trivial vector field yields a nontrivial
derivation. So it gives an isomorphism among the space of vector fields and the space of
derivations. By abuse of notation we are going to use the same notation for a vector field
v € X(M) and the corresponding derivation v: C*(M) — C*(M).

Given two derivations v and w we can consider the composition vow: C*(M) — C*(M).
This is in general not a derivation. For example, if M =R" andv=w = 8%1- then vow = (%2_2 is
not a derivation since it does not respect (4.2). 1

On the contrary, vow —wov is a derivation!

To show that, we prove that, for all p € M, vow —wov acts on &), as an element of 7,M. So
let us choose local coordinates near p and compute vow — wov in these coordinates. We write

V—Zv,a)C w= Zw]a . Then

(92

0 0 ow;
vow = (;‘)laxl> (e} (;Wjaxj) ZVZ axj ax ;V;WJ& ax]

: ? 9
Since by Schwarz Theorem Tndx, = o

dw; 9 dv; 0 27 _
VOWw—wov = Zvlaxl 8x +; ’wf(9 i0x; ZZ 8x18x] ;w’vjm_

8wj dv; 0
—Z(Z( o ))ax] 4.3)

The second derivatives have canceled! The expression we have found shows that vow —wov is
a vector field.

Definition 4.2.1 — Lie bracket of vector fields. Given two vector fields v,w € X(M) we
denote by [v,w] their Lie bracket

[v,w] :=vow—wove X(M)

Consider now two manifolds M and N and a diffeomorphism F: M — N among them.
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Definition 4.2.2 Let v be a vector field on M. Then F induces a vector field F,v € X(N) by

F(v)p =dFp-1()(vp-1())

Note that it is crucial for the definition that F' is supposed to be invertible.
If f € C*(N) then Fov(f) = v(foF)oF~!

Proposition 4.2.3 If F: M — N is a diffeomorphism then for each v,w € X(M)

F.[v,w| = [Fov, Fw)

Proof. For every open subset U C N, for every f € C*(U)
[Fov, Fw](f) = Fov(Eow(f)) — Fow(F. V( ) =
Fov(w(foF)oF ) —Fw(v ( F)oF )=
=(v W(fOF)—W(V(foF)) oF " = F([v»w])(f)

Now consider a manifold M and a local one parameter group g: U x Js — M induced by
a vector field v € X(U). Consider a diffeomorphism F: U — U’, an open relatively compact?
subset W C U and set W/ = F(W). By the same argument as in the first part of the proof of
Theorem 4.1.10, if € > 0 is small enough g (W x J¢) C U and we obtain a local one parameter
group g': W/ xJe — U’ by

g =FogoF!
Forall f € C*(W’') and p € W’

d(foFogoF '(p))

Fo(f)(p) =v(foF)oF '(p) = di

(0)

so that g’ induces F,v on W’'.
In the special case when U and U’ are both open subsets of M (e.g. F = g;) we get the
following

Proposition 4.2.4 Let F: M — M be a diffeomorphism. Consider a vector field v € X(M)
and its induced local one parameter group g.

Assume that both W and F (W) are open relatively compact subsets of M and set € > 0 as
above.

Then we have

Fog(p)=goF(p)

for all p in W, for all ¢ € J if and only if, for all p € W

dFy(vp) = V(-

This leads us to the following definition

2 A subset of a topological space is relatively compact if its closure is compact.
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Definition 4.2.5 Let g: Q — M be a local one parameter group of smooth transformations of
U into M and let v be a vector field on M.
We say that g leaves v invariant if for any (p,z) € Q

d(g)p(vp) = Ve (p)

It is easy to show that any local one parameter group of smooth transformations of U into M,
g: Q — M, leaves its associated vector field invariant.

Let U’ be an open subset relatively compact in U and choose a vector field w € X(U).

We can perturbate w using g as follows. For all small 7 we define vector field w, and dw, /dt
on U’ by

th

aws _ th(f)
dt N

() ==

Wy = (gt)*W

This allows us to give the following geometrical interpretation of the Lie bracket as derivative
of one vector field with respect to the one parameter group of transformations induced by the
other vector field.

Proposition 4.2.6 For t small enough, on U’, if v is the vector field induced by g, then

dwi
dt

= [W[,V]

Proof. SetZ, := %. We first show Zy = [w, V).
Fix a point p € U’. For small 7, (w;),, describes a path in 7,U’ whose velocity at ¢ = 0 is Z.
Since (w;)p, = d(g:)q(wq) for g = g_;(p) then

A040)p () _ piag 00 =V iy A8 ) (Vi) 00
dt 1—=0 t 1—=0 t

(ZO>p =

Then, for every f € C*(U) we have

(Z0)(F) = limd(gt)gft(p) (wgfr(p)) —Wp (f) = lim (wgft(p))(fog,) —wy(f)

t—0 I3 t—0 t

SO

ST w(fog)og——w(f)
Zy(f) = lim ;

(W(fog)—w(f)og)og—

= lim
t—0 t

— lim w(fog)—w(f)og
t—0 t

i WU 08) —w(f) —w(f) o+ w()
t—0 t

i WU o8) =) L w(f) o —wi(f)
t—0 t t—0 t

if the last two limits exist uniformly on U’.
The second limit is easy. By definition of v

wylet) =gy (5 ) () = L o
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SO

t—0 t

uniformly on U’.

For the first limit consider the smooth function = fog. Then h € C*(U’ x Jg) for & small
enough.

Hence the function

fogt_f — h(pﬂt)_h(p70) f t O
H(p,o:{ f o fort?

9 (p,0) = v,(f) fort =0
belongs to C*(U’ x Jg). Hence

wifog) —wlf) _, (hm
t—0 t

lim
t—0 t

This implies then
Zy = [w,v] = [wo,V]

onU’.
Finally, since g leaves v invariant, by definition of w; it follows (g;).Zy = Z; and then

(80)s[w,v] = [(81)sw, (1) V] = [wr,V]

onU’. [ |

Exercise 4.2.1 — Properties of the Lie bracket. Leta,b € R, f € C*(U), u,v,w € X(U)
Prove

1. [v,w]=—[w,V]

2. v, [w,ul] + [w, [u,v]] + [u, [v,w]] = 0 [Jacobi identity]

3. [au+bv,w] = alu,w]+ blv,w]

4. [fv,w] = flv,w] —w(f)v

The first three properties give a structure of Lie algebra to X(U).

Exercise 4.2.2 Prove that any local one parameter group of smooth transformations leaves
its associated vector field invariant.

Exercise 4.2.3 — The bracket measures if local one parameter groups commute.
Consider two local one parameter groups g, of smooth transformations of U in M inducing
respectively vector fields v,w € X(U). Show that [v,w] = 0 if and only if for every open
subset U’ relatively compact in U, for all p € U’, for small enough s

gt(hs(p)) = gs(ht(p))

4.3 Frobenius Theorem

Consider a smooth vector field v on a manifold M and a point p € M such that v, # 0. Then, in
a neighborhood U of p, v does not vanish. Its local one parameter group produces a family of
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integral curves g, : J — M, embedded submanifolds of dimension 1 covering U (a foliation in
curves) whose tangent spaces as subspaces of 7, M are generated by v, forall g € U.

We will in fact see that one can always choose as U a chart in p with local coordinates
X1,...,X%, such thatv = 3% and the foliation is given by the lines obtained fixing the values of all
variables x;, j > 2.

p) Soour foliation gives locally a partition of M in submanifold of dimension 1. This does not
mean that we have a (global) partition of M in submanifolds of dimension 1. See Exercise
4.3.1 for an example.

Can we do this simultaneously for two vector fields v and v,? We note that, if there are
local coordinates such that v; = a%l and v, = aixz,then their Lie bracket vanish: [vi,v] =0

on U. So, if for example we have local coordinates such that v; = 8%1 and v, = &Y aixl, since

[Vi,v2] = €Y alxz # 0, then we have no hope to find coordinates yy, ..., y, such that simultaneously

vi= a%,, j =1,2. Still, if we consider the foliation given by the surfaces obtained fixing the
J

values of all variables x;, j > 3 their tangent spaces, as subspaces of 7,M are generated by v;(g)

and v,(q).

Now consider local vector fields v; = 8%1 and vy = e*! 3%2 + 8%3' We compute v3 := [vy,v;] =

e’ aixz and note that w3(p) is not in the subspace of 7,M generated by w;(p) and wy(p). This
implies that there is no embedded surface S in M such that wy(p) and w>(p) lie both in 7},S!
In fact, if such a surface S would exist, then w; and w, would define vector fields on S whose
bracket at any p € S would coincide, see the forthcoming proposition 4.3.2, with w3(p), so
wi(p), wa(p) and w3(p) would stay in the plane 7),S, a contradiction.

To be more precise we need to introduce some definitions.

Definition 4.3.1 Let M be a manifold.

A distribution Z of rank r on M is an embedded subbundle of 7,M of rank r.

In particular a distribution & of rank r gives, for all p € M, a vector subspace &, of M of
dimension r. Since subbundles are locally trivial, for each p € M there is a neighborhood U
of p and smooth vector fields vy, ...,v, € X(U) generating 7, ateach g € U.

We say that a vector field v € X(M) lieson Z if v, € &), for all p € M.

A distribution ¥ is involutive if for every pair of vector fields v, v, lying on &, their Lie
bracket [vy,v;] lies on Z as well.

An embedded subvariety 1: § < M is an integral submanifold of ¥ if for all p € S,
di, (T,S) = D).

A distribution is integrable if all points of M are contained in an integral submanifold.

A chart (U, @) inducing local coordinates xi, ..., x, is flat for a distribution & of rank r

if 7, is generated by (3%.) yeens (%) at all points p € U.
p "/p

A distribution Z is completely integrable if for each point p € M there is chart at p flat
for 9.

It is easy to see that
completely integrable = integrable = involutive

The first implication is obvious, the second is following

Proposition 4.3.2 If a distribution is integrable, then for any two vector fields lying on it their
Lie bracket lies on it too.
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Proof. Let S C M be an integral manifold of Z. Suppose that v, w are vector fields lying on Z.
The restrictions v|s, w|s as section of Tg|y are sections of the subbundle 75 and then they define
vector fields on S.

By definition, the restriction of the Lie Bracket [v, w] to S, as section of TS| ~» equals the Lie
Bracket [v|g, w|s] of vector fields on S, and therefore it lies on & as well. [ |

The main result of this section, the Frobenius Theorem 4.3.6, says that these three properties
are equivalent.

p) This is related with the problem of solving the following type of differential equations.

Consider an open subset U C R”, and look for functions u € C*(U) solving a system of r
differential equations of the form

d du
keoyOU N S
kilvi(x)ak(x)—O i=1,...,r

Consider the r vector fields vy,...,v, € X(U) defined as v; =Y, vi-‘aixk, and assume that

they are all contained in a completely integrable distribution & of rank 4 # n. Then we have
local coordinates yi,..., V5, Vh+1,---,Yn such that all v; belong to the subspace generated

by aiyl, ey 887;, and every function depending only on the last coordinates yjyy,...,y,

solve the given differential equations. One can in fact prove that every solution is of this
form, and therefore that if the only involutive distribution containing our vector fields is
the whole tangent bundle, then no non trivial solution exists.

To prove Frobenius Theorem 4.3.6 we need a more general version of Theorem 4.1.5,
considering, roughly speaking, Cauchy problems depending on m parameters. The following
propositions 4.3.3 and 4.3.4 are proven in the book of Narasimhan Analysis on real and complex
manifolds, Chapter 1, Section 8.

Proposition 4.3.3 Consider open subsets J C R, V C R" and U C R™.

Consider a smooth map F': U xJ xV — R".

Then for all ty € J, p € U, for each relatively compact open subset V' C V, there exists a
0 > 0 and a smooth function

u:Js xV' —U
such that
Jdu
M(t()vy):p F(u(l‘,y),l’,y):g(l’,y)

Moreover two such functions coincide in the common domain.

The "solution" u depends on "starting point" p. In fact u is smooth also as a function of the
starting point. Namely Narasimhan proves

Proposition 4.3.4 Consider J,V,U, F as in Proposition 4.3.3.
Then for every ty € J, p € U, yo € V there are open subsets 1o € J' C J, pe U' C U,
yo € V! C V and a smooth function

i: U xJ xJ xV -U
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such that, for all g € U’, forall y € V’, for all z,s € J',

- - il
i(q,s,s,y) =q F(i(q,t,s,y),t,y) = E(q,t,s,y)

Proposition 4.3.3 may be seen as a special case of Proposition 4.3.4 by setting

M(t,y) = ﬂ(patat()ay)
In fact Proposition 4.3.4 may be seen as a generalization of Proposition 4.3.3 obtained replacing

the "fixed" point p € U by a smooth function p: V — U. In other words, if we let the starting
point to vary with the parameters. In fact, in that case, setting

M(t,y) = ﬂ(p(y)7tvt0>y)

we obtain

u(to,y) = p(y) F(u(t,y),t,y) = g?(w)

We can now prove the following lemma.

Lemma 4.3.5 Consider open subsets V C R” and U C R" with respective coordinates

X1yeoosXmand yi, ..., y,.
Consider smooth functions v;: V xU — R", i=1,...,m and set vf for the k" component
yrov;of v;.

Then, for each x € V and y € U there exists an open subset W C V containing ¥ and a
smooth function u: W — U such that

u(x) =y s
94 (x) = vy(x,u(x)) for all x € W and i = 1,...,m :

if and only if

av; 8v, K av, "

7%, Z Vi = o Z v foralli,j e {1,...,m} 4.5)
inVxU.

If u: W — U and u': W — U are two functions as above, then they coincide on the
connected component of W N W’ containing X.

Proof. Assume that there exists a function u solving Problem (4.4). Then

%u 0 i & i
Fr (x) = a—xjv,- (x,u(x)) = ax; + ; S5V

The conditions (4.5) follow immediately by Schwarz Theorem.

Conversely assume (4.5). We assume moreover for sake of simplicity x = 0.

Several arguments of the forthcoming proof hold only up to shrinking V, up to substituting
V with a smaller open neighborhood of x. After all these shrinkings we obtain the open subset
W of V in the statement of the Lemma. We are going to deliberately ignore this technical point
of the proof to make more evident the idea behind the proof.

We first construct u on the curve x; = --- = x,,, = 0.
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We consider the Cauchy problem

{y(O) =5
D) =vi(1,0,...,0,5(1)).

By Theorem 4.1.5 we get a unique smooth solution f3; for || < §;. We want to extend it to u in
the sense that u(x;,0,---,0) = B;(x;): we notice that for any such extension (4.4) would hold
fori=1onxy=- —xm—O.

Now we proceed inductively on m. Assume that we have a smooth function f;_; on
Xy = ++» = x,, = 0. By Proposition 4.3.3 in the generalized form discussed in the remark after
Proposition 4.3.4 there is a unique solution B of the system of differential equations

(O Xlyeooy xk—l) :ﬁk_l(xl,...,xk_l)
gf(t Xl Xk1) = VX1, Xk1,2,0,..,0,9(85 1, ..., Xk—1))

We want to extend u on x; 1 = -+ = x,,, = 0 by u(xy,...,x,0,...,0) = Be(xx; x1,. .., X6—1). We
notice that for any such extension (4.4) would hold fori =kon x; | =--- = x,, = O:
Jdu

a—)%(xl,...,xk,o,...,O) =wve((x1ye ey xk,0,...,0),u((x1,. .., x,0,...,0)))

However, we need to prove that (4.4) holds also for i < k on x;| = - -+ = x;;, = 0; in other words
we need to prove the analogous equality 5 91—y, holds, even when x; #£0.
To a fixed such i we associate the functlon h

h(t;xl, e ,xkfl) =

d
= a—u(xl,...,xk_l,t,o,...,O)—vi(xl,...,xk_l,t,O,...,O,u(xl,...,xk_l,t,O,...,O))

Xi
By Schwarz Theorem and (4.5)

Pu__9vi_y I dvi
9x,.0x; 8xk ~ dxi dy
82 ] aVi
ax,axk 8xk Z k&yl
_8vk 8ul 8vk 8v,~ 8vi /
“ou T Lauon on o't

Eh(t;xl’ Xk—1) =

_8\/]( ! % 8Vt avl
9x; +21'(hl vi) dyr  Oxi Za)’l

B vy

—Z[:hl(t Xly.nn s Xk 1)Tw

exhibiting / as solution of an ordinary differential equation. Moreover, by the inductive assump-
tion A(0;xp,...,x¢—1) = 0.

We can deduce by Proposition 4.3.3 that h(t;x1,...,x,_1) = 0, since both & and the zero
function solve the same differential equations with the same data. This proves the claim that

(4.4) holds also fori < kon xjy; =--- =x,, =0.
Then by induction we obtain a function u as required. The uniqueness follows again by the
uniqueness assertion in Proposition 4.3.3. |

We can now use it to prove Frobenius Theorem
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Theorem 4.3.6 — Frobenius Theorem. A distribution is completely integrable if and only if
it is involutive.

Proof. We have only to prove that every involutive distribution & is completely integrable.

So let Z be an involutive distribution on M. We fix a point p in M. We will construct a chart
in p flat for 2.

Let r be the rank of &. Then there are, for a suitable open neighborhood U of p in M, r vector

fields 7, ..., 7, generating & on each point g € U. Shrinking U we can take local coordinates
X1,...,X, on it and write
0
~ =
V= Z Vis—
j=1 dx;

The smooth functions 17{ are naturally arranged in a matrix with r rows and n columns, r < n, of
rank r at each point ¢ € U. Permuting the coordinates, we ensure that the left » X r minor does
not vanish at p; in other words

det (ﬁf (p)> #0

1<i,j<r

Shrinking Q if necessary, we can assume that det (ﬁl] ) never vanishes. So thereisar X r
1<i,j<r

matrix A = (a;;) of smooth functions a;; € C*(U) such that

A(#) = () _ _A=1
Y<ij<r Ya<ij<r

Define v; :=}_;a;;V;. Since A is invertible, vy,...,V, generate 2 at each point. We rename
the coordinates, setting y; := x, ;. So the local coordinates are from now on named xi,--- ,x,,
Y1,-**,Yn—r. Then, by definition of A

o ) n—r N P
=gt LG,

Note that this implies that, for all g € U, Z,N <( Iy ) > = 0. We compute
1/ q

Ivi "V, v T av ) 9
ox; hzlayh

7, 7] = Z (ax, + Z Byhvi Vi I

Since Z is involutive and 7, N < (%) > =0, we deduce that [7;,V;] = 0.
q

In other words for all s

avs ”Zjavj - ”Z’
Bx,  y, ax] 8yh
Writing v; 1= ( ll, ,v?") , we obtain

& 9V J i & 8vlh

Zah LT ox; Z

that is exactly (4.5).
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To apply Lemma 4.3.5, we shrink U to a product V x U’ where V has dimension r, corre-
sponding to the coordinates x;, and U’ has dimension n — r, corresponding to the coordinates y;.
Accordingly we write p = (%,y). Then, up to further shrinking V, there is a function u: V — U’
such that

{u(f) =
%(X) vi(x,u(x))

Without loss of generality we can assume x;(p) =y;(p) =0 forall i, j, so £ =0, y = 0. Then
we consider the map ¢ (x,y) = (x,y —u(x)). Its differential d¢, at p is invertible and a direct
straightforward computation shows

_ d
dp(vi) = o
Then, composing the original chart with ¢ we obtain a chart in p flat for 2. |

Exercise 4.3.1 Consider the lines I, . in Exercise 2.3.1 and their image 7(/,; ) in the torus
T.

Prove that for every fixed a,b € R there is a distribution Z,;, on T such that the 7(l,..)
locally describe integral submanifolds of Z, .

Recall that, as seen in Exercise 2.3.1, if % ¢ Q, then 7(l, ) is not a submanifold of T
because it is dense in 7.
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5. Differential forms
Multilinear algebra
In this section we develop some tools in advanced linear algebra.
Let Vi,...,V, be finite dimensional vector spaces over a field K. For sake of simplicity we

will always assume that K has characteristic zero; this includes R and C.

Definition 5.1.1 A map
w:V XVQX--'XVq—HK

is multilinear or g-linear or a tensor of degree g if the following holds: Vi € {1,...,q} and
for every choice, Vj # i, of vectors v; € V;, the induced map

v:Vi—»K
defined by, Vv € Vi, w(v) = @(v1,...,Vi—1,V,Vit1, ..., Vq), is linear.
| Example 5.1 The tensors of degree 1 form the dual space V" of V.

I Example 5.2 The tensors of degree 2 are bilinear maps as, e.g., the standard scalar product
on R? or R3 (in which case V| = V»).

Indeed, g—linearity is the natural generalization of the idea of bilinearity to the case of more
than two (but still finitely many) factors.

Example 5.3 If you know the cross product x in R you may prove that the map
(VI,VZ,V:;) — (V] X v2) %!
defines a tensor of degree 3.

Example 5.4 For every n > 1 the map det: (R")" — R associating, to each ordered list of n
vectors in R”, the determinant of the matrix whose columns are them, in the same order is a
tensor of degree n.
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Definition 5.1.2 The space of multilinear maps from V; x V5 x --- x V, to K is a vector space
(see Complement 5.1.2), which is the tensor product of Vy*, V5, ..., V" and is denoted by

VioV,® eV

p Definition 5.1.2, in the case g = 1, gives the vector space V" of all linear maps from V; to
K: the dual space of V.

p ) The expression, Vv € V and Vo € v,

(@) = o(v)
defines a map V — V**, which is in general (not assuming finite dimensionality) not
surjective.
We are assuming V finite dimensional. For each basis {ey,...,e,} of V, the set of the
elements {¢i,...,&,} of V* determined by the formula &(e;) = §;; is easily shown to be
a basis of V*, the dual basis of {e|,...,e,}. In particular, if the dimension of V is finite,

then V has the same dimension of V* and therefore of V**.

Moreover, the map V — V** at the beginning of this remark is obviously injective and
therefore an isomorphism. So we may and will use this map to canonically identify V with
Ve,

Definition 5.1.3 We define then
V1 ®V2®®Vq P 1** ®V2**®®Vq**

There are some very special elements in V' @V ®--- @ V.

Definition 5.1.4 Choose V1 <i < g, an element ¢; € V"
Then define ¢ ®--- ® @, by

PO RQ(vi,-. ., vg) = @1(v1) - @2(v2) -+ ?q(vq)-
These are the decomposable tensors in V'@ Vy - Q@ V'

Note that (¥, a1j,¢1j,) @+ ® (qu aqjquqjq> =Xaij 1 dgj,P1jy @ @ Qg

We fix bases {ej1,...,ein, } of each space V;, and we consider the corresponding dual basis
{€i1,...,&n} of V*. They are uniquely determined by the formula g;;(e;y) = J;;.

Theorem 5.1.5 The set of decomposable tensors
{81i1 K&y, XWX Sqiq}
form a basis of V' ® V5 ---® V. In particular

dim (V' @ V5" --- @ V) = (dimV;)(dim V) - - - (dim V).

Proof. We skip this proof as it is very similar to the proof of the forthcoming Theorem 5.1.12. W

A special case is the complexification of a finitely dimensional real vector space V, as defined
in Definition 3.4.1.
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Then V ®g C is the real vector space obtained as in Definition 5.1.3 considering C as vector
space of dimension 2 over R.

It has a natural structure of complex vector space with scalar multiplication by complex
numbers defined! on the decomposable tensors by

VA, ueCWeV A(veu)=ve (Au).

If {e;} is a basis of V (over R), then {e;® 1} is a basis of V @g C over C and {e; ® 1} U
{ej®i} is a basis? of V @ C over R.

It is natural to consider V embedded in V ®g C via v — v® 1 writing pv for v p. So {e;}
is at the same time a basis of V over R and V ®p C over C whereas a basis of V ® C over R is
the set {e;,ie;}.

The following construction will be useful in the next chapters.

Definition 5.1.6 Consider vector spaces Vi, V2, Wi, Wa, and linear applications L;: V; — W},
J € {1,2}. Then there is a unique linear application

LiQ®RLy: ViV, - W W,
such that Vv € Vi, Vv, € V5,

(L]@Lz)(V]@Vz) :Ll(v1)®L2(v2). 5.1
Definition 5.1.6 requires the following proof of existence and uniqueness.

Proof. Fix respective bases {v;;} of V| and {vy} of Vo. By Theorem 5.1.5, {v; ® vy} is a basis
of VI ®V; so, if L1 ® L, exists, it is the unique linear application L: V; ® V, — W) @ W, such that
L(vij®var) = Li(v1j) ® La(vax). This shows uniqueness.

The existence follows since (see Complement 5.1.4)

(fgn)- ) g

=Y aijanL (vij®@vy)
j7k

= Zaljaszl (vij) @ La(vax)
j7k

= (Zalel (V]j)) ® <ZGZkL2 (Vlk)>
- x

J

=1, (Zaljv1j> Q Ly (ZaZkak> . |
J k

The space of the linear applications among two fixed vector spaces can be interpreted as a
tensor product as follows.

Proposition 5.1.7 Consider two finitely dimensional vector spaces V and W on the same field.
Then there is a canonical isomorphism of vector spaces W ® V* — Homg (V, W) such that

IThis extends to the complex numbers the scalar multiplication by real numbers of the real vector space V ®p C.
Indeed, for A4 real, the equality holds by Definition 5.1.4.
2Here i € C denotes, as usual, a square root of —1.
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every decomposable tensor w ® ¢ is mapped on the homomorphism

vie @(v)w.

Proof. The proof of the existence and uniqueness of a linear application as stated follows the
same strategy of the proof that the Definition 5.1.6 is well posed. Its injectivity is trivial while its
surjectivity follows by a dimension count using Theorem 5.1.5.

The reader can easily complete the proof writing the missing details. |

The most important case for our purposes is the case
Vi=--=V,=V.

In this case we use the shorter form (V*)®4 for V* @ --- @ V*.

Definition 5.1.8 A tensor @ € (V*)® is symmetric if its value does not depend on the order
of the vectors. In other words, if Vi # j,

The symmetric tensors form a vector subspace of (V*)®4 usually denoted Sym?V*. The
skew tensors form a vector subspace of it usually denoted AYV*.

For later convenience we define conventionally (V*)*0 = Sym®V* = A0V =K.

If dimV is finite, dualizing twice as in Definition 5.1.3 we obtain Sym?V and A9V

We are mostly interested in A9V*. Note A°V* = K and A!V* = V*. In higher degree an
important example of skew tensor is the determinant, seen as tensor of degree dimV in Example
5.4.

Let’s construct some elements in A2V*. For general @1, ¢, € V*, @ ® ¢, is not skew since
there is no reason for @;(v;)@>(v2) to be equal to —@>(v)@;(v2). Then we use an averaging
procedure.

Definition 5.1.9 V@1, ¢, € V* we define” ¢ A =1 (01 @ 92 — g2 ® 1) € APV,
We can equivalently write ¢ A ¢, in the form

OIANP: VXV — K

(vi,v2) édet(%éii; gg:zg)

“Some author use the alternative definition ¢; A ¢ = @1 ® @2 — @ ® @;. That choice forces a series of small
changes in several of the forthcoming definitions to ensure that the Grassmann algebra is a graded algebra. The
two resulting algebras are isomorphic.

This is the wedge product of ¢; and ¢, and may be seen as a map

A AWVEXAlYVE 5 A2y
(01,2) = @AM

There is a natural extension of this idea to the A9V*.



5.1 Multilinear algebra 77

Definition 5.1.10 We define the wedge product

A ANVF X A2VF 5 ADTRy*
(o1, ) = ONAND

as follows“:

[0} /\(1)2(\/1, e ,vql+q2) =

1
=" (o)1 (Vg(1),---sV (v yeeasV
@ ta)! Gegm (0)1 (Vo1)s- -+ Vo(a) @2(Volqi1)s-+ - Volar a2))

where Xy is the group of the permutations of {1,...,k}.

4e(0) € {1} is the sign of the permutation o. If & is the product of  transpositions, £(c) = (—1)’. Every
permutation ¢ can be written in many different ways as product of transpositions, and the number / of these
transpositions may vary. However £(0) is well defined since the parity of / only depends on &: the reader can
find a proof of it in any basic book of group theory.

Note that Definition 5.1.10 makes sense also when g; = 0 (and/or g, = 0), in which case
w=AcKand o, A = Aws.

The wedge product has useful properties (see Complement 5.1.12). For example, it is
associative, (k) A @y = k() A @) = 01 Nkan, o Ay = (—1)7%2 @, A @;. In particular
we can write ko) A --- A @; without ambiguity. When all the @; are 1—forms this has a nice
expression.

Proposition 5.1.11 Assume ¢y,---,@, € V*.
Then

BN Ay lo1) = o F, 0N [001y) = oy det( i)

4 se3, i=1
where (¢;(v;)) denotes the matrix

1) - i(vy)

‘Pq(."l) ‘Pq(."q)

Proof. The second equality is just the Laplace expansion of the determinant.
We prove the first equality by induction on g. If ¢ = 1 the equality becomes the tautology
@1 (v1) = @1(v1): there is nothing to prove.

We may then assume the formula true for g — 1: Vwy,...,w,_1 €V
1 N
(Pl/\"'/\(Pq—l(W17"‘7Wq—l): (q—l)' Z S(T])H(pi(wn/(i)). (52)
"n'EX, i=1

We compute the wedge product of @; A--- A @, and ¢, by Definition 5.1.10.

((Pl/\"'/\(qul)/\(pq(vlv"'avq) =
1

P M@ A AQ 1 (Vs Vaig-1) e (n(g))

g nex,
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We then apply the inductive assumption (5.2) for (wi,...,wy—1) = (Vy(1);---,Vp(g—1))- Note
that, for each i, w; = Vi) and then, for all n’ € X1 Wir(i) = V(' (i))- So

((pl/\"'/\(qul)/\(pq(vb"'a q):

~ g o (2, B e oo aomo -

-1
~ Ma—1) Z 8(1’[)8(1’[’) (LII_T] (pi(Vnon’(i))> (Pq(Vn(q))- (5.3)

q‘(q_ 1) NEL,, N'EX 1

We consider each permutation 7’ € X,_; as a member of X, which fixes g. Thennon’ € X,
and (5.3) may be written as

QLN NPy (Viy..yVy) = ——— (mon’) ( ©0i(vpo )
q q q'(q_1)| nezq,;ezq 1 H non’(

Each summand in the right-hand term do not really depend on 71 and 1’, but just on ¢ :=
non’. Varying (n,n’) € £, x X, we obtain each o € X, exactly (¢ — 1)! times, and therefore

1
QLN NP (V1yenyVy) = ——— qg—1)le(o ?i(vo(
I 1 q'(q_l)'cgq H el
1 q
==Y &) ([Teen) L
9° sex, i=1
From now on we fix a basis ey, ...,e, of V, and we denote by &,..., &, the dual basis of V*:

then g(e;) = ;. Since V* = A! (V*) the & are 1-forms.
From the properties in Complement 5.1.12 follow few very useful rules:
. Ei/\Sj = —EJ'/\SZ';

e NE=0;
* g, /\"-/\Siq/\é‘j = (—l)qej/\sil /\"'/\Siq.
Similarly

&N NE, = 0 when two indices coincide, i.e. 3i # j k; = kj;

* if we exchange two indices the form &, A --- A &, is multiplied by —1.
Consider vectors vy,...,v, €V, v; = Y, virex. Then &(vi) = v and

1 |
EIN - NE (V1. vg) = adet(&(w)) = adet(vﬁ)-

1 1
Epy N+ /\Ekq(vl,. .. ,Vq) = adet(&‘ki(\}j)) = adet(vjki)).

So the functions gleg, A--- A &, with increasing indices (1 < ky < kp < --- < k; < n) are the
determinants of the minors of the matrix (v;;).
The next theorem shows that all skew forms may be expressed by using determinants.

Theorem 5.1.12 Let g > 0. The set

{gkl/\"'/\gkq‘lgkl§'“§qu”}
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form a basis of A7(V*). In particular

dimAq(V*):{ (g) i;ZiZ

Proof. We first show that it is a set of linearly independent forms. Take constants a;,...;, € R
such that

ajl.‘.qujl /ARR '/\8jq =0.
I<jis$jqs<n

Let us fix if,...,ig with 1 <ij 5 -+ 5 iy < n. From the remark above

0=q! Z ajl...qujl/\---/\sjq (eil,...,eiq):ail..,,'q.
1<jisSiqsn

To prove that it is a set of generators we need to show that each @ € A?(V*) is a linear
combination of the forms €;, A--- Ag;, .
We define

n:=w-q Y  oe.....e)E N Ng,
1<jig-Sig<n

and conclude the proof by showing 11 = 0.
By definition of n (still using the formulas of the remark above) i1 $ip S -+ 5 iy =

n(ei,.--,ei,) = 0. Since 7 is alternating, it follows that 1(e;;,...,e;) = 0 when the ¢;, are
pairwise distinct. Moreover (Complement 5.1.9) n(e;,, ... ,e,-q) = 0 when two of the vectors
coincide. So 1(e;,,. .., e;,) vanishes always.

Finally, since 1 is linear in all factors, Vvy,...,v, €V, n(vy,... ,vq) is a linear combination
of the n(e;,,. .., e;,). It follows n = 0. [ |

Definition 5.1.13 A graded vector space V* is a vector space containing subspaces® V9,
q € Z such that V* = P, V7. Anelement v € V¥ is a homogeneous element of degree g.

The Hilbert function of the graded vector space V* is the function HF(V*®): Z —
NU {e} associating to each integer g the dimension of V4.

A linear application among two graded vector spaces L: V*® — W* has degree d if Vg € Z,
L(V) Cc Watd,

An isomorphism of graded vector spaces is an isomorphism of vector spaces of degree
zZero.

“There are books in literature writing the definition of graded vector space with grading ¢ in N instead of Z.
That definition can be seen as a special case of our definition, the case when V4 = {0} for all g < 0. In fact we
will be in that situation for almost all the graded vector spaces considered in these notes. However it is more usual
nowadays to introduce this notion with gradings in Z because graded vector spaces with negative gradings are
important for several applications.

Isomorphic graded vector spaces have the same Hilbert function and, conversely, two graded
vector spaces having the same Hilbert function, if their Hilbert function has values in N (so never
o), are isomorphic.

Note that every element v € V* can be uniquelly decomposed as v := } v, with v, homoge-
neous of degree g.
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Definition 5.1.14 A graded algebra V*° is a graded vector space provided with an inter-
nal product x: V*® x V*® — V* giving a structure of algebra on it such that if v and w are
homogeneous elements of respective degree p and g then v X w is homogeneous of degree
p+q.

A homomorphism of graded algebras L: V* — W* is a linear application of degree 0
such that Yv,w € V*, L(v x w) = L(v) x L(w).

An invertible homomorphism of graded algebras is an isomorphism of graded algebras.

Definition 5.1.15 The exterior algebra or Grassmann algebra is the graded algebra
A*V* =B, ATV" considered with the internal product given by the wedge product.

So an element of the exterior algebra is a formal sum of g—forms. From Theorem 5.1.12

dimA®V* = Z;h:rrbV (dir(r;V) _ (1 + l)dimV — 2dimV'

Linear applications between vector spaces induce naturally linear applications among their
spaces of tensors, mapping symmetric tensors to symmetric tensors and skew tensors in skew
tensors. Since we are mostly interested in skew tensors, we consider only the latter.

Definition 5.1.16 Let L: V — W be a linear application. It naturally induces linear applica-
tions (pull-backs)

L*: ATW* — AIV*

defined by (L*®)(v1,...,v4) = @(L(v1),...,L(v4)), defining a linear application of degree
zero

L : A°W* — A°V*.
p To ease the notation we have done an abuse of notation attributing the same symbol, L*,

to many different maps. Several similar abuses will follow. This is a standard choice in
differential geometry: the student should try to get used to it.

p) Ifg=1,L" is the usual dual map .

p) By definition (LjoLy)* = LjoLj.

By the complements 5.1.13 and 5.1.14 and by Theorem 5.1.12 we can express each L*
(for every ¢) in terms of the linear application dual to L. The most interesting case is the case
when V =W and ¢ = dimV. The next theorem shows that in this case L* coincides with the
multiplication by the determinant of L.

Proposition 5.1.17 Let L: V — V linear, ® € AY™YV*, Then

Lo = (detLl)w.

Proof. Setting n:=dimV, by Theorem 5.1.12 dim A"V* = 1 and therefore the linear application
L*: A"V* — A"V* is the multiplication by a constant ¢ € K. Since (g; A---A&,)(e1,...,en) = 1,
then L* (&1 A---N&,)(e1,...,e,) = 5. Itis then enough to show n!L* (g A---Ag,)(er,. .., en)
detL.

:‘._.
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Indeed, by Definition 5.1.16 and Proposition 5.1.11

nlL* (g1 A\---N&)(er,...,en) =nleg A--- Ng(L(er),...,L(en))

ei(L(er)) ---&1(L(en))
= det L

e (Ller) - en(Len)
=detL. | |

Complement 5.1.1 — The dual basis. Let {ey,...,e,} be a basis of a vector space V.
Prove that V1 < j < n there is a unique &; € V* such that V1 <i <n, g;(e;) = 5.
Show that {¢&j,...,&,} is a basis of V*.

Show that the following operations give to V" ® - -+ ® V, a structure of vector space over

VCO],(DQEVI ®"'®V;,Vvi€Vi, ((1)1—1—(1)2)(\/17“',vq):a)l(vl,--~ ,vq)+a)z(v1,~~-,vq)

Complement 5.1.2 Let Vj,...,V, finitely dimensional vector spaces over K.
VAeK Vo eV @V, @ -V, Wi eV, (Aw)(vi, - ,vg) = Ao (v1, - ,vy)

Complement 5.1.3 — Decomposable tensors. Check that the functions ¢; ® --- ® @, in
Definition 5.1.4 are tensors in V" @ V' ® - -- @ V" by showing their multilinearity.

Complement 5.1.4 Let Vj,...,V, be vector spaces over K.
Prove the following equalities.
* Leti€ {1,...,q}. Then for every choice of g elements @;cV; forall 1 <j<g,and
of a further ¢/ € V;, it holds

PR R(P+P)D DPY=PIR ROR VP + PR RO R R,

» Letic {l,...,q}. Then for every choice of ¢ elements ¢; € V;, forall 1 < j <g¢, and
of a scalar A € K, it holds

PR QAP RP=API® QO ®,)

Let {e;;} be respective bases of V;. Deduce from the previous equalities that for each
choice of scalars A;; € K

dimV; dimV, dimV; dimV, q
Z /11]'61]' (SURERNY Z lqjeqj = Z Z Hliji e1j1®~-®eqjq .
j=1 j=1

A=l =1 i=1

I Complement 5.1.5 Write the details of the proof of Proposition 5.1.7.
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I Complement 5.1.6 Prove Theorem 5.1.5.
I Complement 5.1.7 Prove that Sym?V* and A7V* are vector subspaces of (V*)®4

Complement 5.1.8 Show that map det defined in Example 5.4 is a tensor in ((R")*)®" and
that it is decomposable if and only if n = 1.
Show that det € A" (R")*.

Complement 5.1.9 Let w be a skew tensor.
Prove that if @(vy,...,v,) # 0, then the v; are pairwise distinct.

Complement 5.1.10 Let V be a vector space over K.
Prove that, for all ¢, @1, @, € V¥, 41,4 € K,

*oNP=0.
COINPr=—2 N\ Q.

* (M1 +00) A=A (1 A@)+Ma(P2 A Q).
PN (M1 +0) = A(@AP) + (P A P2).

Prove that, for all ¢;,¢0, € V¥, 41,4 € K, v,v;,v, €V

* ¢ A@(v,v)=0.

* QLAP(v,v2) = =1 A@a(v2,v1)

c YA (v +Av2,v) = 4101 A@a(vi,v) + 01 A @a(va, V).
* QI APV, Avi +Aav2) = L o1 A@a(v,vr) + A @i A @a(v,12).

Complement 5.1.12 Let V be a vector space over K.
Prove that, for all ¢;,92,93 € N, @, € AMV*, @, € A2(V*), 03 € A% (V*), k€K,
W AW EAQI‘HIZ(V )

(@1 +M) ANy = AD+M A@y; A (@1 +11) = 0 Ay + O AT
(ko) ANan =k(w) Awn) = o) A (kax);

(1 ANw) N3 = o1 A (o A @3).

0 ANy = (—1)1"%2 @) A oy

Complement 5.1.13 — Pull-back. Let V,W be vector spaces over the same field and let
L:V — W be a linear application.
Prove that all maps L*: AYW* — A9V* in Definition 5.1.16 are linear.

Complement 5.1.14 — Pull-back and wedge product commute. Let V,W be vector
spaces over the same field K and let L: V — W be a linear application.
Show that Vo, n € A*V*, L*(wAn) =L*0 AL*7.

‘ Complement 5.1.11 Let V be a vector space over K.
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Exercise 5.1.1 Set V = R3 and consider the map w: V3 — R defined by @ (vi,v2,v3) =
(vi X v2)-v3,

Show that @ € (V*)®.

Show that @ is skew.

Deduce that @ is a generator of A3V*.

Exercise 5.1.2 Show that, if V1 <i <¢g dimV; =1, all tensors in V| ® - - - ® Vq* are decom-
posable.

Exercise 5.1.3 Show that, for each decomposable tensor @ € (V*)® different from 0, the
set
{veVvijov,...,v) =0}

is a union of finitely many hyperplanes of V.
Exercise 5.1.4 Prove that, Vg > 2, there is a tensor in (R2)®q not decomposable.

Exercise 5.1.5 Consider, for each bilinear form ® € (K")* ® (K")*, the unique square
matrix A € M, (K) such that ®(v,w) = wl Av. Show that this gives an isomorphism among
(K")* @ (K™)* and M,,(KK). Show that this induces two isomorphisms

« among Sym?(K”)* and the space of the symmetric n x n matrices;

+ among A*(K")* and the space of the skewsymmetric n X n matrices.

Exercise 5.1.6 Assume dimV > 1. Show that Sym?(V*)NAY(V*) # {0} & g < 1.

Exercise 5.1.7 Show that (V*)®2 = Sym?(V*) & A’V*. Is there a similar relation when
q=>3?

Exercise 5.1.8 Show that there is a canonical (so you are not allowed to use a basis to
construct it) isomorphism V* @ W* = (Vg W)*.

Exercise 5.1.9 Show that there is a canonical isomorphism A>(V @ W)* = A2V* & A2W* @
(V*W*).

Exercise 5.1.10 Let @1, @, € (R")". Prove that 2|@; A @2(v1,v7)] is the area of the parallelo-
gram in R? spanned by the vectors (@1, ®,)(v1) and (@1, ¢2)(v2).

I Exercise 5.1.11 Show that @ € A2 (V*) = o Aw =0.

I Exercise 5.1.12 Show that @ € AZ(V*), ¢ >0, dimV <3 = o A 0.
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I Exercise 5.1.13 Find an alternating form @ € A?(V*), ¢ > 0 with @ A @ # 0.

Exercise 5.1.14 Letvy,...,v,;; and wy,...,wy, two sets of linearly independent vectors in the
same vector space V. Show that

(Viyee V) = (Wiye oo, W)
if and only if there is A € K\ {0} such that

VIA AV =AW A AWy

Exercise 5.1.15 Assume V = R3. Compute explicitly the wedge product of two general
1-forms. Compare the result with the usual definition of cross product on R3,

Operations on vector bundles

All standard constructions in linear algebra have a relative version in the category of vector
bundles. We give here some of them.

Direct sum. Consider two vector bundles E and E’ of respective ranks r and r’ on the same
base B.

The fibre product E x g E’ has a natural structure of vector bundle of rank r+ ' over B given
by the induced map 1@ 7': E xg E' — B defined by the commutative diagram below.

ExgE' ——>E
l non J
T
E—" 3B
We note that by definition there is a canonical isomorphism, for each p € B

E,®E, = (ExgE'),.

Indeed, we define the direct sum E & E’ of the vector bundles E and E’ to be the vector bundle
whose total space is E G E’ := E xg E’ and whose map is 7@ 7.

Let us have a look to the cocycles of these bundles. We take trivializations of E and E’
relative to the same open cover {Uy } of B (see Complement 3.1.2); they induce a trivialization
of E @ E' in a natural way.

Consider the corresponding cocycles {g4g} for E and {g, ﬁ} for E’. Then the cocycle of

EGE'is {gap ©gppt Where

0
8ap @g;ﬁ = <g85 g ﬁ> € GL(r+7,K). (5.4)
o

Then E & E’ is a vector bundle of rank equal to the sum of the ranks of E and of E’.

By Proposition 3.2.2 we could use (5.4) as definition of the direct sum (E G E’, x & «') (up
to isomorphisms). Indeed, we will do the next constructions with the last method, by producing
cocycles, since it is more convenient in those cases.

Tensor product. For every two vector bundles E and E’ of respective ranks r and #’ on the
same base B, we define the vector bundle E ® E’ as the vector bundle of rank r7/ on B given as



5.3

5.3 The algebra of the differential forms 85

follows: given cocycles {gqp} of E and { g’aﬁ} of E’ relative to the same cover of B, we define
E ® E’ through the cocycle {gqp ® &, 5} (see Definition 5.1.6).

Then, for every p € B, the fibre (E ® E'),, is canonically isomorphic to E, ® E;,.

Similarly we define, for every vector bundle E of rank » and for all g € N, the vector bundles
E®? and (E*)®4 of rank rq.

Dual. Let E be a vector bundle on a base B with cocycle {gqp5}. Then we define E* to
be the bundle with cocycle { (g&é)} (here ’ stands for "transpose"). Then we have canonical
isomorphisms among each fibre £, and the dual of E),.

Exterior powers. We define AYE* as the subbundle of (E*)®7 given, as subset, by all
elements that are skew as g—linear application on the corresponding fibre E,, of E.

Complexification.’ If E is a real vector bundle with cocycle 8ap- then, since every matrix
with real coefficients is also a matrix with complex coefficients, the same cocycle g, gives also
a complex vector bundle* Ec. Indeed, for every p € B, the fibre (E¢) p 18 canonically isomorphic
to the complex vector space E, Qg C.

Hom. For each pair of vector bundles E and E’ over the same B, we define the vector bundle
Hom(E,E') as E' ® E*. The canonical isomorphisms Hom(E,E"), = Hom(E,, E,,) follows by
Proposition 5.1.7.

Complement 5.2.1 Show that E & E’ is well defined up to isomorphisms by showing that if
we choose different cocycles for E and E’ we obtain an isomorphic vector bundle.

I Exercise 5.2.1 Show that, if E is any line bundle, then E ® E* is trivial.

Exercise 5.2.2 — The Picard group. Prove that the tensor product ® defines a structure of
abelian group on the set of line bundles over a fixed base B modulo isomorphisms.

I Exercise 5.2.3 Show that the hyperplane bundle of Pﬁg is dual to the tautological bundle.

Exercise 5.2.4 Let H be a hyperplane of P}, the locus

($on-0)

where the a; are complex numbers not all equal to zero.
Show that there is a holomorphic section of the hyperplane bundle vanishing exactly
along H.

Exercise 5.2.5 Note that every complex vector bundle is also a real vector bundle.
Prove that E¢, as real vector bundle, is isomorphic to E ® E.

The algebra of the differential forms

We define the differential forms as sections of suitable vector bundles.

3Note that this definition is equivalent to Definition 3.4.2
“In this case, even if E is a smooth manifold, we are not claiming that E¢ has any structure of complex manifold.
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Indeed we have defined, for every real manifold M, the tangent bundle 7M, which induces
V1 < g < dimM, by the theory of the vector bundles, a bundle AT*M := AY(TM)*. Conven-
tionally we set A°T*M to be the trivial bundle of rank 1. The bundle A'T*M is the cotangent
bundle. The bundle AY™YT*M is the real canonical’ bundle.
Definition 5.3.1 A (smooth)? differential q-form or differential form of degree g on a
manifold M is smooth section @ of the vector bundle AYT*M — M.
The form @ is smooth if it is smooth as a map among manifolds. The smooth g-forms
form the vector space Q4(M).
Conventionally,

QI(M)={0}forg<0 QM) =C"(M) Q* (M) = ®,ezQ4(M)

“We will only consider smooth sections in this notes, so we will often drop the word smooth for sake of
brevity.

Note that, since for all ¢ > dimM the vector bundle A?T*M has rank zero, then Q(M) = {0}
and we can equivalently write

Q" (M) = &m0 (M)
The smooth g-forms act naturally on X(M)7; that is we can see every g-form ® as a map
0: X(M)? — C*(M)

as follows. For every choice of q smooth vector fields vi,...,vy, @(vi,...,v,) is the function
defined by

Vp o(vi,...,vg)(p) = 0p(vi(p),...,ve(p))-
We have then a natural map
QUU)x (X(U)?—C*(U).

For every g-form , charts (U, ¢) for M may be used to represent locally the form, that is to
write the restriction of @ to U @y, as follows. Let xy, ..., x, be the local coordinates induced by

the chart. Vp € U we have an induced basis { <%) } of T,M.
“/p

Definition 5.3.2 We denote by {(dx1),,...,(dx,),} the basis of (T,M)* dual to the basis

{(;ﬂ)p,...,(agn)p} of TyM.

In other words (dx;), <%) = §;j.
op

This let us write locally in a simple way the 1— forms, since for every @ € Q! (M) locally
there are unique smooth functions @, ..., @, such that, for all p,

n

w, =Y &(p)(dx;),

1

5To the knowledge of the author the word “canonical bundle” in literature is usually reserved to the complex case.
People refers to the canonical bundle for the bundle of the holomorphic n—forms, the bundle of the (n,0)-forms
discussed at the end of this section.
We find it natural to use the same word for the analogous real case, but we want to inform the student that this
notation is not common in the literature.
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Note w; = ( a‘i > We will write

w = Z (Didx,'
i

To write similarly the g—forms we introduce the following notation.

Notation 5.1. A multiindex / = (iy,...,i,) of positive integers, is an ordered sequence such that
vj, ij eN.

We will say that I has length g, and we will denote by dx; the element dx;, \--- N\dx;, €
QUU). Similarly (dxp), = (dxi,)p A+ A(dx;,)p for all p.

If g =0, 1 =0, in which case dxp := 1.

Locally, by Theorem 5.1.12, for every smooth differential g—form @, there are smooth

functions @y = @;,..;,: U — R where I runs along all multiindices I = (i, ... ,i,) with 1 £ i; <
-+ 5 iy < n, such that
W, = Z @iy () (dxi) ) p A -+ A (dx;, p—ZwI )(dxr)p
151 < Sig<n
In fact w;,..;; = q'® <a‘9 ,...,ai). We will write
q X,'] x,-q
(D‘U = Z a)il...,-quil /\---/\dxiq :Za)1d)€1.
150 < Sig<n 1

Also the action of ® on X(M)? can be described in local coordinates. If @y = Y, w;dx;, then

ovi,...,v ZCOI )(dx1)p(vi(p),---,vq(P))-

The graded vector space Q°*(M) := ®,Q9(M) is called algebra of the differential forms
analogous to the exterior algebra A®*V* of a vector space. The internal product defining its
algebra structure is the wedge product, defined intrinsecally using Definition 5.1.10 of the wedge
product of alternating forms as follows.

Definition 56.3.3 Let w; be a differential ¢;-form on M, @, be a differential g,-form on M.
Then we define @; A @; as the (g1 + g2 )-form such that Vp € U, (o1 A@»), = (@1), A (02) .

The wedge product of smooth forms is smooth, since sums of products of smooth functions
are smooth. So we get bilinear maps

A QI (M) x Q2(M) — QU T92(M)

which inherits all the properties of the wedge product of alternating forms. Namely (see
Complement 5.1.12)
e Let o, € QN (M), @n € Q2(M); then () +MN1) Ay = @01 A +1M1 Ay i A (0] +
Mm) = Ao + Al
o Let m € QU (M), an € Q2 (M), f € C*(M). Then (fw)) ANwy = f(oy A@p) = o) A
(fan).
e Letw € Q1'(M), mr € QT (M), w3 € Q?(M), then (01 A ) A @3 = 01 A (@02 A @3).
e Let w € Q1'(M), wr € Q%(M), then 0y A = (—1)1' %@y A .
Note that this applies also to 0—forms. Namely, if f € Q°(M) = C*(M), then

fAo=fo

Then Q*(M), with the three given operations (multiplication by scalar, sum, wedge product),
is a graded R—algebra.
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Example 5.5 @ := xdx; is a 1-form; @ € Q' (M), degw = 1.
T := xodx| Adxy +dxz Adxy is a 2-form; T € Q*(M), degt = 2.
o+ Tis aform, @+ 7 € Q*(M) but @+ 7 is not a g-form. Indeed, @ & {J, Q4 (M).
In contrast @ A 7 is a 3-form:

O AT =x1dxy A (xodx) ANdxy + dxz Ndxy)
= x1dxy A (xpdx1) Adxy +x1dxy Adxs Adxy
= x1xXdxp Ndx1 Ndxo — x1dxpy Ndxy N\dxs
= —x1x2dx1 Ndxy Adxr +x1dx1 Ndxy A dxs
=x1dx; Ndxp Ndxs.

Now let us consider the real canonical bundle. It is a line bundle.

Definition 5.3.4 Let M be a manifold of dimension n. A volume form on M is a form
o € Q" (M) such that Vp € M, w, # 0.

By Exercise 3.2.2 the real canonical bundle of M is trivial if and only if there is a volume
form on M.

The real canonical bundle of S' is the dual of its tangent bundle, which is trivial by Exercise
3.3.4. So its real canonical bundle is trivial as well and we may conclude that there is a volume
form on S'. Note however that this argument does not allow us to conclude anything about the
triviality of the real canonical bundle of any other sphere (including the odd dimensional ones).

The holomorphic ¢—forms

Let us consider a complex manifold M of dimension n. Then we have:
* the real cotangent bundle AL, 7*M, which is the cotangent bundle of M as real manifold;

* its complexification: the complexified real cotangent bundle A}CT *M;

+ the holomorphic cotangent bundle A'°T*M: this is the cotangent bundle as complex
manifold, and it is naturally embedded as subbundle of the complexified real cotangent
bundle;

+ the antiholomorphic cotangent bundle A% 7*M = A0T*M: this is the conjugated of
the holomorphic cotangent bundle in the complexified real cotangent bundle.

If z; = xj +iy; are local coordinates then locally

* the real cotangent bundle is generated by the dx;, dy; (on the real numbers);

¢ the complexified real cotangent bundle is generated by the dx;, dy; (on the complex
numbers);

* the holomorphic cotangent bundle is generated by the dz; = (dx; +idy;);
* the antiholomorphic cotangent bundle is generated by the dz; = (dx; — idy;).
It follows immediately

ALT*M = AOT*M o AY T*M

Please note

J ) _ (0 _ (0
i (3z) -~ a0(35) -0 (ag) -0 () -

Something similar happens for higher forms. We have
* the real higher cotangent bundles A%T*M , the bundle of g—forms as real manifold;
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* their complexification: the complexified real higher cotangent bundles A%T*M ;

* the holomorphic higher cotangent bundles A7°T*M: this is the holomorphic analog
of the bundle of g—forms, and it is naturally embedded in the complexified real higher
cotangent bundle A%T*M as subbundle generated by the dz;; A---Adz;;

« the (p,q)-cotangent bundles A”¢T*M: this is the subbundle of AZ"T*M locally gener-
ated by the dz;; A---Ndzij, Ndz;, \--- Ndzj,.

The reader can easily prove the following properties, and namely

e the (p,q)-cotangent bundle are interesting only for p,q both not bigger than dim M since

VP € M if max(p,q) > 1+dimM then (AP4T*M)p = {0};

* the (p,q)-cotangent bundles split the complexified real higher cotangent bundles as direct
sum:

AET* M = @y gk APIT*M;

* the complex conjugation on A%T*M acts on them exchanging p and g:
APAIT*M = A9PT*M.

It is natural then to write Q9(M) for the g—forms as real manifolds, Q”-*(M) for the p—forms
as complex manifolds, so holomorphic sections of the complexified real higher cotangent bundle
APOT*M, and finally QP9(M) for the holomorphic sections of APYT*M, the holomorphic
(p,q)-forms. The usual notation for the bigger space of the smooth sections of AP4T*M is
APA(M).

For example, both z1dz; AdZ, and Z1dz; A dZ, belong to A'!(C?) but the latter does not
belong to Q11(C?).

I Exercise 5.3.1 Show that Q4(U) = {0} < ¢ >norg<0.

2
I Exercise 5.3.2 Check that (dxi Adxz) (x1 7,325 ) = 252,

Exercise 5.3.3 Compute
o (x2dx; Ndxp) <x1 b E ,xlai

(Xdel /\dx1 <x1 n xzai

)
5)
)
)

(xodx) Ndxy) (xz b E ,xlai
i
X2 3%

(XQdXQ /\dx1 <x1 I

(xodx) Ndxy + xpdxy Adxy) (x1 a%l,xza%z) .

d d d 0
(x2dx1 /\dx2) (xlfxl —l-XQsz,xlTxl +XQTXZ>.

Exercise 5.3.4 Let M be a complex manifold of dimension n and consider a holomorphic
n—form @ € Q"°(M).

Consider the form o A @ € A" (M).

1. Show that "®@ A ® € Q>*(M).
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I 2. Prove that, if @, # 0 for all p € M, then @ A'® is a volume form.

Exercise 5.3.5 Show“ that the real canonical bundle of S” is trivial for all .

“Use the form

n+1 .
Y (D) x A AxiZp AXip A Axy
i=0

Exercise 5.3.6 Consider IP)}C with homogeneous coordinates (zo : z;) with the complex
structure given by the charts {(Ui, ¢;) };cq0,1y With

Ui={z #0}, oo((z0:21)) ==, o1((z0:21)) ==
<1 20

Show* that every holomorphic 1—form on ]P’(lC vanishes identically®.

4Hint: Consider the local coordinates z resp. 7/ on Uy resp. U; given by ¢ resp. @;. The restriction of a
holomorphic 1—form on P} on Uy resp. Uy is of the form f(z)dz resp. f'(z)dz with f, f holomorphic. Write a
relation among f and f’ and deduce that f’ has a pole, a contradiction.

bSo this bundle is not trivial!

5.4 Pull-back and exterior derivative of forms

Let F: M — N be a smooth function between two manifolds. For every point p € M the
differential dF,: T,M — Tr(,)N induce by Definition 5.1.16, Vg € N, linear applications
dF,: N T;(p)N — A1T;M. Gluing them we get the pull-back map

F*: Q*(N) — Q°(M);

as follows.
Ifg=0, f € Q°(N)=C>(N), then F*f := foF € Q°(M).
If ¢ > 0, for a form @ € Q7(N), its pull-back F* o is defined by

(F* @), = dF; (@r().

It is clear by the definition that F* is a section of the vector bundle AYT*M. We claim its
smoothness without proving it for the time being. We will discuss the smoothness of F* @ later
in this section.
p From the analogous properties of the alternating forms all F'* are linear and
F*(o; ANon) =F* o NF*an,
and therefore F* is a morphism of R—algebras. Moreover
(FoG)"=G*oF".

In particular, if F is a diffeomorphism, then F* is invertible with inverse (F~!)*.

To define the exterior derivative we start by defining a linear application d : Q°(M) — Q! (M).
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Definition 5.4.1 Let f € Q°(M) be a smooth function. Fix a point p € M.
The exterior derivative of f at p is the linear map

(df)p: T,M —R
defined by df,(v) = v(f). Note that Vp € U, (df), € (T,M)*.

The exterior derivative of f is the 1 —form d f giving (df), at each p.

In local coordinates, since d f (%) = %,

d
dfzza)];dx,-

and therefore df is smooth: df € Q' (M).
This defines a map

d: Q'(M) — Q' (M)
the exterior derivative, characterized by the formula

YveX(M), df(v) =v(f).

p) Forany f € Q%(M), we have denoted by d f not only the exterior derivative d f € Q' (M) but
also the differential of f, the mapdf: TM — TR given by, writing locally v=Y;v; (a%’) ,

oo (52(3) )20 (2),, -0 (2),

So we can see this abuse of notation as a "forgetting 7"

One more apparent abuse of notation is that we denoted by dx; € Q!(U) both the exterior
derivative of the coordinate function x; and the 1—form giving at each point the element (dx;) »

of the basis of (7,M)" dual to { (%) } This is not an abuse of notation, since these two
"p

1—forms coincide. In fact

d d
dx,- (;ngxj> = (;Vjax]> (Xi) =V

We investigate the relation among pull-back and exterior derivative for forms of degree zero.

Lemma 5.4.2 Let F: M — N be a smooth function and consider any f € C*(N). Then
F*(df) = d(F* f).

Proof. Both F*(df) and d(F*f) are 1 —forms on M and therefore it is enough to prove that

VpeM, (F'(df))p =d(F"f)p
as elements of the dual vector space (7,M)*. In other words we need to prove that

VpeM,YWweT,M, (F'(df)),v)=d(F"f),(v).
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Indeed

(F(df))p(v) = dF, ((df)rp) (V) = (df)p(p)(dFp(v)) = ((df)F(p) 0 dFp)(v) =
=d(foF),(v) =d(F"f)p().

Now we can write the pull-back of a form explicitly.

Proposition 5.4.3 Let F: M — N be a smooth function. Fix a point p € M, and choose a
chart (U, @) for M in p with coordinates xi,...,x,, and a chart (V,y) for N in F(p) with
coordinates yy, ...,y such that F(U) C V. Assume

oy= ) @pqdyi A Ady, €QI(V).

1<i1<...<ig<n

Then

(Fro)y= Y,  (@.ioF)dF, \---NdF,,

1< <..<ig<n

where Fy :=y;oF.

Proof.

F‘o=F* Z a)il"'iqdyil /\--'/\dyl-q
1<i <. <ig<n

= Z F* ((0,‘] ...iqdyil VAREEWAN dyiq)
1<ii <. <ig<n
= Z (a)il‘..,-qu) F*dy,-l /\"'AF*dyiq.

1<ii <...<ig<n

We have then only to check F*dy; = dF;. which follows since F*dy, = dyyodF = d(yi o
F)=dF. |

Definition 5.4.4 There is one case which is rather important, it is the case when F is an
embedding. In this case we will write @), for F* .

Obviously if p e M, w, = 0= (F*®), = 0. It is rather important to notice that the converse is
not true: it may be that @, # 0 but still (F*®), = 0; the reader will find important examples
among the exercises of this section.

Now we can write the pull-back of a form explicitly. For example, if F is the function
F(x1,x2) = (x1x2,x3 +x3), then

F*(y1dy2) = (x122)d (x] 4+ x3) = 2x3x2dx| + 2x1x5dx5.

We can finally prove the smoothness of a pull-back.

Corollary 5.4.5 If F: M — N is smooth and @ € Q4(N) then F*@ is smooth, so it defines an
element of Q4(M).
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Proof. Since

Fro= Y  (o..;oF)dF, A---NdF,

lq)
1<ii<...<ig<n

JdF;. .
and dFl-J. =Y Wdek, then we obtain that F*® =) g;dx; where all g; are sums of products of

the smooth functions (@, ...;, o F) and of the partial derivatives gf; . [ |

To extend the exterior derivative to g—forms, we first consider the local case. In other words
instead of manifolds M, N we consider open subset U,V of R’} and R’}

We extend the exterior derivative d: Q°(U) — Q' (U) to an operator d: Q*(U) — Q*(U)
of degree 1 of the graded algebra of the differential forms. We will do that by defining all
restrictions

d|Qq(U) : .Qq(U) — .Qq+l (U)

Theorem 5.4.6 There is a unique linear operator d: Q*(U) — Q°*(U) of degree 1 such that
i) Vfe QUU), W e X(U),df(v) =v(f);
i) Vq1,q2 >0,V € Q1 (U), YV, € Q2 (U),d(oy ANan) =doy Awp+ (—1)1 o) Aday;
iii) dod = 0.
Ifow=Y;wdx,thendw =Y ;dw; Ndx; = ZIZ; 1 8x dx, Adxg.

Proof. The existence is easy: we just need to consider the formal expression given in the
statement, dw =Y dw; A dx;, and check that it has the required properties. We only check iii),
leaving the other simpler checks to the reader.

By the linearity of d it is enough if we prove the statement for @ = fdx;, A--- Adx;,. Then

using the equality dx; Adx; = —dx; A dx;, since by Schwarz’ Theorem aijéfx aizaf; -

d(d(fdx,)) =d <i i{dx,-/\dx;)
n Zf

ij=
9 f
. Z PR T _dx; ndxi N dx
52 92
_;a - dxj/\dx,/\dxri-za o dxj N\dx; Adx;
1<j >]
0% f °f
:E}(a o -dxj Adx; + Txox dx,/\dx]>/\dx1

2 2
:Z<fdxj/\dx,- of dx]/\dxl)/\dm:O.

= dx;ox; dx;0x;
We prove the uniqueness by showing that every linear operator with the properties 1), ii), and iii)
coincides with it.
By linearity d@ = Y ; d (@ydx;), so by the properties i) and ii) (for ¢; = 0) it follows dw =
Y (dwy Ndx;+ oid(dxy)), and we conclude the proof by showing that for every multiindex
I=(i1,...,ig)

d(dx;, -+~ Ndx;,)) =0, (5.5)
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We prove (5.5) by induction on ¢q. If ¢ = 1, since by the property i) dx; is the differential of
the coordinate function x;, d(dx;) = (d od)x; vanishes by the property iii).
Finally, we may assume (5.5) true for r-forms, r < g. Then

d(dxil /\dxl'2 AREE /\dx,'q) = d(dxil A (dx,-2 JARER /\dxiq))
= d(dxil) A (dxl-z AR /\dx,'q) —dx,-] /\d(d)cl'2 JARER /\dxl-q))
=0-0=0. |
Note that d: Q*(U) — Q*(U) is NOT a ring homomorphism, as in general d(@; A @,) #
doy Nday.

We can now complete the discussion of the special case of maps among open subset of R,
and R by proving that Lemma 5.4.2 extend to forms of higher degree.

Proposition 5.4.7 If F: U — V is a smooth function between open subsets U C R, V C R},
and ® € Q4(V). Then F*dw = dF* .

Proof. We write

®= Y Opdyi Ao Adyi,
1<iy <ir<-<ig<n
which yields
Fo= Y (@.0F)dF, A AdF,

1<i <ip<-+-<ig<n
By Theorem 5.4.6 and Lemma 5.4.2

dF* o = Y  d(w..oF)AdF, A---NdF;, =

1<i1<ip<+<ig<n

= ) F*dw;,..,, NdF, \--- \NdF;,.

1<) <ip<-+-<ig<n
On the other hand

dow = Z da),-l...iq/\dyil/\--J\dy,-q,

1<iy <ip<-<ig<n

and therefore

Fdo= Z F*d(l),'l...,'q/\F*dyil /\"'/\F*dy[q
1<iy<iy<-+<ig<n
= Y F*dw;,..; NdF, \---\dF, . |

1<i1<ia<-+<ig<n

Now we generalize the results of this section to manifolds.
Note that if (U, @) is a chart, with coordinates xi,...x, then (Exercise 5.4.1) ¢*du; = dx;
and therefore ¢* Y. aydu; =Y (w0 @)dx;.

Theorem 5.4.8 There is a unique operator, called exterior derivative or differential
d: Q*(M) — Q*(M),

of degree 1 such that
i) Vf € QO(M), W e X(M), df(v) =v(f).
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i) Vq1,q2 >0,V € Q1" (M), Vo, € Q2 (M),

dloiNy)=doy ANap+ (—1)" o Aday;

iii) dod = 0.
If (U, @) is a chart with coordinates xp, .. .,x, and on U
o= Z wil---iquil /\---/\dx,-q,
1<i <ip<-+-<ig<n
then
do = Z da),-l...iq/\dxil /\---/\dx,-q
1<i) <ip<--<ig<n
= Y Z a” l"d,/\dxl-l/\‘--/\dx,-q.
1<i|<ix<-<ig<ni= 2
=¢'d((97) )

Proof. We first prove the uniqueness part of the statement.

Assume that there are two exterior derivatives d and d’. Then, to prove the uniqueness
part of the statement, we need to show that for each @, dw = d’®. This is a local statement:
it is enough if we prove that dw and d@’ coincide in each chart U. Chosen a chart, we
write @ in local coordinates as }.j <, <j,<...<i,<p Oy i, dXi, A --- Adx;,. Repeating word-by-word
the proof of the analogous statement in Theorem 5.4.6 we obtain that, in U, do = d'0 =

I ..
Zl§i1<i2<--»<iq§nzi 1 qut/\dle A- /\dx,
Now we prove the ex1stence part of the statement. We can use the expression

Y Z i l"d,/\dx,-l/\-u/\dx,-q

1<i|<ip<-<ig<ni=

to define dw in a chart. This gives a well defined global form if and only if two such forms
coincide in the intersection of the respective domain of definitions.

In other words we need to show that the local expression given for dw is independent on
the choice of the chart. Then let (Uq, ¢r) and (Ug, @p) be two charts in p and set dg =
0pd((9,') @), dgow = (pgd((qoﬁ“)*w). We need to show that dy® = dg® on Uy N Up; this®
follows easily by the uniqueness part of the statement (that we have already shown) applied to
the manifold Uy NUg.

The reader can easily check that d, so defined, has the properties 1)-iii). ]

We can now conclude the section generalizing Proposition 5.4.7.

®Here is a different proof. We need to show ¢} d((pg5!)*®) = (pEd (((p[; "*®), which may be rewritten, setting
N = (9x') 0 € Q! (Dg) as

Podn = 9pd(9p") oo
which is equivalent to
Popdn =dygn

that follows from Proposition 5.4.7.
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Corollary 5.4.9 Let F: M — N be a smooth function, ® € Q°*(N).
Then F*'dow =dF* o

Proof. This is a local statement: it is enough if we prove the statement in a neighbourhood of
every point p € M. As a general principle, local statements on manifolds holds if and only if
they hold for affine spaces, and we have proved that in Proposition 5.4.7.

More precisely, we choose charts (U, @) in M and (V,y) in N such that p e U, F(U) CV
and observe that by Proposition 5.4.7

(WoFoo )d((y ') @)=d(yoFop ) ((y ) w).
Then

Frdo =Fy*d(y ") o)
=" (o Y Fy'd((v ") o)
=" (yoFop Yd((y ') 0)
=@*d(yoFop ) (v ) w)
=@ d(o ) Fy* (v )
:(p*d((p—l)*F*a)
=dF*m. [ |

Complement 5.4.1 Assume that @, T are homogeneous forms (possibly of different degree).
Then prove

TA®= (—1)(deg’)‘(d‘3g"’)w AT.
I Complement 5.4.2 Prove that (FoG)* = G* o F*.
I Complement 5.4.3 Prove that F* () A @) = F*@; A F* ;.

Exercise 5.4.1 Let (U, @) be a chart for a manifold M, and let x, . .. x, be the corresponding
local coordinates.
Prove ¢*du; = dx;.

Exercise 5.4.2 Let M, N be diffeomorphic manifolds.
Show that Q*(N) is isomorphic to Q°*(M) as graded R—algebra..

manifold embedded in M, and choose a point p € M.
Show that w, =0 < (@), = 0.

Exercise 5.4.4 Assume that M is a manifold without boundary, f € C*(M), y € Reg(f), and

‘ Exercise 5.4.3 Let M be a manifold, ® € Q4(M). Consider an open subset U C M as
| consider X := f~!(y) with the differentiable structure such that the inclusion i: X < M is an
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embedding (as in Theorem 2.4.7). Consider the 1—form df € Q' (M).
Show that d fjx = 0.

Exercise 5.4.5 Assume that X is a manifold embedded in a manifold M.
For every g—form w € Q?(M), consider the sets

Zu(0) :={peMlw, =0}, Zx(w):={pecX|(ox),=0}.

Show that Zy(w) NX C Zx(w).
Consider the 1—form dx; € Q!(IR?). Show that Z. (dx;) NS' # Zg (dx1).

Exercise 5.4.6 Consider the following two open subsets of S': U; = {p € S'|x; # 0} for
i =1,2. Consider the 1 —form @ on S' defined by

—@) if peU

w _ (( X1 U1>p 1 p 1
)y =

%> if peU

((xz |U2)p 1o p 2

Show that this gives a well defined 1-form @ € Q!(S!) which is a volume form on S'.

Exercise 5.4.7 Consider a function f € C*(R"), y € Reg(f), M = f~'(y). Prove® that the
real canonical bundle of M is trivial.

“Hint: consider the open subsets M; := {p € M| g—){(p) # 0}]. Try to define o; € Q"1 (M) so that Vp € M;,

(dx1 A« Adxi—1 Ndxijyg /\-~-/\dx,,)p
9
0]

wp = (1)’

Exercise 5.4.8 Compute explicit formulas for the differential of a general O-form, 1-form
resp. 2-form on R? and relate the results with the usual definition of gradient, curl and
divergence. What’s the differential of a 3—form?

Exercise 5.4.9 Let U,V C R" be open subsets, F': U — V be a smooth map.
Show that

F*(dxy N\---Ndx,) =det(J(F))dx; A--- ANdx,

where J(F) is the Jacobi matrix of F.

Exercise 5.4.10 Let U, V be open sets of R" and assume that they are diffeomorphic.
Prove that F*: Q*(V) — Q*(U) is an isomorphism.






Orientability

Integrating forms
Integrating functions

6.1

6. Orientability and Integrability

Orientability

The orientability of a real manifold is an interesting geometrical property which has no analogs
in the complex case. Indeed, as we see in the next definition, to consider it we need to be able to
distinguish "positive" and "negative" numbers.

Definition 6.1.1 Let V be a finite dimensional real vector space. Then we will say that two
bases of V are orientation equivalent if the determinant of the corresponding base change
matrix is positive. This equivalence relation partitions the bases of V in two equivalence
classes, the two orientations of V.

Consequently we will say that a matrix A € GL(n,R) preserves the orientation if
detA > 0. In other words, a base change matrix preserves the orientation if and only if it
maps bases to bases in the same orientation class. Analogously A reverses the orientation if
detA < 0.

Let Q, Q' be two open subsets of R”. and let F: Q — Q' be a smooth function. F
preserves the orientation if Vp € Q, the Jacobi matrix of F' in p preserves the orientation. F'
reverses the orientation if Vp € Q, the Jacobi matrix of F in p reverses the orientation.

Note that, if Q is connected and F is a diffeomorphism, then F either preserves or reverses
the orientation.

Proposition 6.1.2 Let ¢: U — V be a smooth map among open subsets of R’.. Then

O dxy N\ Ndx, =det(J(@))dx; A--- ANdx,,.

Proof. It is enough to check the formula as equality on A"T,;R" on each point p of U, and this
follows immediately by the definition of pull-back and Proposition 5.1.17. |

Consider now a real manifold M, so we have a fixed differentiable structure, corresponding to
several (pairwise compatible) atlases. Those whose transition functions preserve the orientation
define an orientation on M as follows.

Definition 6.1.3 Let M be a real manifold of positive dimension. An atlas for M is oriented
if all its transition functions preserve the orientation. In other words, two different local
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coordinates at the same point p induce bases of T,M (taking the corresponding partial
derivatives) in the same orientation class.

M is orientable if it admits an oriented atlas.

Two oriented atlases are orientedly compatible or orientedly equivalent if their union
is oriented. This defines an equivalence relation on the set of atlases of the differentiable
structure of M. An equivalence class for this equivalence relation is an orientation on M. A
manifold with a chosen orientation is an oriented manifold.

If dimM = O (then if M is a point) we set conventionally that an orientation on M is the
choice of a sign: either + or —.

In the framework of oriented manifolds, the following functions are crucial.

Definition 6.1.4 Let M, N be oriented manifolds of the same dimension, and let F: M — N
be a smooth map.

We say that F' preserves, resp. reverses the orientation if, Vp € M, given local coor-
dinates xi,...,x, around p induced by a chart of an atlas of the orientation of M and local

coordinates yy, .. .,y, around F(p) induced by a chart of an atlas of the orientation of N, then

. . IF; . .
the Jacobi matrix < o, ( p)> preserves, resp. reverses the orientation.

Proposition 6.1.5 Each connected orientable manifold admits exactly two orientations.

To give an orientation of a manifold with more connected components is equivalent to choose
an orientation on each component. It follows that a manifold with k connected components is
orientable if and only if all its connected components are orientable, and the number of possible
orientations is 2%

Proof. The case dimM = 0 is obvious. Assume dimM > 1.
Consider the linear application L: R" — R" defined by

L(x1,22, ...y Xn) = (X1, .oy Xn—1, —Xn).

L is a linear isomorphism and a diffeomorphism. Moreover L(R’, ) = R” , L(R" ) = R’, and both
Lg: : R, — R? and Lig: : R — R, are diffeomorphisms.

Assume now M orientable. Let {(Uy, 9o ) } acr be an oriented atlas for M, and consider the
atlas {(Uq,Lo @q)}aes. This is an oriented atlas, since (Lo @g)o (Lo @g) ™' =Lo@go (pB*1 o

L '=Log, g © L preserves the orientation by

detJ (Lo @ggoL) =detJ (L)-detJ (@qp) - detJ (L) =
= (—1)-detJ (@qp) - (—1) = detJ (@gp) > 0.

The new atlas is not orientedly compatible with the first one, since Yo, Lo ¢g 0 @, ' reverses
the orientation. Therefore every orientable manifolds has at least two orientations, and it remains
only to show that every further orientable atlas {(Vp, wp)}gc; for M is compatible with one ot
these two.

For every point p € M we choose o € I, § € J with p € Uy NVp. we define

detJ(@g oy !
v(p) - 19et7(9e ’jl)‘”ﬁ(”)‘ e {£1}CR.
det](QDaOl[/ﬁ )WB(P)

Since both atlases { (U, ®a) }aer and {(Vp, Wp)}ges are oriented, v(p) do not depend on
the choice of o and 3. Moreover Vv is smooth, therefore continous. But M is connected, {£1} is
discrete, so Vv is constant. We have then two cases: eitherv=1orv = —1.
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If v = 1, a straightforward computation shows that {(Us, @) }aer and {(Vg, Wp)}ge; are
compatible. Else, v = —1, and similarly {(Uq,L o @¢)}acr and {(Vg, W)} gcs are compatible.
|

Notation 6.1. If M is an oriented manifold, we will denote by M the same manifold with the
opposite orientation, obtained by changing the orientation of each component.

There is no natural way to extend the definition of orientability of the category of complex
manifolds, since we can’t decide if a complex number is "positive" or "negative" in a reasonable
way. On the other hand, we know that every complex manifold of dimension »n has a natural
differentiable structure of real manifold without boundary of dimension 2n, sometimes denoted
as the underlying real manifold. It is then natural to ask, for every complex manifold, if its
underlying real manifold is orientable or not. This natural question has a surprisingly simple
answer.

Assume first for sake of simplicity that M is a complex manifold of dimension 1, with
atlas {(Un, Qo) }acr- Then the @gp: C — C are holomorphic functions in one variable. The
underlying real manifold has atlas {(Uq, W) } acs and the transition functions W, are obtained
by the @qg removing the complex structures from its domain and from its codomain: in other
words Wop = (agp,bep) is exactly the map @, where we are considering its domain and its
codomain as open subsets of R? instead of C.

By the Cauchy-Riemann relations the Jacobi matrix of Wg is

dagg 9bgp
ox T ox
by daug
dx dx
. . 8aaﬁ 2 abaﬁ 2 . .
whose determinant is —= + —7= > 0. Therefore the real atlas induced by the complex atlas is

already an oriented atlas.
A similar result holds in higher dimension,

Proposition 6.1.6 Let U,V be open subsets of C" and let F': U — V be a holomorphic map.
Choose a point p in U and let B € C be the determinant of the n x n Jacobi matrix of F at p.
Let A € R be the determinant of the real Jacobi map of F, the 2n x 2n real matrix representing
the differential of F, seen as smooth map among real affine spaces, at p. Then

A=B-B.

In particular A > 0.

Proof. Let zy,...,z, and Z},...,z, be the complex coordinates respectively of U and V and
write z; = x; +iy; and 7} = X, + iy, so that (x1,y1,...,%,y,) and (¥}, ¥},...,x,,y,) are real
coordinates of respectively of U and V.

By Proposition 6.1.2, denoting by A € R the determinant of the Jacobi matrix of the corre-
sponding transition functions then

F* (dx) Ndyy A+ Ndxj, Ady),) = Adxy Adyy A+ Adxy Ady,.

Note that dx; Ady; A--- Adx, Ady, € Q¥"(U). Recall that Q> (U) C A»"(U). In this bigger
space

dzjNdz; = (de+idyj) A (dxj —idyj) =dx; N\ (—idyj) + (idyj) Ndxj= —2idx; Ndy;
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SO

dzy NdZy N -+ Ndzy Ndz, = (=2i0)" dxy Adyy A -+ Ndx, Ndyy,
similarly

dzy NdZy A--- NdZ, NdZ, = (—20)" dx| NdY| A - Ndx, NdY,
and then

F* (dzy AdZ) -+~ Ndz, Adz),) = Adzi AdZi A -+ Ndzy NdZ,.

Reorder both terms putting first the holomorphic differentials and then the antiholomorphic
differentials. It changes both sides of the equation by the same power of (—1) and then

F*(dZy N+ NdZyNdZy N+~ NdZ)) = Adzy Ndzo A+ Ndzy ANdZy A+ NdZy. (6.1)
By the complex analogous of Proposition 6.1.2,

F*(dzy N---Ndz),) = Bdzy Ndzp N -+ Ndz,. (6.2)
Since by definition dz;, dz; are complex conjugated of dz;, dz}

F*(dzy A---NdZ),) =BdZ A+ \dz,. (6.3)
Finally by (6.1, 6.2, 6.3) it follows

A=BB>0.

[ |

This shows that the underlying real manifold of any complex manifold is naturally oriented
by considering any complex atlas as real atlas as above.

Theorem 6.1.7 The real atlas obtained by a complex atlas is oriented.
Two equivalent complex atlases induce orientedly equivalent real atlas, so determining a
natural orientation on the underlying real manifold of any complex manifold.

Proof. By Proposition 6.1.6 a transition function of a complex atlas preserves the orientation as
a map among open subsets of R?": in fact the determinant A of its real Jacobi matrix at any point
p equals BB for some B € C, B # 0, and then A is positive,

This implies first that the real atlas obtained by a complex atlas is oriented, and then that if
two complex atlases are equivalent (i.e. the union is a complex atlas) the induced real atlases are
orientedly equivalent (i.e. the union is a complex atlas). |

p) Whenever we have a complex atlas, we can construct a second complex atlas by "twisting”
the first atlas by the conjugation map c(z) = 7 as follows.

Note that the function ¢ is not holomorphic. However if {(Ug, @¢)} is a complex atlas,
setting Wy := co @y the atlas {(Uy, Wy)} is again a complex atlas. Indeed the new
transition functions

Yap =CO@PgpocC
are holomorphic if and only if the old transition functions @y are holomorphic.

Note that the induced orientations on the real underlying differentiable manifolds are the
same if and only if the (complex) dimension is even.

Now we introduce a very powerful tool in the theory of real manifolds, the partitions of unity.
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Definition 6.1.8 Let X be a topological space. A family & := {Sy}ger € Z(X) of subsets
of X is locally finite if Vp € X there exists an open set U > p such that U NSy # 0 only for
finitely many o € 1.

The definition is posed for every & C (X ), but we will only use it for families of open
sets 4 C 7 (X) (here 7 (X) is the topology of X).

Definition 6.1.9 Let 4 := {Uy}er be an open covering of a manifold M. A partition
of unity subordinate to 4 is a family of smooth functions p;: M — [0, 1], i varying in a
countable set of indices J, such that

a) Vi, the support supp(p;) := {p € M|p;(p) # 0} is compact;

b) Vi€ J, 3a(i) € I such that supp(p;) C Ugy);

¢) {supp(pi)}ics C P (M) is locally finite;

d) Vpe M, ¥ic;pi(p) = 1.

Note that the sum at the point d) is meaningful because, by c), it reduces to a finite sum on a
suitable small neighbourhood of every point.

We will use the next result without proving it. We only mention that the proof uses the fact
that M has a countable basis of open subsets.

Theorem 6.1.10 Let 4 := {Uy} be an open covering of a real manifold M. Then there exists
a partition of unity subordinate to L[.

We will also need the following

Lemma 6.1.11 Let M be a manifold and let U C M be an open subset.
Consider a form @ € Q4(U) and assume that its support supp® = {p € U|w, # 0} is
compact. Then there is a form @ € Q7(M) such that

6.4)

w,=0, YpeU
0,=0 VpeM\U

Proof. The expression (6.4) defines obviously a section of the bundle A?T*M; we only need to
prove that @ is smooth.

By definition on all points of U @ equals ®: &y = .

Set K := supp . Its complement V := M \ K is an open subset of M where @ vanishes.

We have then found two open subsets U,V of M such that U UV = M and @ restricted to
both is smooth. Since smoothness is a local property, then @ is smooth. |

Proposition 6.1.12 Let M be a manifold of dimension n > 0. Then M is orientable if and
only if there exists a volume form on M, i.e. if and only if its real canonical bundle is trivial
(compare Exercise 3.2.2).

Proof. (=) Choose an oriented atlas {(Uy, Qo) } acr-
Take a partition of unity {p;};cn subordinate to the cover {Ug }q¢;. For every i € N choose
a(i) with supp(p;) C Ug;) and define @; by

o (p) = pi(p;(l.)(dul A-Nduy,) ifpe Uoc(i)
l 0 else.

By Lemma 6.4, o; € Q"(M).
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Then we can consider the form ® = Y; @; € Q"(M). Indeed, since the support of each
o; is supp ; := {p € M|(w;), # 0} = supp p;, then the family {supp w;} is locally finite, and
therefore Y, w; is locally a finite sum.

We show that, Vp € M, w, # 0.

First of all choose i with p;(p) # 0. Let x|, . . . xyq be the coordinates induced by a chart
(Ug, @o) With supp @; = supp p; C Uy. Then @; = pidxig A+ AXpg.

For every j # i, @; = pjdx;g \--- Ax,p for the coordinates xg, ...,x,s induced by a chart
(Ug, @p). Since dxiq = Qgdu;, dx;g = (pEdu,-,

(dxip A+ ANdxupg)p = (Qgdur A+ Nduy)p, =
= ((pé(pgadul AR /\dun)p = det‘]((Pﬁa)(pa(p) (dxla AR /\dxm)p

and therefore, since our atlas is supposed oriented, Vj, 3A; > 0 such that (®;), = A;(dxia A
-+ NXpq)p- Since A;(p) = pi(p) >0, w, # 0.

(<) Take an atlas {(Uq, @) } aer for M such that all Uy, are connected. We construct a further
atlas for M which is oriented, by using the same open sets: an atlas of the form {(Uq, Vo) }acr-

Fix oo € I, and let x4, - . . , X4 be the local coordinates induced by the chart (Uy, @y ). Then
we may write @y, = fadX1q A+ Adxpq With fo € C*(Ug).

By assumption f never vanishes. Since Uy, is assumed connected, then the function f is
either strictly positive or strictly negative. In the former case we take W, = @; in the latter case
we take Yy = Lo @, for the map L introduced in the proof of Proposition 6.1.5.

We show that the atlas {(Ug, Yo ) }aer is oriented. Denoting by yiq;, . . -, Yna the local coordi-
nates of the chart (Uq, Wy ), we write @y, = gadyia A+ AdYyng With g € €7 (Uy), obtaining
ga(p) > 0forall p. Indeed, if we had f > 0, then g4 = fy. Else fo <0, and then dy,q = —dx,q
whence for i < n dyjq = dxiq. In particular fodxig A+ Ndxpeq = —fodyia N+ Ndyng and
therefore go, = — f4.

Arguing as before (dy;g A+ Ady,p)p = detd (Vg )y, (p) (dY1a A+ AdYna)p, and therefore

detd (Vo) yu(p) = iggg > 0. "

The proof of Proposition 6.1.12 shows a bit more than the statement. Fix a volume form
o, a point p in M, and a chart in p, if x1,...,x, are the corresponding local coordinates, then
clearly @, = A (dx; A--- Adx,)p, for some A # 0. The proof of Proposition 6.1.12 shows that, if
we choose the chart in an oriented atlas, the sign of A, does not depend neither from the chart
nor from the point, but only from the choice of the orientation. Then we can give the following
definition.
Definition 6.1.13 Let M be an oriented manifold and let ® be a volume form on M.
We will say that M is positively oriented with respect to @ if for every choice of a chart,
in the given local coordinates @ = Adx; A --- Adx, with Vp A(p) > 0.
Similarly we will say that M is negatively oriented with respect to o if for every choice
of a chart, in the given local coordinates @ = Adx; A --- Adx, with Vp A(p) <O0.

p) By Proposition 6.1.6 every local biholomorphism preserves the orientation.

The proof of Proposition 6.1.12 shows that, for each volume form ® € Q" (M), one of the
two orientations of M is positively oriented with respect to @, the other one is negatively oriented
with respect to @ (and positively oriented with respect to —®).

For every oriented manifold M we can define the induced orientations on M° and dM.
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Definition 6.1.14 Assume that M is oriented, and take an atlas for the chosen orientation.
Then the atlas induced (by restriction) on M° is oriented too, giving what we call "the induced
orientation on M°".

Definition 6.1.15 Let M be an oriented manifold. We define an orientation on dM, the one
induced by M, as follows.

* If dimM = 0, then dM = 0, and there is nothing to do.

e If dimM = 1, then dM is discrete, so to orient it we need to associate a sign to each
point of it. We choose the opposite sign with respect to the one induced by the codomain
of any chart in this point, in the following sense. If p € dM, we pick an oriented chart
(U, @) in M with p € U: if (U) C RL we choose the -+, if ¢(U) C RL we choose the
—. This do not depend on the choice of the chart, see Exercise 6.1.6.

* if dimM > 2 is even, we choose an oriented atlas {(Uq, @) }acr such that Vo € 1,
¢a(Uq) is open either in R” or in R’ (see Exercise 6.1.7). Then we take on dM the
orientation of the atlas {(Uy NIM, (@) (v, ;) tacr; We ask the student to check that
it is oriented in Complement 6.1.4.

* if dimM > 3 is odd, we take the orientation opposite to the one of the atlas {(Uy N

oM, ((Pa)\UamaM)}OCEI induced by {(Uq, @) } acr of M.

The defintion of orientability has a natural relative version on bundles that, roughly speaking,
correspond to give an orientation to each fibre in a continous way. We do it only for vector
bundles, as this is the only case we need.

Definition 6.1.16 We will say that a vector bundle E is orientable if it admits a cocycle
{gap} such that, Ve, B, p, detgqpg(p) > 0.

If such a cocycle exists, a trivialization {® } associated to it induce an orientation on each fibre
E,=n"!(p). Indeed P, maps E, diffeomorphically onto {p} x R”, so inducing an orientation
on E,, from the natural orientation of R"; the positivity of the determinant of g, (p) ensures that
the given orientation of E,, does not depend on the choice of «. Different trivializations may
induce different orientations on the E,,.

Definition 6.1.17 An orientation on a vector bundle E is the choice of an orientation of
every fibre E, induced as above by a cocycle {®q } such that all detgqg(p) are positive.
We will say that an orientable bundle is oriented if an orientation is chosen.

If B is connected, then every orientable vector bundle admits exactly two orientations.
We will later need to orient the direct sum of two orientable vector bundles, so we conclue
this section with the following natural

Definition 6.1.18 Let E, F be two oriented vector bundles on the same base B.

The induced orientation on the vector bundle E @ F is the one such that for all p € B,
if {e1,...,e,} is an oriented basis of E, and {fi,...,fs} is an oriented basis of F then
{e1,...,er, fi,..., fs} is an oriented basis of (E @ F),,.

Complement 6.1.1 Let M be an orientable manifold, U C M an open subset. Show that U
is orientable.

Complement 6.1.2 — The cylinder. The cylinder C is the quotient of [0, 1] x [0,1] C R?
by the equivalence relation Vy € [0,1], (0,y) ~ (1,y). We denote by : [0,1] x [0, 1] — C the
projection map.
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We give an atlas for C with 4 charts: {(U;, ¢:) }ie(1.2,34) Where

e (1)) o
e ([ 1)) e
oo (o))
e ([ (1))

1) Compute all transition functions. Notice that the atlas is not oriented, but all transition
functions either preserve or reverse the orientation
ii) Prove that the cylinder is orientable by producing an oriented atlas {(U;, W) }ic{1,2,3.4}-

g 2
1fx<§

)
: 5
x—1y) ifx>2
: 1
) if x<g
1

x—1y) if x>%

P
x—1,1-y) ifx>g

x,1—y) if x< %

(
(
(
(
(x,1—y) if x<2
(
(
(

x—1,1-y) ifx>1.

Complement 6.1.3 Prove that the sign of the Jacobi matrix in Definition 6.1.4 do not depend
on the choice of the local coordinates.

I Complement 6.1.4 Show that the atlas given for X in definition 6.1.15 is oriented.

Complement 6.1.5 Show that an orientable vector bundle on an orientable manifold is an
orientable manifold.

Exercise 6.1.1 Let M be a manifold and assume that there exist two charts (U, ;) and
(U, @2) such that U; and U, are connected, U; N U, # 0 and the transition function ¢,
neither preserves nor reverses the orientation. Show that then M is not orientable.

Exercise 6.1.2 — The Moebius band. The Moebius band M is the quotient of the square
[0,1] x [0, 1] C R? by the equivalence relation Vy € [0, 1], (0,y) ~ (1,1 —y). We denote by
m: [0,1] x [0,1] — M also the projection on this quotient.

We give an atlas for M: {(U;, ¢i) }icf1,2,3.4) Where

=s(([o)<[od) o (i (W])) wimenf 07
caes(( o4 (1] (11][0))) e (550 5
coms{([o) (] )of ) oa))) evmen{ 55 5
cnes(([o4)<[od)Jo( (] (1])) memeor-f ) 5

» Show that the Moebius band is not an orientable manifold.
* Consider the open set M° := ([0, 1] x (0,1)). Show that M° and every manifold which
contains an open set diffeomorphic to M° is not orientable.



6.1 Orientability 107

Exercise 6.1.3 Show that the real projective plane IP}%g is not orientable, and deduce that there
is no complex structure on PP ; in other words, no complex manifold has IP’HZg as underlying
real manifold.

Exercise 6.1.4 Let M be a complex manifold with complex atlas {Uy, ¢y }. Let conj: C" —
C" be the conjugation map conj(zi,...,z2y) = (Z1,---,2n). Then {Ug,conjo @y} is a complex
atlas, yielding then a possibly different complex structure on the same manifold. Set M’ for
the new complex manifold obtained.

Show that M and M’ are diffeomorphic as real manifold, through a diffeomorphism that
preserves the orientation if the complex dimension of M is even and reverses the orientation
if the complex dimension of M is odd.

Deduce that the underlying real manifold of M’ is opposite to the one induced by M (M)
if and only if the complex dimension of M is odd.

Exercise 6.1.5 — Interpretation of the relation among a volume form and the induced ori-
entation of the manifold. Let M be an oriented manifold, (U, ¢) a chart in a corresponding
oriented atlas, and let as usual xy,...,x, be the induced local coordinates on U. Let @ be a
volume form on M.

1) Show that M is positively oriented with respect to o if and only if Vp € U,

o((5%), (), ) =

1) Show that M is negatively oriented with respect to @ if and only if Vp € U,

o (%), (k) ) <o

Exercise 6.1.6 Recall that, for every chart (Uy, ¢q) of a manifold of dimension n, @q(Uy)
is an open subsets of one ot the following: R", R, R” .

Let M be a 1-dimensional oriented manifold, p € dM. Show that

» either for every chart (Uy, @y) With p € Uy, 94 (Uy) is an open subsets of R!,

» or for every chart (Uy, g ) With p € Uy, @q(Ug) is an open subsets of R .

Exercise 6.1.7 Let M be an oriented manifold of dimension at least 2.

Show that there is an atlas {(Uq, @) } oer for the chosen orientation such that Vo € 1,
¢a(Uq) is open in R” or R”,..

Show that the previous statement fails if we suppose dimM = 1.

Exercise 6.1.8 Consider the identity map of an orientable manifold, taking two different
orientations for the domain and for the codomain: Idy,: M — M.
Show that, with this choice of the orientations, Id,, reverses the orientation.

Exercise 6.1.9 Assume that a map F': M — N preserves the orientation.
Prove that the map F considered as amap F: M — N or as amap F: M — N, reverses
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the orientation.
What can be said on the map F: M — N?
What if we assume instead that F reverses the orientation?

Exercise 6.1.10 Show that, if M is an orientable manifold, then its tangent bundle 7TM — M
is an orientable vector bundle.

M is an orientable vector bundle.

Exercise 6.1.12 Show that, if M is an orientable bundle, then the vector bundle
ASMTEN s M

is an orientable vector bundle.

Exercise 6.1.13 Let M be an oriented manifold, and let S be a manifold embedded in M.

I Exercise 6.1.11 Show that, if M is an orientable manifold, then its cotangent bundle 7*M —
| Show that 7'M is an orientable bundle.

Exercise 6.1.14 Let S, M be oriented manifolds, and assume that S is embedded in M. Show
that .45y, is an orientable bundle.

Integrating forms

We know how to integrate smooth functions on open subsets of R’} ; the classical Riemann’s
integration theory is enough for this class of functions.

Every idea on R” which is sufficiently independent from the choice of the coordinates may
be lifted to the larger category of the real manifolds. Unfortunately, the integration does not have
this property.

Actually the area of an open subsets U C R”", which is the integral on U of the constant
function 1, depends on the choice of the coordinates: if you "double" all coordinates the area is
multiplied by 2".

The action of coordinate changes on integrals is precisely described by the following famous
result.

Theorem 6.2.1 Let U and V be two open subsets of R’} and let ¢: V — U be a diffeomor-
phism. Let f: U — R be a smooth function with compact support. Then

1= [(rooldesio).

Here and in the following we assume that f has compact support to avoid convergence
problems.

Theorem 6.2.1 shows that the action of a coordinate change on an integral depends only on
the determinant of the Jacobi matrix of the coordinate change. Exercise 5.4.9 suggests then to
consider n-forms where n = dim M.

We first restrict our attention to the forms with compact support.



6.2 Integrating forms 109

Definition 6.2.2 The space of g—forms with compact support Q¢ (M) is the vector subspace
of QI(M)
QI(M) :={w € QI(M)|supp ® is compact}

C

First of all, we define the integral of a form in @ € Q(U) on an open subset U C R’,.. Then
® may be uniquely written as @ = fdu; A --- A du, for a smooth function f € Q2(U) = C(U).

Definition 6.2.3 If © = fdu; \--- ANdu, € Q(U) then we define

/U ® = /U 7. 6.5)

Is this definition independent from the choice of the coordinates? Not completely.

Proposition 6.2.4 Let U,V be two open subsets of R, @ € Q”(U),and let ¢: V — U be a
diffeomorphism.
If @ preserves the orientation, then

/a):/(p*a).
U \%4

If ¢ reverses the orientation, then

/a):—/q)*a).
U Vv

Proof. Assume that ¢ preserves the orientation; in other words, assume that det (J(¢)) is always
positive.
Write @ = fduy A --- ANduy,. Then, by Theorem 6.2.1 and Exercise 5.4.9,

|o=[ 1= tomldeo)

= [(o"1)det ()
= [ (9" 1) det (@) dur A-+-du,
= /V((p*f)(p*(dul A=+ Nduy)

Vv

If follows that, to have a definition of integral which is independent from the coordinates, we
have to ensure that all transition functions preserve the orientation: we have to fix an orientation.

This allows us to define an integration theory on Q! (M) only if M is an oriented manifold.
We start by considering forms whose support is contained in a chart.

Definition 6.2.5 Let M be an oriented manifold of dimension n, and let @ € Q7 (M). Assume
that there exists (U, ¢) in the oriented atlas of M such that supp @ C U. Then we define

/Ma):: /(p(U)((pl)*a) (6.6)

Proposition 6.2.4 ensures that Definition 6.2.5 is well posed, showing that the right-hand
term of (6.6) is independent from the choice of the chart.
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More precisely, if supp @ C Uq NUpg, since @qp preserves the orientation, then

[ (e'ye- (02" 0 =
¢a(Ua) ¢ (UaNUp)
-1

- vipoa Vo= [ (gge=[ (g 0.
0p(UaNUp) apire 9p(UaNUp) A @p(Up) p

To extend Definition 6.2.5 to any @ € Q7(M) we need to use the partitions of unity.

Definition 6.2.6 Let M be an oriented manifold and choose one of the corresponding oriented
atlases {(Uqg, @q) }acs- Choose a partition of unity subordinate to the cover i := {Uq } gy
For every i € N choose (i) with suppp; C Uy ;) and define @; := p;®.

Then we define

/Ma)::iEZN/Ma)i.

Apparently the right-hand term is an infinite sum. One can prove that since {supp @;} is locally
finite and supp @ is compact, then there are only finitely many indices such that ®; is not
identically 0. So all but finitely many addenda of the right-hand term are zero: it is a finite sum.

Anyway, at a first glance this is still not a good definition, since the formula defining [,, ®
appears to be dependent on the chosen atlas and on the chosen partition of unity. This problem is
solved by the next proposition.

Proposition 6.2.7 Definition 6.2.6 do not depend neither on the choice of the partition nor on
the choice of the atlas, but only on the orientation of M.
More precisely, if M is the same manifold taken with the opposite orientation, then

Jo=—] o

Proof. A partition of unity may be subordinate to many different atlases. Obviously if we change
atlas (for the same orientation) without changing the partition of unity, the @; do not change, and
therefore Definition 6.2.6 do not depend on the choice of the atlas.

Consider now the general case of two different partitions of unity {p;}icy and {0} jen,
subordinate to two different atlases {(Uq, ®o)} and {(Up, ¢p)}-

First of all, we notice that {(Uq, ¢o)} U{(Ug, ®p)} is an atlas orientedly compatible with
both, and such that both partitions of unity are subordinate to it. So we can assume {(Uq, Qo) } =

{(Up, 0p)}-

Second, we note that also the family of functions {p;c;}; j)eNxN 18 a partition of unity!
Indeed N x N is countable and all other properties follow from the analogous properties of {p;}
and {o;}.

We define w;; := p;o;w. If we prove, Vi € N,

/Mp,-w:;/Mwij.

then Y, [i, pi® = ¥, ; [3; @;j, and similarly it equals }; f,, 6@ concluding our proof.
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This is simple to prove: take a chart (U, @) containing supp ®;, and compute

Z/Mwij :Z/M"f”f“’ = Z/(p(U)(GJO‘P1)<‘P1)*p,-a) -
:/<p<u) (;Gf'o‘l’_l> ((p_l)*Piw:/(p(U)((P_l)*piwz/MPiCO.

Finally, if {(Uqy, @¢)} is an atlas for M, then {(Uy,Lo @q)} (Where L(uy,... up—1,u,) =
(uy,...,uy—1,—uy)) is an atlas for M. Computing the integrals using these atlases and the same
partition of unity, by Proposition 6.2.4 follows [, ® = — [;; @. [ |

Definition 6.2.8 If dimM = 0, then M = {p} is a point, and its orientation is a sign, €(p) €
{%} . The objects to integrate are the functions f: {p} — R, which are naturally identified
with R by f — f(p). Then we define [, f :=€(p)f(p).

p) Arguing as in 6.2.7, it is not difficult to show (see Complement 6.2.1) that if f: M — N is
a diffeomorphism which preserves the orientation for all @ € Q(N) then [, f*o = [y ®
and similarly, if f reverses the orientation, then [}, f*® = — [y 0.

In the definition of partition of unity we have requested the supports of the p; to be compact,
which was somewhere convenient. Anyway, we notice that in the proof of Proposition
6.2.7, we haven’t used the compactness of the supports of the o;. It follows that, when
computing the integral of a form, we can also use a "partition of unity" with support not
compact.

This is important for solving Complement 6.2.4 and then Complement 6.2.5, which are
very important to compute integrals explicitly. Indeed, nobody computes integrals using
directly the definition, since partitions of unity produce functions usually very hard to
integrate. Anyway, most manifolds contains a chart whose complement is a union of
one or more embedded manifolds of smaller dimension. Then by the above mentioned
complements, the integral of a form does not change when we restrict to such a chart, and
then we can reduce the computation to a single "classical” integral.

We conclude this section with the following famous theorem.

Theorem 6.2.9 — Stokes’ Theorem. Let M be an oriented manifold of dimension n, ® €
Q1 (M). Then

/ dw = .
M oM

Proof. Consider an oriented atlas {(Uq, @) } aer for M, a partition of unity {p; };cn subordinate
to {Uq }aer, and define @; := p;®. Then @ = Y; @; and therefore

TR X0 WHLS

On the other hand

/Mda)—/Md(zi:a),-)—Zi:/de,-.

Therefore if the theorem holds for each ;, then it holds for @. We may then assume that
supp® C U for an (oriented) chart (U, ).
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We assume for simplicity ¢: U — R” , the proof for the case in which the codomain of ¢ is
R” being almost identical.
We write

n
(¢*1)*w = Zai(ul,. . .,u,,)dul A ANdui—y Ndujpy A -+ Nduy,
i=1

for the a; some smooth functions whose compact support is contained in the open set ¢ (U) of
R" . We extend these functions to functions a; € C*(R’,) setting them zero out of (p(U ; this
extends (¢~ 1)*w to a form in Q' 'R". Since [,,dw = Jow)(@ Ndo = Jow)d(@~ H* e, we
get

n
/dw:/ d(ZaidulA---AduilAdu,-HA---Adu,,> =
M }

i=1

:/ (Zdal-/\dul/\---/\dui_l/\duH_l/\---/\dun> =
R: \ =

n

B L da;
= ZZ du]/\dul/\ “Aduj—1 Nduipy N--- Nduy,

i=1j=1

3

" da;
(Za dui Nduy A+ ANdui—y Aduigy - /\dun>
Ui

+ \i=l1

[
M=

)i~ 1/"37141&“/\ -Aduy,

. da;
(— 1)’71 - %dul du,.

—_

Il

Il
—

We start the computation of fR’i %dul ---duy,. by integrating with respect to the variable ;.
We need to distinguish two cases, since we are integrating on R” , so all variables vary from
—oo to oo but the last one, u,,, which varies from 0 to +co.

1 . da;
do=Y (-1 —du;---du,
/M ® 1:21( ) R aul Ml !
da nl , da;
=(-1)"! “duy ---du, DY duy ---du,
(=1) R ity “ ! +-Z( ) R: Ju; e
da da;
— _1 nfl/d d e / nd " l 1/ / l
( ) ui Un—1 0 u +Z 8u,

Finally we note that, since all the a; have compact support, [ gf:' du; =0and [, ‘9“” “duy =

—an(uy,...,uy—1,0). Therefore
/ do = (—1)"/an(u1,...,un,l,O)dul~--dun,1. (6.7)
M

To compute [5,, ® = /. R (¢~ 1)* @ we recall that the orientation of dR". coincides with the

standard orientation of R"~! if and only if n is even. Then

n
a):(—l)”/ 1Za,‘du]/\-“/\dl/t,‘_l/\st,'.;.]/\"-/\dun.
oM i



6.2 Integrating forms 113

The restriction of every form du;, i < n to R"~! is the namesake form du;. In contrast, the
restriction of the form du,, to R"~!, is the zero form! Therefore all summands vanish but the last
one (for i = n) and

w:(—l)”/ an(uy, ..., up—1,0)duy - duy_. (6.8)
X R—!

The statement follows by comparing (6.7) and (6.8). |

A first easy consequence is very important for the next chapter.

Corollary 6.2.10 Let M be oriented of dimension n and M = 0, ® € Q" '(M). Then
fydo=0

Complement 6.2.1 If F: M — N is a diffeomorphism which preserves the orientation, and
o € Q! (N) then

/F*(o:/w.
M N

If F: M — N is a diffeomorphism which reverses the orientation, and @ € Q”(Y) then

/F*w:—/a).
M N

Complement 6.2.2 Let M;, M, oriented manifolds, assume dM; = 0 and consider the
manifold M; x M, with the orientation induced by the orientations of the M;. Let m;: M| X
M, — M; be the natural projections and consider two forms @; € QIMMi (A7),

Prove that

/MIXMZ(ni"a)l/\n;wz): </le1) </Mzwz)

I Complement 6.2.3 Show that the function [, : QIM¥ () — R is linear.

Complement 6.2.4 Let M be an oriented manifold of dimension n, N a manifold of strictly
smaller dimension.

Let i: N < M an embedding with closed image. Consider the open subset M’ :=
M\ i(N) C M with the orientation induced by M.

Prove that, if @ € Q(M), and ) € Q! (M), then

/0): .
M M

Complement 6.2.5 Let M,n,N,i,M’ as in the previous exercise. We assume ® € Q!'(M)
(but we do not do any assumption on supp @),y. Extend Definition 6.2.6 to a definition of
[ip @, and show that it is a good definition.
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Exercise 6.2.1 Let M be a compact complex manifold of dimension 7, and let ® € Q"~19(M)
be a holomorphic form of degree n — 1 . Recall (see Exercise 5.3.4) that "dw A d® is a real
form, an element of Q%" (M).

1. Prove that [,,i"do Ad® = 0.

2. Prove that dw = 0. In other words all holomorphic forms of degree n — 1 are closed.

Integrating functions

We can define an integration theory on orientable manifolds for smooth functions by choosing a
volume form @ on M, whose existence is guaranteed by Proposition 6.1.12, as follows.

Definition 6.3.1 Consider a manifold M and a volume form ® on it.
Then, for every f € C°(M), we define [,, f := [,, f® where in the right-hand term M is
taken with the positive orientation with respect to m.

Then the choice of a volume form allows us to integrate functions. Please note that we write
for simplicity [, f but this strongly depends on the choice of . If we change the volume form,

Ju f changes!
If M is compact, we can then define its volume.

Definition 6.3.2 Let M be a compact manifold of dimension n, @ € Q" (M) be a volume form.
Then, we define the volume of M as

V(M)::/Ml:/Ma).

The main example of volume form is the form du; A --- Adu, on R".
Consider a function f € Q%(R"), y € Reg(f), and set M := f~!(y) C R".

To ease the notation we write duj A --- /\cfﬁi A -+ ANdu, for the form duy A --- Adu;—1 A
duiy1 N -+ ANdu,. Then by Exercise 5.4.7 the expression

i (diy Ao Ndug A+ Aduy)
Mp = (=1)""
7 (p)

6.9)

gives a well-defined volume form 7) on the whole M.
Indeed there is at least one index i for which %( p) does not vanish, and then also the
numerator does not vanish as alternating form even when restricted to 7,M = kerd f,,.

Moreover, for two different choices of the index i such that %( p) # 0, the right-hand term
of (6.9) gives the same alternating form on kerd f, = T,M. Let us insist on the fact that this is
true only on M. The right-hand term of (6.9) gives, for different i, forms on R” that differs in any
point p € R”, including the points of M.

They are different alternating forms on 7, R" whose restriction to 7,M coincide.

Notice however that

duy A+ Adui A+ Aduy)
3
dTi(P)

(_1)n+i (

PAdf, = (duy A+ Nduy) .
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In particular, if vy, ..., v,y are vectors in T,M, v, € T,R", then

dup N+ ANduy(viy. .., Vp—1,vn) =
duy A Adup A+~ Aduy)

= <(_1)l’l+i( L%{l(p) P /\dfp) (V],...,Vn,hvn) =
() (— 1) (duy A~ Adui A+ Nduy),
= Z — 57

GEGn : du,' (p)
(0) (1) (i A A A Nty

(Vo(1)s+ > Van—1)dSp (Vo)) =

= (V s+ Vo(n—1 )df (Vn):
o g otV )er
dfp(vn)
= I;, Y, e(0)@y(vo(iys-- - Vo(uot) =
: O-665;1—I
n—1)df,(v, df,(v,
:Ma)p(m,...,vn,l):wa(vl,...,vn,l),
n! n
so, for v, & T,M (which means df,(v,) # 0)
nduy A --- Nduy,
ceVpl) = ————————(V1, e, Vi1,V )- 6.10
7717("1: »V 1) dfp(vn) (V] V-1,V ) ( )

We notice that the induced volume form depends not only on M but also on the choice of f.
Indeed, replacing, VA # 0, f by Af and y by Ay we get the same M but the induced volume form
changes, being divided by A. This is not convenient, so we multiply the form by the norm of the
gradient Vf.

Definition 6.3.3 Consider a function f € Q°(R"), define V,f = Z%(p) (%) and set
1 1 p

. 2
therefore ||V, f]| = Z(%(ﬁ)) :

Pick y € Reg(f) and set M := f~!(y) C R". The induced volume form ® on M is
defined by the following equality, holding Vp € M, Vv; € T,M:

1
O,V Vpo1) =n———duy A - Aduy,(vi, ..., V=1,V f).
Pt =g Vet Vo)

Note that df, (V,f) = ||V, f||%, so by (6.10) ® = ||Vf||n.

Note that we need y € Reg(f) to ensure that we are not dividing by zero. Clearly Definition
6.3.3 of the induced volume form does not change if we substitute f with A f, A > 0, whereas
if we substitute f by —f, @ is substituted by —m changing then the orientation induced on
M. Correspondingly the linear application [, : Q! — C>(M) depends on the choice of the
orientation of M. In contrast, the induced integral [,,: C°(M) — R does not depend on the
choice of f.

Let us see an example.

Example 6.1 Let f € C*(R?), y € Reg(f), and assume that M := f~!(y) is compact: a
compact closed regular plane curve. Let @ € Q! (M) be the volume form induced by f as in
Definition 6.3.3.

Consider a regular parametrization y of M, a surjective immersion y: [0, 1] — M such
that ¥ 1) is injective and y(0) = ¥(1). Set ¥ (10) := d¥, (%)p.

Then, ¥v € Ty, )M, v =AY (ty). Let us compute @, (v). Set ¥ (t0) =: (%, 7). Then, up to
rescaling the function f defining M we can assume Vf = (=9, 7).
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= 0p(AY (1)) = A@p(¥ (10)) =

du /\duz(’)/(to),Vf) =

non\_
B B) Ayl

A
_}L’W(IO)H ok

We conclude this section by showing some classical applications of the Stokes’ theorem.

Example 6.2 — Fundamental Theorem of Calculus. Take M = [a,b] C R, with the natural
orientation, ® = f € C*([a,b]).

The boundary is dM = {a,b} oriented by taking the + in b and the — in a. Therefore
Jom f = f(b)— f(a). By df = f'(t)dt Stokes’ theorem in this case is just the fundamental
theorem of the calculus

| 0= 5) - f(a),
la.b)

Similarly suppose that M is an arc, which means that M is the image of an embed-
ding i: [a,b] — R". Consider M with the orientation making i/ an orientation preserving
diffeomorphism. Take a function f € C*(R").

Then, as in the previous case

| dr = 1) - f(i(a)).

More generally, if dimM = 1, then [;,df is the sum (with suitable signs) of the values of
f on the boundary points (if any) of M.

Example 6.3 — Green formula. Let A C R? be an open subset with regular boundary,
which means that A is a manifold with boundary embedded in R? whose interior is A. We

consider a 1—form @ € QL(A), @ = P(x,y)dx+ Q(x,y)dy, so dw = (%—g - Q) dxNdy.

Then Stokes’ theorem in this case gives

/(%g 8P> /de+Qdy,

where ¥ is dA positively (counterclockwise) oriented.

Complement 6.3.1 Consider a smooth function f € C*(R?), y € Reg(f), M := f~'(y).
Construct the volume form @ induced on M in Definition 6.3.3.

Consider a parametrization of an open subset of M, which means consider an open subset
U C R? and an embedding P: U — M. Show that P*@ = ++/detG du; N\du;.

Complemenf 6.3.2 Let f € C°(R"),y € Reg(f), A € R\ {0}, g:=Af. Then Ay € Reg(g)
and M = f~!(y) =g~ '(Ay)

Definition 6.3.3 1nduces two different volume forms @y and @, on M, respectively induced
by f and g.

Show that @y = @, < A > 0.

Show that the two corresponding linear applications f;,: C¢°(M) — R coincide, regardless
the positivity of A.



6.3 Integrating functions 117

Complement 6.3.3 — The divergence theorem. Prove

Jamtr)= [ 7

for an open set A C R? with regular boundary dA. Here f: A — R3 is a smooth function, 7 is
one of the two vectors of norm 1 orthogonal to the surface (which one?), and the divergence
of f is the function div(f) := Y3, g—)’:ﬁ.

Complement 6.3.4 — Stokes’ theorem on the curl. If § C R3 is an oriented embedded
surface and I = 95 is its boundary with the induced orientation. Consider a 1—form @ :=
Sidxy + fadxs + fadxs.

Prove

/Scurl(f)-ﬁ:/ra).

where curl(f) is the function with values in R?

o) = (238,38 _26 %631

8x2 aX3 ’ aX3 8x1 ’ Bxl 8x2

Exercise 6.3.1 Consider a parametrized plane curve y: [0,1] — R?, and assume that 7 is
an embedding in a submanifold M of R? as in Example 6.1. Endowe I := ¥([0, 1]) with the
volume form pull-back of the volume form of M.

Prove that the volume of I" (say the length) equals fol 17|

Exercise 6.3.2 Find a form o € Q?(R?) whose restriction to S' is the volume form induced
by f = x3 +3 as in Definition 6.3.3.

Exercise 6.3.3 Consider S! = {x} +x3 = 1} C R?. Prove that the volume of S' is 27.

Exercise 6.3.4 Let IT C R? be a polygon® of vertices P, ..., P,, ordered counterclockwise.
Set (x;,¥:) := Piy X0 = Xy, X y1 i= X1
Prove that the area of I1 equals

| =
.M‘

Il
L

)’i(xi+1 _xifl)-
1

“Warning: a polygon is NOT a manifold with boundary embedded in the plane because of the corners at the
vertices.
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/. De Rham cohomology

We can now define the De Rham cohomology of a real manifold.

Unless we do explicitly state something different, all manifolds of this chapter are real
manifolds. When we consider the De Rham cohomology of a complex manifold M, we are
considering M just as oriented real manifold, with the orientation given in Theorem 6.1.7.

7.1 De Rham cohomology and compact support cohomology

Definition 7.1.1 A differential complex is a pair (V*,d) where V* = @,V is a graded
vector space and d: V°® — V* is an operator of degree 1 such thatdod = 0.
If (V*,d) is a differential complex Imd C kerd and we can define its cohomology

oe kerd

For every o € kerd we denote by [o] its class in H3(V*).

H$(V*) has a natural structure of graded vector space Hj(V*) = @,z H;(V*), obtained
by defining H!(V*) := {[0] € H}(V*)|w € V1}.

In particular

B kerd)yq
~oavet’

Hi(V*)

Let M be a real manifold. The graded algebra Q*(M) := @ ez Q¢ (M) with the operator d
defined in Theorem 5.4.8. is a differential complex. Its algebra structure passes to its cohomology
by the following computation.

Proposition 7.1.2 Let (V*,d) be a differential complex.
Let x: V*®* xV® — V* be a product inducing a graded algebra structure on V* with the
property that for all ¢1,¢, € Z, for all @, € V', @, € V2, there exists A, u € K\ {0} with

d(w; x ) =Ao; X ap+ 1o x day,.

Then [@;] X [m] := [@; x @] is a good definition of a graded algebra structure on H3(V*).
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Proof. We prove that [@;] X [0] := [0 X @] is a good definition, leaving the remaining checks
to the reader. By the bilinearity of the product we may assume without loss of generality
o eV, meVe,

First of all we need that, if @, and @, belong to kerd, also @; x @, belongs to kerd. Indeed
d(w; X ) =Adw; X 0+ pw; X dw, =0+0=0.

Then we need to show that the cohomology class of @; X @, only depends on the cohomology
classes of the ;. Indeed, if [@;] = [0/], then 3n; with dn; = w; — @]. It follows, since dw| =
do =0,

W X @y = (@] +dny) X (@ +dm) =
= O] X 0+ @] xdny+dn; x @ =
1

:a){xa)é%—}L

1
d(w) x M)+ ;dml X @) =

@ XM M X0
= o X ’+d< 1 + )
1 0)2 l u

$0 [0 X ] = [0] X ). [ |

Let’s then have a better look to the differential complexes (Q*(M),d).

Definition 7.1.3 A differential form w € Q*(M) is closed if dw = 0, i.e. if ® € kerd.
A differential form ® is exact if there is a differential form 77 such that ® = dn, i.e. if
o € Imd.

By Theorem 5.4.8 every exact form is closed, and then (Q*(M),d) is a differential complex.

Definition 7.1.4 For every manifold M, the differential complex (Q*(M),d) is the De Rham
complex of M.

Its cohomology is the De Rham cohomology algebra (sometimes denoted just by De
Rham cohomology for short) of M, the graded algebra

_ {closed forms}

Hpr(M) =D Hp(M),

~ {exact forms}

where

closed g-forms
B q

Hl (M) =
Dk (M) {exact g-forms}

is the ¢’ De Rham cohomology group of M. The algebra structure on Hpy, (M) is defined,

by Proposition 7.1.2 by the wedge product of De Rham cohomology classes

(o] A [oa] = [oon A an].

Notation 7.1. We will denote by hl, (M) € NU{eo} the dimension of H} 5 (M).

Let M be a manifold such that all De Rham cohomology groups are finitely dimensional.
Then the Hilbert function of M is the Hilbert function of H},z(M), the function Z — N mapping
each q to h}y,(M).

The Euler number of M is e(M) :=Y.(—1)7h,(M).

Note that H} (M) is defined for all ¢ € Z, but it is different from {0} only for 0 < g < n.

The forthcoming Exercise 7.1.2 shows that h%R (M) only depends on the topology of M;
more precisely it counts the connected components of M. Some similar interpretations hold true
also for other cohomology groups; we will discuss some of them later.

There is a class of maps among differential complexes that is very useful.
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Definition 7.1.5 A chain map is a linear application
L:V®*—>W*

among two differential complexes (V*,dy), (W*,dw) that commutes with the differentials,
which means

LOdV :dW oL.

Their more interesting property is that chain maps induce maps among the respective
cohomologies.

Proposition 7.1.6 Let (V*,dy) and (W*,dy) be differential complexes, and let L: V* — W*
be a chain map.
Then there is a linear application

H*(L): Hg,(V*) — Hg, (W*)

defined by H*(L)[w] = [Lo].

If L has degree d, then H*(L) has degree d.

If both (V*,dy) and (W*,dy ) have algebra structures fulfilling the assumptions of Propo-
sition 7.1.2 and L is a morphism of algebras then, considering Hj (V*) and Hy (W*) with the
induced algebra structures, H*(L) is a morhpism of algebras too.

Proof. The only nontrivial thing to prove is that H*(L)[®] = [Lw] is a good definition.
First of all, for all @ € kerdy, dwL®w = Ldy® = L0 = 0, so Lo € kerdy has a class [Lo] €

Hy (W*).
Then, if [©] = [@’] then 31 such that ® — @' = dy N and therefore Lo — Lo’ = L(0 — @) =
Ldyn = dwLn. It follows [Lo] — [L&'] = [dwLn] = 0 and therefore [Lo] = [Lo']. [ |
It follows

Corollary 7.1.7 Let F: M — N be a smooth map. Then there is a graded algebra homomor-
phism F*: H}(N) — Hpr(M) of degree zero such that, for each closed form @ € Q7 ,(N),
F*lo] = [F*o].

Proof. By Proposition 5.4.7 the pull-back F* defines a chain map of degree zero F*: Q*(N) —
Q°(M) that is moreover, as we have already remarked, an algebra homomorphism.
Then the result follows by Proposition 7.1.6. |

By abuse of notation we have given the same name to the map F*: Q*(N) — Q°*(M) and to
the induced map F*: H}),(N) — H}p(M).

Since the latter is induced by the former by the formula F*[®w] = [F*(®)], most of the
properties of the first map pass in a natural way to the second one.

For example the formula

(FoG)* = G* o F*

holds also in cohomology. It follows (Complement 7.1.2 ) that diffeomorphic manifolds have
isomorphic De Rham cohomology algebras.

Since the wedge product of forms with compact support has compact support and the exterior
derivative of a form with compact support has also compact support, the subset

QM) :={w € Q°*(M)|supp w is compact }
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is a graded subalgebra of Q°(M) and a differential (sub)complex whose degree 1 operator is
given by the restriction of d.

Definition 7.1.8 The compact support cohomology algebra or compact support cohomol-
ogy ring of M is the graded algebra

. . e kerd|qe ) {closed forms with compact support}
HZ (M) := Hg (Qz(M)) = =

c

" Im d\oe (m) ~ {differentials of forms with compact support}
whose grading is given by the decomposition H? (M) = @, H{ (M) as direct sum of

HI(M) := kerdigayy {closed g-forms with compact support}
¢ Ty (_ngl ( M)) - {differentials of (¢ — 1)-forms with compact support}

The graded piece HZ (M) is the g'"-cohomology group with compact support. The product
of the algebra structure is defined as

[0 A (@] := [0 A @3].

As in the case of the De Rham cohomology, H(M) is defined for all g € Z, but it equals
{0} unless 0 < g <n.
Note that, if M is compact, Q*(M) = Q2 (M) and therefore H)x(M) = H? (M).

Notation 7.2. We will denote by hi(M) € NU {co} the dimension of H!(M).

We would like to generalize Corollary 7.1.7 to the cohomology with compact support, but
we cannot because in general' F*(Q2(N)) ¢ Q¢ (M). But there is an important class of functions
for which it works.

Definition 7.1.9 Let M, N be manifolds and let F': M — N be a function.
I F is proper if, YK C N compact, then F~!(K) C M is compact too.

If F is a smooth proper map then obviously F*(Q2(N)) C Q2(M) and then

Corollary 7.1.10 Let M, N be manifolds and let F': M — N be a smooth proper map.
Then there is a graded algebra homomorphism F*: H?(N) — H? (M) such that, for each
closed form @ € QI(N), F*[o] = [F* o).

Since diffeomorphisms are proper maps, it follows that diffeomorphic manifolds have isomorphic
compact support cohomology algebras.

_ kerd‘vq

I Complement 7.1.1 Show that, for every differential complex (V*,d), Hj(V*) = —7tr .

Complement 7.1.2 Show that the De Rham cohomologies of diffeomorphicmanifolds are
isomorphic as graded algebras.

Exercise 7.1.1 Show that f € Q%(M) = C*(M) is closed if and only if it is locally constant,
i.e. Vp € M there exists an open neighbourhood U of p such that fj; is constant.

I'As example take the first projection 7 : R x R — R.
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Exercise 7.1.2 Show that h), (M) equals the number of connected components of M. Find a
similar description for h%(M).

I Exercise 7.1.3 Compute il (R).

Exercise 7.1.4 Show that H})x(R) is isomorphic as graded algebra to R[¢] /(7). Show that
H?(R) is isomorphic as graded algebra to tR[t]/(¢?).

Hint: We need to determine when a 1— form with compact support has a primitive whose
support is compact. Look for a criterium in terms of integrals.

Exercise 7.1.5 Compute the De Rham cohomology ring and the compact support cohomology
ring of the intervals [0,1) and [0, 1].

closed but not exact.

Exercise 7.1.7 Show that if M is oriented and dM = 0, then there is a well defined linear
map [,,: H!(M) — R associating to each class [@] the number [,, ®

I Exercise 7.1.6 Show that the restrictions to S' of the forms xdy and xdy — ydx of R? are
‘ Show moreover that the map [,, is surjective.

7.2 Exact sequences
Definition 7.2.1 An exact sequence is a (finite or not finite) sequence of linear applications
— vt syl syt

such that the image of each map coincides with the kernel of the next one.

One can see an exact sequence as a graded vector space V*® := P, V9. Then the linear
applications build naturally an operator d on V* of degree 1, and the exact sequence condition
means that (V*,d) is a differential complex with trivial cohomology {0}.

Definition 7.2.2 A short exact sequence is an exact sequence of the form

05ALBSCo0

where 0 stands for the 0—dimensional vector space {0}.
In other words we have an injective map f: A — B, a surjective map g: B — C such that
Im f =kerg.

A special role is played by the following exact sequences.

Definition 7.2.3 A short exact sequence of complexes is a short exact sequences of chain
maps of degree zero among differential complexes

0 A4° LB 5 0.
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These are commutative diagrams

(7.1)
d d d
0— Al L gl 8 el 0
d d d
0 P (N R BN 0
d d d
0 Adtl f patl 8 Cca+l 0
d d d

whose rows are exact, and whose columns are differential complexes. Therefore in the diagram

(7.1)
* all maps f, g and d are linear;
* dod=0;

* all f are injective;

* all g are surjective;

* Im f =Kkerg;

* dof=fodanddog=god.
The key result is the following

Theorem 7.2.4 Assume that there is a short exact sequence of complexes

04 B 4 0 0.

Then there is a long exact sequence of cohomology groups

S HTHC) S HIAY) D HI(BY) & HI(CY) S HTH (A% > - (7.2)

Proof. We have to define the maps f, g, and d, in (7.2) and then prove that (7.2) is an exact
sequence by showing that the image of each map equals the kernel of the next one.

Since f, g are chain maps of degree zero, by Proposition 7.1.6 they induce linear applications
[+, 8« of degree zero among the respective cohomologies

fo: H*(A®) = H*(B®), g.: H*(B*) = H*(C"),
so that
Va € A® withda =0 f.([d]) = [f(a)], Vb € B® withdb =0 g.([b]) = [g(b)].

To describe the linear application d, of degree 1 we define each of its graded pieces
d.: H17'(C*) — HY(A®) as follows.

By the surjectivity of g, for every ¢ € C¢~! we can pick an element b € B¢~! such that
g(b) = c. When c is a representative of a cohomology class, then d(c) = 0 and g(d(b)) =
d(g(b)) =d(c) =0. Then d(b) € kerg = Im f and therefore there is an element a € A? such that
f(a) =d(b). The following diagram summarizes how we constructed a and b.
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d d d
e i ye T
0 Ad-! ! pa-1 ¢ ci-!1 0
d d d
/ al db / 0
0 A f BY ¢ ca 0
d d d
We define then
d.([c]) = [d]

We need to prove that the definition is well done, i.e. that
1. d(a) = 0 (so that we can consider its cohomology class [a]);
2. the cohomology class [a] do not depend on the choices we have done:
ofac f~1(d(b));
of be g !(c);
of ¢ in its cohomology class.
The proof of point 1) is easy. Indeed f(d(a)) =d(f(a)) =d(d(b)) =0, sod(a) € ker f. Since
f is injective, then d(a) = 0.
Point 2) are really three different checks, one for each choice we have done, the choice of a,
the choice of b and finally the choice of c.
The first check, “the choice of a”, is obvious: since f is injective, f~!(d(b)) has cardinality
1 and then we had no choice there!
For the second check, let’s consider a different ' with g(b’) = ¢, and set @’ for the unique
element in A7 with f(a') =db’. Then g(b—b") =g(b) —g(b') =c—c=0,s0b—b' € kerg =
Im f, so there exists @ € A?~! such that f(@) = b—b'. Then

f(d(@) = d(£(@) = d(b—b) = db—db' = f(a) — f(d) = fla—d).

By the injectivity of f it follows a —a’ = da and then [a] = [d]. The following diagram describes
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the argument used.

d d d
/gl b—b/) /0
0—— A4 ! B! d o1
d d d
da=a—adt db—db'
) Aq/ f Bq/ g l
d d d

The last check, the independence of [a] by the choice of ¢ in its cohomology class, can be done
by a similar diagram chasing argument. We leave it to the reader, as the rest of the proof.

More precisely, to complete the proof the reader should show that d. is linear (this is standard
undergraduate linear algebra) and prove

* Imf, C kerg,;

* Im f, D kerg,;

* Img, C kerd,;

* Img, D kerd,;

* Imd, C ker f;

* Imd, D ker f..
all statements that can be proved by diagram chasing as above (do it, it is fun!) |

I Complement 7.2.1 Run all details of the Proof of Theorem 7.2.4.

Exercise 7.2.1 Let (V*,d) be a differential complex of finitely dimensional vector spaces
such that {¢g|dimV? > 0} is finite. Then
Y (—1)?dimV? =) (—1)?dimH?(V*).

In particular, if 0 — V¢ — V4! — ... 5 V» 5 0 is an exact sequence of finitely dimensional
vector spaces, then Y (—1)?dimV? = 0.
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Exercise 7.2.2 — The dual exact sequence. Let A ENY N C be an exact sequence of
finitely dimensional vector spaces. Prove that

is also an exact sequence.

7.3 The Mayer-Vietoris short exact sequence

At the moment we have considered, for each manifold M, two differential complexes, the
De Rham complex (Q°(M),d) and its subcomplex (Q¢(M),d) with respective cohomologies
H}p(M) and H? (M).

To apply Theorem 7.2.4 to our cohomology theories we need to construct suitable short exact
sequences of complexes.

Definition 7.3.1 Let M be manifold, U C M be an open subset with the induced differentiable
structure. Consider the restriction map

oM. Q* (M) — Q*(U)
defined by p{/ (@) := oy

Since the restriction @y is the pull-back for the inclusion map U < M, and pull-back
and differential commute, p}/ is a chain map.

Theorem 7.3.2 Let {U,V } be an open covering of a manifold M.
Then there is a short exact sequence of chain maps

0= QM) L W) (V) S WUnv) =0 (7.3)

where f(®) = (pjf ®,py/ ©), and g(@y, @) = pgry O — Piry QU -

Proof. The only nontrivial check is the surjectivity of g.

By Theorem 6.1.10 and its proof (that we have not seen) there is a partition of unity made by
two smooth functions fy, fy : M — [0, 1] such that

s futf=1

* supp fu C U;

* suppfy CV.

For every T € Q4(U NV) consider the form fy7 € QI(UNV).

We extend it to a form on V by setting Vp € V\ U, (fyt), = 0. We obtain a smooth form
(that we keep calling fy 1), fyt € Q4(V): indeed the smoothness is obvious on U NV, whereas
for every p € V\ (UNV) =V \U there is a neighbourhood of p, namely V \ supp fi/, where
fut =0, and therefore fy 7 is smooth at these points too.

Similarly for fy: we have constructed two forms fiy7 € Q4(V), fyt € Q4(U) such that

(fUT)\UnV + (fVT)\UmV =T1.

We conclude by

g(—=fvt, fut) = (fUT)|Umv + (D wrv =T u
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Corollary 7.3.3 Let {U,V } be an open covering ot a manifold M.
Then there is an exact sequence

- HI'(UNV) —
—  HppM) — Hpp(U)SHpR(V) — HiRpUNV) —
S HEO) -

Proof. It follows immediately applying Theorem 7.2.4 to the exact sequence (7.3). |

The same construction does not work for forms with compact support because the support of
the restriction of a form with compact support to an open subset may be not compact.
Still, a different construction gives a similar result.

Definition 7.3.4 Let M be a manifold and let U C M be an open subset.
Consider the inclusion U — M.
Then we define

Jint QU) — QM)

so that, Vo € Q2(U), j5o € Q2(M) is the form that coincides with @ on the points of U,
and vanishes elsewhere.

Note that j§;@ is smooth by Lemma 6.1.11 because supp @ is compact.

Note moreover that j{; is a chain map.

Theorem 7.3.5 Let {U,V} be an open covering ot a manifold M.
Then there is a short exact sequence of chain maps

0 QUNV) L) a0 (V)5 QM) 0

where f(0) = (—j5" o, j7" ©), and g(0y, 0v) = j5 00 + j)0v.

Proof. The proof follows the same lines of the proof of Theorem 7.3.2. Do it! |

Corollary 7.3.6 Let {U,V } be an open covering of a manifold M.
Then there is an exact sequence

-~ HIT'M) >
— HI(UNV) — HYU)®HYV) — HIM) —
— H'unv) -

Proof. This follows immediately by Theorem 7.2.4 and Theorem 7.3.5. |

| compiement 7.3.1 Prove Theorem 7.3.5.
I Exercise 7.3.1 Use Corollary 7.3.3 to compute H)x(S").

I Exercise 7.3.2 Use Corollary 7.3.6 to compute H/ (S!).
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Exercise 7.3.3 Let M be a manifold and let U,V C M be open subsets such that U UV = M
and all De Rham cohomology groups of U, V and U NV are finitely dimensional.

Prove that then all De Rham cohomology groups of M are finitely dimensional and
moreover

e(M)+e(UNV)=eU)+e(V).

The Poincaré lemma

Let M be a manifold, let 7: M x R — M be the projection on the first factor, fix ¢ € R, and let
s: M — M x R be corresponding constant section, so Vp € M, s(p) = (p,c). Notice wos = Idy:
s is a section of a trivial bundle.

Lemma 7.4.1 There exist a linear operator
K: Q*(M xR) - Q*(M xR)
of degree —1 such that

ldoipxr) — 7" 05" = (=1)1(Kod —d oK) (7.4)

The operator K above is called integration along the fibres.

Proof. The ordinary derivative % defines a vector field on R. Consider the inclusions R — M x R
given by the fibres of 7, namely Vp € M, t — (p,t). Their differentials map the vector field % on
vector fields on each {p} x R, giving then, V(p,t) € M x IR, a tangent vector in T{,, (M x R).
We get then a section of the tangent bundle of M x R that we denote by %. This is smooth,
N % € X(M x R), as one easily checks in local coordinates.
Indeed, if (U, @) is a chart for M giving local coordinates xi,...,x,, (U X R, ¢ x Idg) is a
chart for M x R, whose corresponding coordinates we denote, by a natural abuse of notation, by

X1,...,X%n,t. Then the partial derivative with respect to the coordinate ¢ equals the restriction to
U x R of the just defined vector field %, which is then smooth.
Note TT(x1,...,%n,1) = (X1,...,Xn), S(X1,. .o, X0) = (X1,...,Xn,C), s0 T'dx; = dx;, s*dx; = dx;,

s*dt = ds™t is the differential of the function with constant value ¢, and so it vanishes: s*dt = 0.
We define K as follows. Vk € R consider the shift by k a;: M x R — M x R defined by

ak(p7t) = (p7t+k)‘

Then, Vg € N, Vo € QI(M xR),Vp € M, Vt € R, Vvy,..., v, 1 € T}y (M x R),

! 0
(K(w))(p,z) ViyeeiyVg—1) == q/ (a;‘_ua)pvu) Vi, Vg1, <> du.
¢ 9/ ()

The reader can easily check that K(®) is a section of the vector bundle AY~'T*(M x R), whose
smoothness we check as usual in local coordinates. If @ = fdx;, A--- Adx;, we get K(@) = 0.
If o= fdx; N\--- /\dx,‘q_I Adt we get

!
K(o)= (/ f(xl,...,xn,u)du) dxjy \--- Ndxi,_,.
C

Smoothness follows since every form in Q7(M x R) is a sum of forms of the two above
considered types.
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The formula (7.4) is a local statement, i.e. it is enough to prove it in a neighbourhood of
every point, so we can check it in local coordinates. Since both sides of (7.4) are linear we only
need to check (7.4) for forms of type fdx;, A---Adx;, and of type fdxi, A---Adx;, | Ndr.

In the first case, @ = fdx;, \--- A dx,-q,

(Idosmxry — 7" 05" )0 = (f — fosom)dx;, A--- Adx;,
= (fCers- ey Xn,) = f(X1, 05 X, 0) )dxiy A -+ A,

and

(Kod—doK)w =K(d(fdx; \---Ndx;,))
:K(df/\dxil /\-'-/\dx,-q)

af af
=K <atdl/\dxil /\--~/\dxl~q> +ZK (aXidxi/\dx,-l /\"’/\dX,'q)

d
=K <fdt/\dx,-1 AREE /\dx,'q>

ot
= (—l)qK(?:dxl-l AREE /\dx,'q /\dl‘)

o [M9f
=(-1) / j(xl,...,xn,u)du dxi, N\--- Ndx;,
C
= (=D f(x1,- 5 X0,8) = f(X150 X, €) )dxiy A -+ Adx,.
In the second case, ® = fdx;, A\--- A dx,‘qfl Adt, since s*dt = 0 then s*@w = 0 and
(Iqu(MXR) —r* OS*)(J) S Iqu(MXR)(D —0=w.
Moreover

(Kod)(l) = K(d(fdx,-l AREE /\d)Cl'(F1 /\dl))

=K z{a—)qui/\dx,-l A+ Ndxi,_, Ndt
1=

n tof
:. 1 </C a)ﬁ) dxl-/\dx,-l/\~-/\dx,~q71

=

and

(doK)® = d(K(fdx;, A---Adx;, , Adr))
d(< >dx,-1/\---/\dx,~ql>
< > /\d)Ci1 /\"'/\d)C,"F1

el
= fdt Ndxi A+ Ndx;, +Z </C aj;)dx,-/\dxil Ao Ndxi,

=(—1)4 co—l—Z(/ ax)dxl/\dx”/\ /\dx,ql |

A first consequence is the following
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Theorem 7.4.2 — Extended Poincaré Lemma. For every manifold M, the cohomology
rings of M and M x R are isomorphic. More precisely, the graded algebra homomorphisms

n*: H* (M) — H*(M x R)
and

st H*(M x R) — H*(M)

are isomorphisms and s* = (7*)~!.

Proof. Since wos = Idy, then s* ot = (wos)" = Idyqy).
On the other hand, for every closed form ® € Q4(M x R), (dK —Kd)® = dKw is exact.
Then, by Lemma 7.4.1,

(7" o5")[0] = [@] + (=1)![(dK — Kd) o] = [],
and therefore * o 5™ = Idye(prxR)- |

The classical Poincaré Lemma, claiming that every closed form on R” is exact, follows then
immediately.

Corollary 7.4.3 — Poincaré Lemma. Vq # 0, h4(R") = 0.

Proof. Applying recursively the extended Poincaré lemma
(R =hI(R" ) =... = hq(Ro) =0. [ ]

A striking application of the extended Poincaré lemma is that the cohomology do not
distinguish varieties with the same homotopy type.

To state it properly we need few definitions. First we need a differentiable version of
homotopy.

Definition 7.4.4 Let M,N be manifolds, and let F,G: M — N be smooth maps. We say that
F and G are smoothly homotopic if there exists a smooth map

H:MxR—N

such that Vp € M, H(p,t) equals F(p) fort =0 and G(p) forr = 1.
H is a smooth homotopy among F and G.

The usual definitions of homotopic maps in the topological category (so continous insted of
differentiable) uses M x [0, 1] as domain of the homotopy map H. Moving to the category of
differentiable manifolds H x R it is more convenient to replace [0, 1] by R mainly to allow us to
consider manifolds with boundary dM # 0.

Corollary 7.4.5 If F,G: M — N are smoothly homotopic, then the ring homomorphisms
F*,G*: H*(N) — H*(M) are equal: F* = G".

Proof. We denote by s.: M — M x R the section s.(p) = (p,c).
Consider the smooth homotopy H: M xR — M among F and G. Then F = Hosy, G=H osj.
By Theorem 7.4.2 s;; = s7 (since both are inverse of 7*). Therefore

F*=(Hosy)" =sjoH" =sjoH" = (Hos)"=G". |

We deduce the following definition and corollary
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maps F: M — N and G: N — M such that both F o G and G o F are smoothly homotopic to

Definition 7.4.6 Two manifolds M, N have the same homotopy type if there exist smooth
the identity of the respective manifold.

Corollary 7.4.7 If two manifolds have the same homotopy type then their De Rham cohomol-
ogy rings are isomorphic as graded rings.

Complement 7.4.1 Prove that the operator K of the Lemma 7.4.1 is well defined, i.e. that
its definition is independent on the coordinates x;.

Complement 7.4.2 Prove that the existence of a smooth homotopy defines an equivalence
relation on the space of smooth functions from M to N.

VpeM,H (p,0)=F(p) and H (p,1) = G(p), then F and G are smoothly homotopic.

Exercise 7.4.1 Let w: E — B be a vector bundle.

Show that the De Rham cohomology ring of E is isomorphic to the De Rham cohomology
ring of B.

Compute the De Rham cohomology rings of the interior of the cylinder and of the Moebius
band.

| Complement 7.4.3 Show that, if there exists a smooth map H': M x [0, 1] — N such that
I Exercise 7.4.2 Compute the De Rham cohomology ring of S".

The Poincaré lemma for the compact support cohomology

The De Rham cohomology do not distinguish among manifolds with the same homotopy type.
There is no similar statement for the cohomology with compact support: indeed Exercise 7.1.4
shows that the compact support cohomology ring of R differs from the one of a point, although
they have the same homotopy type.

Still, the argument of the proof of the Poincaré Lemma may be adapted to the compact
support cohomology, obtaining a different but still interesting result.

Theorem 7.5.1 For every manifold M, for every g € Z

HI(M xR) = HI"' (M)

Proof. Arguing as in the proof of the Theorem 7.4.2, the statement follows from the construction,
Vg € Z, of two chain maps

e QM) — QM xR) of degree 1
T QoM xR) — Q2 (M) of degree —1

such that 7, o e, = Idges (s and an operator K of degree —1 on Qf(M x R) such that

ldos(prxr) —€< 0T = (—1)!(Kod —doK).
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We start by constructing e,.. We choose a function ¢’ € CZ°(R) such that [p €/ (¢)dt = 1, set
e € Q' (M x R) be the pull back (7/)* (¢’ (t)dt) via the projection map 7’ : M x R — R and finally
define

e =T 'OANe

where m: M X R — M is the usual projection map.

The support of e, ® is compact, although both the supports of e and 7*® may be not compact.
Indeed, in some sense, supp e is bounded vertically and supp n* @ horizontally: then suppe, is
compact.

Notice that e is closed, since de = d(n')*(¢/(¢)dt) = (n")*(d (€' (t)dt)) = (n')*0 = 0. Then
e, is a chain map: de,® =d(n*wNe) =dn*oNetn*ONde =*"doNe+0=e.do.

For the sake of simplicity, we give the definition of 7, and K in local coordinates, leaving
to the reader to find an intrinsic definition (analogous to the definition of the operator K in the

proof of Lemma 7.4) to ensure that the definitions are well posed, i.e. independent of the choice
of the coordinates.

We fix local coordinates as in the proof of Lemma 7.4: coordinates xi,...,x, on an
open subset U C M and corresponding coordinates (xj,...,x,,t) on U x R. In particular
T(x1,. .., Xn,t) = (x1,...,%,). Correspondingly we get forms dx; € Q' (U), dx;,dt € Q' (U x R).

Consider a form @ € Q(M x R). If @yr = fdxi, A--- Adx;, we set (T.0)y = 0. If
Oy xr = fdxi, \--- Ndx;,_, Ndt we set

(Teo))y = </Rf(x1,...,xn,t)dt> dxjy \--- Ndx;, ;.

Since every form in Q2 (M x R) is a sum of forms as above, this determines locally the operator
T Q2 (M) — Q2 (M x R).

We show now that 7, is a chain map. This is also a local property, . i.e. it holds if and only if
it holds in a neighbourhood of every point, so we can check it in coordinates.

If @y« is of the form fdx; A--- Adx;, then d(m,®);y = d0 =0 and

(Ted @)y = m(df Ndxiy \--- Ndx;,)

of af
= T <atdt/\dxi| /\---/\dx,-q> —+ Tty (; af)Cidxi/\dxil /\"'/\dX,‘q)
0
= Tl (a{dl‘ /\dxil AR /\dx,-q)
0
= (—l)qﬂ* <8J;dx,'1 AR /\dx,-q /\dt>

= (—l)q (/ aa{dl‘) dxl-l /\---/\dx,-q
R

=0.
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If @y« is of the form fdx; A---Adx;,_, Adt then

d(m.0)y = dm.(fdxi, \---Ndx;,_, Ndt)

:d(</ fdl‘) dxil/\~--/\dxiql)
= (/fdt)/\dx,l/\ “ANdxi,
(Z(?x /fdt>)dx,/\dx,l/\ /\dx,ql

:Z </R8xldt> dxi/\dxi] /\"'/\dx,'q_l

and

(med@)y = m(df Ndxiy A--- Ndx;,_, Ndt)

=T, (Z gj;dxi/\dxil /\.../\dx,-q_, /\dt) + T, (%{dr/\a’xi1 /\'--/\dt>
af
=, (Z ix

( 8x,dt> dxi Ndxi, N+ /\dx,q 1

( / axldr> dx; Nxi, A+ A, |

'/\d)C,'1 AR /\d)CiCFI /\dt)

Since locally all forms are sum of forms as above, the statement follows: 7, is a chain map.

We prove now that m, oe, = Idgz M)- Indeed, since we assumed fR e (t)dt =1 then m.e. =
. (m*oNe) =m. (' (1)(T*0) ANdt) = (Jg €' (t)dt) 0 = o.

We define K: Q2 (M x R) — Q2(M x R) in local coordinates, by defining it for forms of
type fdx;, N\---Ndx;, and of type fdx; A---Adx;,_, Adt, leaving to the reader the check that
the definition is independent from the coordinates by finding an intrinsic definition. We set then

K(fdx,-l AREE /\dx,-q) =0

and
K(fdxiy \---Ndx;,_ Ndt) :=

(st~ (st sgae) () ) o

We leave to the reader the rather long but straightforward check of the equality

Idos(yxr) —€x 0T = (=1)!(Kod —d o K). u
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Corollary 7.5.2 Vg # n, h{(R") = 0, whereas A" (R") = 1.

Proof. Applying recursively the extended Poincaré lemma
W(R") =h (R = =h{"(R%) = h""(R"). u

The "shift of exponents” in the statement makes impossible to conjecture generalizations to
the compact support cohomology of most of the consequences of the Poincaré lemma for the De
Rham cohomology discussed in the previous section.

For example (Exercise 7.4.1), if £: E — B is a vector bundle, then the map 7* induces
isomorphisms in De Rham cohomology: Vg, Hj\x(E) =2 H,(B). In contrast, even if for the
trivial bundle E = B x R” we know by Poincaré Lemma that H{ (B x R") = H! "(B), the
analogous statement is not true for other vector bundles on B of rank . A counterexample is
provided by the Moebius band, seen as rank 1 vector bundle over S!: we will see (Theorem
9.3.6) that its second compact support cohomology group has dimension zero, whereas the first
cohomology group of S' has dimension 1.

A good reason for this failure may be that the Moebius band is not orientable as vector
bundle over S', and therefore there is no way to define an integration along the fibres in this
cases. Indeed the Poincaré Lemma for the cohomology with compact support generalizes to
orientable vector bundles under some more assumptions on the base, as we will see in the
forthcoming Exercise 8.1.2 and later in the crucial (involving a different cohomology theory)
Thom isomorphism Theorem 9.5.6.

Exercise 7.5.1 Compute the compact support cohomology of the following manifolds
o R”
« R%
* the interior of the cylinder
e §"xR™
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8.1

CB. Manifolds of finite type

The dimension of the cohomology

In all the exercises up to now, all the cohomology groups were finitely dimensional.

Is that true in general? The answer is no: there are manifolds with some cohomology groups
infinite dimensional. Anyway these are rare, in some sense, and most of the examples considered
in these lectures have all cohomology groups of finite dimension. This property is indeed shared
by a large category of manifolds, the manifolds of finite type.

Definition 8.1.1 Let M be a manifold of dimension n. An open cover i := {Uyg } oy is good
if
k
Vk € N, Viy,...,i; €1, it holds ﬂ Ui, 2R" or R or 0.
j=1

It is not difficult to construct a good cover in every concrete case (try with your favourite
manifold!). Indeed

Theorem 8.1.2 Every manifold has a good cover.

We skip the proof of Theorem 8.1.2, since it needs some Riemannian Geometry.

| Definition 8.1.3 A manifold is of finite type if it admits a good cover of finite cardinality.

By Theorem 8.1.2 it follows

Corollary 8.1.4 Every compact manifold is of finite type.

Anyway, the category of manifolds of finite type is larger than the category of compact
manifolds. For example, all manifolds obtained by removing finitely many points from a compact
manifold are of finite type. All the examples of manifolds we have considered up to now are of
finite type.

Proposition 8.1.5 All De Rham cohomology groups of a manifold of finite type have finite
dimension.

The idea of this proof is very important, since the same inductive procedure will be used in
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many other proofs in the next sections.

Proof. Let M be a manifold of finite type and let 4 = {Uj,..., Uy} be a finite good cover of M.
We prove the statement by induction on k.

If k =1 then M is isomorphic to either R" or R’} , whose cohomology groups have finite
dimension.

Assume then the statement true for all manifolds of finite type admitting a good cover of
cardinality strictly smaller than k.

We define U := U U---Ui_;, V := Ui. We note that

- {Ui,...,Ux_1} is a good cover of U of cardinality k — 1;

- {Ux} is a good cover of V of cardinality 1;

- {UINUy,...,U—1 NU} is a good cover of U NV of cardinality k — 1.

Then the statement holds for U,V and U NV.

By the Mayer-Vietoris exact sequence

1 dy e
Hpp (UNV) = Hpp(M) = Hpp(U) © HpR(V)
we deduce!
hl (M) = dimker f, +dimIm f,

= dimImd, 4+ dimIm f,
< UNV)+h L (U) + K (V). ]

Complement 8.1.1 State and prove the analogous of Proposition 8.1.5 for the cohomology
with compact support.

Exercise 8.1.1 Construct a connected manifold not of finite type, and prove that it is not of
finite type.

Exercise 8.1.2 Let w: E — B be a real vector bundle of rank » over a manifold of finite type
B given by a smooth cocycle, so that E has a differentiable structure such that 7 is smooth as
in Proposition 3.2.2. Assume moreover that £ is orientable as vector bundle. Then

Vg HY(E) =2 HI"(B).

The Kiinneth formula

The Kiinneth formula is a theorem computing the De Rham cohomology ring of a product of
manifolds by the De Rham cohomology ring of the factors.

Recall Definition 5.1.3: for every pair of finitely dimensional vector spaces Vi, V; their tensor
product Vi ® V; is the space of all bilinear maps V| x V;* — K.

Recall also that V(vy,v2) € Vi x V, we defined the decomposable tensor v; @ vy € Vi @V, as
the one such that V(¢;, @) € V|" x V,

(V1 @v2) (@1, 92) = P1(v1) P2(v2).

We will need the following two powerful algebraic tools.

'Here we use that dimV = dimker f +dimIm f holds for every linear map f: V — W, even if the dimension of
V is not finite, as then at least one among ker f and Im f has infinite dimension too.
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Lemma 8.2.1 LetV, Ag, A; and A, be finitely dimensional vector spaces. Assume be given
an exact sequence

Ao 25 A, s 4,

Then the induced sequence

Ag®V —>f0®ldv AI®V —>f1®ldv A ®V

is exact too.

Proof. By Definition 5.1.6 (f; ®1dy) (a®v) = fi(a) ® v, so the image of f; ® Idy is generated
by the vectors of the form a’ ® v for @’ € Im f;, v € V. It follows that, if ay,...,a,, and vy,...,v,
are respective bases of Im f; and V, then {a; ® v} is a basis of Im (f; ® Idy). In particular

r(fi®V)=r(fi)-(dmV)
It follows that Im(fp ® Idy ) and ker (f; ® Idy ) have the same dimension:
dimIm(fo®@V)=r(fo®V) =r(fo) (dimV) = (dimker f;) (dimV) =

= (dimA; —r(f1)) (dimV) = (dimA;) (dimV) — r(f1) (dimV) =
= dim (A] ®V) — I"(fl ®Idv) = dimker(ﬁ ®Idv>

It is then enough if we prove the inclusion Im ( fo @ Idy) C ker (f; ®Idy). In other words,
we need to prove (f; ®1Idy) o (fo ®1Idy) = 0. By Theorem 5.1.5 it is enough if we check that all
decomposable elements are in the kernel and in fact

(fiwldy)o(foxldy) (a®v)=(fi®Idy) (fola)®v)=(fi(fola)®@v)=02v=0.1

Lemma 8.2.2 — Five Lemma. Consider a commutative diagram of linear applications

A B C D E
fAl fsl fcl fDJ/ fEJ/
A’ B c’ D’ E'

and assume that both rows are exact sequence and that the "external" vertical maps f4, f5, fp
and fg are isomorphisms. Then also f¢ is an isomorphism.

Proof. The proof follows a diagram chasing argument like those we have left to the reader in
the proof of Theorem 7.2.4. Therefore we leave this proof to the reader as well. |

p) Lemma 8.2.2 holds under the weaker assumption that f4 be just surjective and fg be just
injective, as the reader who writes the proof will easily notice.

The statement of Lemma 8.2.2 is then weaker that its proof. Anyway, this weaker statement
is easier to remember and strong enough for all the applications in these notes.

Now we can prove the Kiinneth formula.
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Theorem 8.2.3 — Kiinneth formula. Let M, N be manifolds of finite type, and assume
dM = 0. Then, Vk € Z, there are isomorphisms

Ku: @ Hpp(M)@ Hj(N) — Hpp(M x N)
p+q=k

defined on decomposable tensors as follows: given classes @ € H5,(M) and ) € HJ,(N),
Ku(o®n)=rmoAmn

where the maps 7; are the natural projections 7y : M X N — M and mp: M x N — N.
In particular if {®;};c; and {n;}c; are respectively bases of H})r(M) and H},x(N) then
{7 @ AN} (i jyerxs s a basis of Hpyp(M X N).

p) The assumption dM = 0 is necessary just to ensure that M x N has a natural differentiable
structure, which we are implicitly using.

Proof. Let il :={Uy,...,Uy} be a finite good cover of M. We prove the statement by induction
on h.
If h=1, then M =2 R" and

P Hip(M) @ HER(N) = Hpp(R") @ H(N) = HiyR(N)
p+q=k

where the last isomorphism is given, identifying as usual HBR (R™) with R associating the class
of a constant function to the corresponding constant, by A ® ® +— A @. Then the statement for
h = 1 claims that the map Hfz(N) — H5x(R" x N) mapping 7 to 757 is an isomorphism: this
is part ot the Extended Poincaré Lemma, Theorem 7.4.2.

Assume now & > 1. Arguing as in the proof of Proposition 8.1.5 we can find two open subsets
U,V CMsuchthat UUV =M and U, V and U NV have finite good covers of cardinality strictly
smaller than /. By induction, we may then assume that the statement holds when substituting U,
VorUNV to M. So by inductive assumption all maps Ky, Ky and Kyny are isomorphisms.

Fix two integers p and g and consider the following diagram of linear maps

(Hpe'(U) & HpR (V) @ Hfp (N) —"2 s HER (U x N) @ Hp™ (VX N) (8.1)
Hp (UNV) @ Hjg(N) i Hp ™ (UNV) % N)
Hp (M) © HiY(N) i HpRI(M x N)
(Hp(U) ® Hpp(V)) @ Hbg(N) ——" s HPEI(U x N) @ Hpg(V x N)
Hp(UNV) @ Hip(N) HpR((UNV) X N)

where



8.2 The KUnneth formula 141

- the right column is the cohomology exact sequence induced by the Mayer-Vietoris exact
sequence corresponding to the decomposition M x N = (U x N) U(V X N);

- the left column is obtained by the cohomology exact sequence induced by the Mayer-
Vietoris exact sequence corresponding to the decomposition M = U UV by tensoring with
Idpa(n): it is then exact by Lemma 8.2.1.

We show that the diagram (8.1) commutes. We have to check the commutativity of four
squares; the one at the bottom is

Ky DK,
(Hpr(U) @ HSR(V)) @ Hpo(N) ———— H3/(U x N) & Hp?(V x N)

| |

HBR(UNV) @ HS4(N) Rorw HER((UNV) X N)

We check it, by taking general elements (@;,®,) € H?(U) ® H?(V) , n € H1(N)and by
computing the two images of (@, @) ® 1 in H3x/((UNV) x N); the one from the "top"
way (through H5:9(U x N) @ H55?(V x N)) and the one from the "bottom" way (through
Hpp(UNV)® Hpp(N)).

Indeed following the top way we obtain

(01, @) @M = (T AT N, T AT N) = (AL AT M) jwav) <y — (BT OTATEN) |wAv)<N)

and following the bottom way we obtain

(01,0) @1 — (@) jyay — (0D pav) @0 = (17 ((@2)juny — (@) yav)) AN

that is obviously equal. Then the bottom square commutes, as well as the top square that is
identical (substituting p with p —1). The proof of the commutativity of the remaining two
squares is similar and left to the reader.

Now fix k and consider all diagrams (8.1) for p, ¢ with p 4+ g = k; they all have the same
right column. Summing the left columns we obtain a diagram

Dy gk (Hpg (V) ® Hpp (V) © Hb (V) 22— HE (U x N) @ Hp (V xN) (82)
DBy gk Hig (UNV) @ HiYp(N) —— 2 Hi (UNV) xN)
D¢+ Hpr(M) @ H}yp(N) ol H5x(M x N)
Dy gk (Hhp(U) © Hpp(V)) @ Hipp(N) Hly(U x N) @ Hp(V x N)
Dy gtk Hhp(UNV) @ Hip(N) —— Hbx(UNV) X N)

such that
- the columns are exact sequences since the columns of (8.1) are exact;
- the diagram commutes since (8.1) commutes;
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- by the inductive hypothesis, the first two horizontal maps and the last two horizontal maps
are isomorphisms.
Then the diagram (8.2) commutes as well and the statement follows by the Five Lemma 8.2.2. W

It is natural to try to generalize the Kiinneth formula to a formula for computing the coho-
mology of a general fibre bundle. Indeed, the product of two manifolds is a trivial bundle (in two
different ways: m;: M X N — M is a trivial bundle on M with fiber N whereas m: M x N — N
is a trivial bundle on N with fiber M).

We can then say that the Kiinneth formula produces generators for the cohomology groups of
a trivial bundle, from generators of the cohomology groups of its basis and of its fibre. A similar
result for every bundle does not hold: for example the Klein bottle in Exercise 9.3.5 is a fibre
bundle over S' with fibre S! whose second cohomology group has dimension 0 (as the reader
will show solving Exercise 9.3.5) and not 1 as a Kiinneth type formula would predict.

Still, if there are cohomology classes in E whose restrictions to every fibre give a basis of
the cohomology of the fibre, then one can prove, by the same strategy of the proof of Kiinneth
formula, the following

Theorem 8.2.4 — Leray-Hirsch Theorem. Consider a fibre bundle 7: E — B with fibre F.

Assume that both F and B are manifolds of finite type and that? either dF = 0 or dB = 0.
Consider E with the natural differentiable structure making 7 a submersion and the inclusion
of each fibre F = F, — E an embedding.

Assume that there are cohomology classes e, ...e, € Hpp(E) such that Vp € B, {e;r, } is
a basis of Hp)x(F,) = Hpp(F).

Then, Vk, Hpg(E) = Hpyp(B x F) = D+ gk Hpr(B) @ Hpp(F).

More precisely, if {®i, ... ®,} is a basis of H}),(B), then {7*@; Ae;} is a basis of H})(E).

“This assumption is necessary to define a differentiable structure on E

I Complement 8.2.1 Prove Lemma 8.2.1.

Complement 8.2.2 Prove that there is a canonical isomorphism

(ABB)RC=(ARC)® (B®C).
I Complement 8.2.3 Complete the proof that the diagram (8.1) commutes.

| Complement 8.2.4 State and prove a Kiinneth formula for the cohomology with compact
support.

Exercise 8.2.1 Compute the De Rham cohomology groups of (S')¥, and compare the result
with Pascal’s triangle.

| Exercise 8.2.2 Prove that S™ x §™ is diffeomorphic to § x §"2 if and only if {m;,n; } =
{my,ny}.
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Exercise 8.2.3 Let My, ..., M; be manifolds without boundary of finite type. Prove that

dimH*® (M, X --- x My) = [ [dimH* (M;)

Exercise 8.2.4 Prove that two products of spheres are diffeomorphic if and only if they have
the same factors up to the order.

Exercise 8.2.5 Let My,...,M; be manifolds without boundary of finite type. Use the Kiinneth
formula to prove that

e(My x -+ x M) = [[e(M
i

finite type.

Exercise 8.2.6 Let w: E — B be a fibre bundle with fibre F'. Assume B compact and F of
Prove that

= e(B)e(F).

8.3 Double complexes

Definition 8.3.1 A double complex is a family of vector spaces {Kp’q}(p,q)eNZ provided,
Y(p,q) of two linear maps

d: KP4 — gPat!

§: KP4 — gptla

such that d> = 62 =0 and d§ = 8d.

Equivalently we can see a double complex as the bigraded vector space K** := @, ey K,
where the elements of K77 are the (bi)homogeneous elements of bidegree (p,q), d is a linear
map of bidegree (0,1) and & is a linear map of bidegree (1,0). Notice that we do not allow
negative values for either p or g.
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A double complex can be then visualized as a commutative diagram of the form

(8.3)
d d d d d
K04 0 K14 o K24 s K34 g K44 o
d d d d d
K03 o K13 o K23 s K33 4 K43 o
d d d d d
K0:2 0 K12 g K22 g K32 g K42 0
d d d d d
KO 6 KU o K2 s K3 s K4 0
d d d d d
K0.0 0 K10 0 K20 s K30 s K40 o

such that all rows and all columns are differential complexes.

We associate to every double complex (K**,d, §) as above the differential complex (K*,D)
whose graded pieces are the spaces

K'= & k"
(p.9)lp+q=n

and whose differential is
D:=38+(—1)%d, (8.4)

in the sense that D is defined as the only linear operator D : K®* — K* of degree 1 such that for
each @ € KP4 C KP*9, Do = S+ (—1)Pdw C KP4t g kpat! ¢ grtat!,

By definition n < 0 = K" = 0.

The choice of sign (—1)? as coefficient of d in the definition of D is necessary to ensure
Do D =0 as we will see in the proof of the following

Lemma 8.3.2 (K*,D) is a differential complex.

Proof. The only nontrivial check is D> = 0. It is enough to prove DD® = 0 for any @ € K.
Indeed

DDw =Déw+ (—1)’Ddw
=+ (-1 S0+ (—1)P(§+ (—1)’d)dw
=88w+ (—1)P(—dd+6d)w +ddw
=0+0+0=0. [

Consequently we get, for every double complex, a cohomology.

Definition 8.3.3 The cohomology of a double complex (K**.,d,§) is the cohomology
H} (K*®) of the differential complex (K*,D).
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Notice that (ker § Nkerd) C kerD.

The converse is not true in general and a general element @ € ker D has d@ # 0 and d ® # 0.
However such  do not belong to any bihomogeneous addendum K?+4. Indeed, by definition, for
all p and ¢

KP9NkerD = KPYNkerd Nkerd.
Since K° = K% has only one addendum that is not trivial, K%°, then

HY(K*) = K®NkerD = K*® Nkerd Nker .

Definition 8.3.4 The double complex (8.3) has exact rows if its rows are exact, i.e.

Vp,q €N, §(KP?) =ker Jgp+14-

Note that the exactness of the rows of a double complex do not claim anything on the kernels
of the maps §jxo. : K% — K14,

We will need the following technical lemma.

Lemma 8.3.5 Consider a double complex with exact rows as in (8.3). Then for every ® in
K™ with the property that D® belongs to K%"+1, there exists a @' in K°” such that & — &’
belongs to DK"~!.

Proof. If ® = 0 the statement is clearly true with & = 0: & — &' =0 € DK"!.
We assume then & # (.

Set ®; for the component of @ in K/"~/. Since ® # 0 at least one of the ®; is different from
zero. Set k for the biggest j with @; # 0. So @ = Py ... 4+ Dy, Dy # 0.

We prove the statement by induction on k.
The first case k = 0 is trivial since then K° = K% and therefore we may pick &' = &.
Now consider the case k > 1.

The component of D® in K**1"~* equals §®;. So, by D® € K*"*! follows §®; = 0. Then,
by the exactness of the rows, 3% € K¥~1"=* guch that 8% = ®;. Then

P-—DY=Pp+...+ D 2+ P41 + P — DY =Py +...+ Do+ (P £d¥).

Since (®;_; +d¥) € KF-1"=%+1 by the inductive hypothesis there exists ® € K% with
(®—D¥)—®' € DK""!, and then ® — &' € DK" . [

If the double complex (8.3) has exact rows the spaces A? := ker(5‘ x0¢) Naturally build a new
column on the left to (8.3). Indeed, if a € A, since §da = dSa = d0 = 0 then dA? C A9"!. Then
(A* = ®A?,d) is a differential complex.

Set r: A9 — K% for the inclusion maps. We have then obtained a bigger commutative
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diagram

(8.5)

d d d d d d

0 A4 T K04 4 K14 4 K24 g K34 4 K44 4
d d d d d d

0 A3 T K03 4 K13 0 K23 g K33 g K43 4
d d d d d d

0 A2 ", k02 4 K12 4 K22 g K32 J K42 4
d d d d d d

0 Al " g0l 4 K1 4 K2 g K3 4 K4 4
d d d d d d

0 A0 ", k00 g K10 0 K20 g K30 g K40 g

0

This is summarized by the following definition.

Definition 8.3.6 An augmented double complex with exact rows is given by
* a double complex ((K**,d,d),
* adifferential complex (A®,d) with ¢ < 0= A? = {0},
« for all ¢ injective linear maps r: A7 — K%4,
such that the corresponding diagram (8.5) is commutative (i.e. rd = dr) and has exact rows.

The main result of this section is Proposition 8.3.8 that produces, given an augmented double
complex with exact rows, an isomorphism of graded vector spaces among the cohomologies of
the differential complexes (A®,d) and (K*,D).

Definition 8.3.7 A chain map of degree zero among two differential complexes is a quasi-
isomorphism, if the induced map among the respective cohomologies is an isomorphism.

Proposition 8.3.8 Consider an augmented double complex with exact rows as in (8.5).
Then the maps r: A7 — K*9 C K9 form a quasi-isomorphism

r: (A%,d) — (K*,D).

Proof. Forall g € N, Va € A9, since 0 or = 0, by the commutativity of the diagram (8.5)
Dra =dra+ 8ra=dra = rda,

sor: (A%, d) — (K*,D) is a chain map of degree zero.
We have then induced maps in cohomology

rot HY(A®) — HY(K®).

We show first their surjectivity and then their injectivity.
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Surjectivity. Consider a class [®] in Hj\(K*). Since ® of it is D—closed, we can apply
Lemma 8.3.5 and then, replacing ® with &', we can assume ® in K.

Then from D® = 0 it follows the vanishing of both d® € K%4*! and §® € K'9. The latter
vanishing 8® = 0 implies, by the exactness of the rows, that there exists a € A7 such that
ra = ®. The former vanishing d® = 0 and the commutativity of the diagram (8.5) gives then
rda = dra = d® = 0 that implies, by the injectivity of r, da = 0. So there is a class [a] € H1(A®)
and r.[a] = [ra] = [®P].

Injectivity. Take @ € A? with dw = 0 and [w] € kerr,. Then there exists ® such that
D® = rw € K%9. Then by Lemma 8.3.5 we can assume & € K%4~1,

Then

DP c K¥ = 5§ = 0.

Then by the exactness of the rows of the diagram (8.5) there exists 1 € A?~! such that rn = ®.
Finally ro = D® = d® = drn = rdn that implies, by the injectivity of r, @ = dn. So [®] =
0. ]

An analogous construction may be done by reversing the role of the rows and of the columns
of (8.3).

Definition 8.3.9 The double complex (8.3) has exact columns if
Vp,q, d(K"?) =kerd|gpqs1.

In this case we add a row on the bottom of (8.3). We set B? := ker(d: KP¥ — K1),
B*® := @©BP. Since dB” C B!, (B*,§) is a differential complex.

Definition 8.3.10 An augmented double complex with exact columns is given by
* a double complex ((K**,d,d),
* adifferential complex (B*®,8) wih p < 0= B? = {0},
* Vp linear maps s: B? — K70,
such that the corresponding diagram is commutative (i.e. s§ = ds) and has exact columns.

By Proposition 8.3.8, exchanging rows and columns, every augmented double complex with
exact columns induces a quasi-isomorphism

s (B*,8) — (K*.D).

If both the rows and the columns of a double complex (8.3) are exact, we may add both the
new row and the new column at the same time, getting the following.

Definition 8.3.11 A doubly augmented double complex with exact rows and columns is
given by

* adouble complex ((K**,d,d) with exact rows and columns,

* adifferential complex (A°®,d) with ¢ < 0 = A7 = {0},

* adifferential complex (B®,8) wih p < 0= B = {0},

* Vg linear injective maps r: A7 < K4,

* Vp linear injective maps s: B? < KP0,
such that

rd =dr 56 = Os
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We represent it by drawing the commutative diagram

(8.6)

d d d d d d

0 A3 " K03 g K13 s K23 s K33 s K43 5
d d d d d d

0 A2 " K02 g K12 s K22 3 K32 5 K42 5
d d d d d d

0 Al " g0l g KL g K2 3 K31 5 K4 5
d d d d d d

0 A0 ", k0.0 g K10 s K20 g K30 0 K40 s
S S S S N

0 g% ,p % .pp 0 .3 O .p+ O
0 0 0 0 0

Notice that all rows and all columns of (8.6) different by the differential complexes (A®,d) and
(B*,0) are exact sequences.

Applying Proposition 8.3.8 twice, we get that both these differential complexes are quasi-
isomorphic to (K*,D). In particular their cohomologies are both isomorphic, as graded vector
spaces, to the same object, the cohomology of (K*,D).

Theorem 8.3.12 Assume to have a doubly augmented double complex with exact rows and
columns as in (8.6). Then

Hj(A%) = H3(B*)

as graded vector spaces.

Presheaves of abelian groups and Cech cohomology

The sheaf theory is a very powerful tool.

In this section we just sketch the beginning of this theory, by defining the presheaves of
abelian groups and their Cech cohomologies.

Presheaves can be done of any algebraic structure (groups, rings, vector spaces, ...) by
adapting in the natural way the definition below. Even presheaves of sets exist and are useful.

Anyway, the definition of cohomology does not work in general. The minimal algebraic
structure necessary for the definition of cohomology is the structure of abelian group.

We are mainly interested in presheaves of vector spaces. Notice that the vector spaces are
abelian groups with a further operation, the multiplication by scalars. So preasheaves of vector
spaces are special preasheaves of abelian groups.

Definition 8.4.1 Let X be a topological space.
A presheaf .7 of abelian groups on X is a functor as follows:
* For each open set U of X there corresponds an abelian group .% (U ), the sections of .#
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over U;

* For each inclusion of open sets V C U there corresponds a group homomorphism
resyy: F(U)— F(V).

The homomorphisms resy,; are called restriction morphisms; often resy y (s) is denoted

sjy by analogy with restriction of functions.

The restriction morphisms are required to satisfy two properties:

* For each open set U of X, resy y is the identity of .7 (U).

* If we have three open sets W C V C U, then resyy oresyy = reswy.

The latter condition says that it doesn’t matter whether we restrict directly to a smaller open
subset W or we restrict first to a bigger open subset V, then to W.

Example 8.1 Here are few examples® of presheaves of abelian groups on a topological space.
* Consider any abelian group G. The presheaf of the constant functions with values in
G is the presheaf defined by
for every open subset U, the group G;
for every pair of open subsets V C U, resyy = Idg.
* Consider any abelian group G. The presheaf G or presheaf of the locally constant
functions with values in G is the presheaf defined by
for every open subset U, the group® of the functions f: U — G that are locally
constant, i.e. such that Vp € U there exists a neighbourhood V of p in U such that f
assumes the same value on all points of V;
for every pair of open subsets V C U, resy y is the usual restriction of functions.
« the presheaf C of the continuos functions with values in R:
C%(U) is the group of the continous functions f: U — R;
for every pair of open subsets V C U, resy y is the usual restriction of functions.

“In all cases we set the group of the section over the empty set @ to be the trivial group, the group with one
element.
bHere the group structure is defined lifting the operations from the codomain G

The presheaf R of the locally constant functions with real values will be very useful in the
following.
If the topologica space is a manifold X, it has some natural presheaves coming from the
discussions in these notes.
Example 8.2 In all the following examples of presheaves, to be short, we do not specify the
maps resyy: they are the natural restriction maps.
If X is a real manifold, we have
* the presheaf C™ of the smooth functions: YU C X,C*(U) = {f: U — R|f is smooth };
« the presheaf Q? of the smooth differential g-forms.
If X is a complex manifold, we have
* the presheaf & of the homolomorphic functions;
* the presheaf Q"7 of the holomorphic (p,q)-forms;
o the presheaf AP-4 of the smooth (p, q)-forms.

To every presheaf of abelian groups on X we associate several differential complexes, one
for each open covering of X.
For technical reason, we need to fix a total ordering on the open covering.

Definition 8.4.2 Let X be a topological space, and let Z = {Uy } oc; be an open covering of
X, where [ is a totally ordered set.
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For each p, foreach o S o 5 ... § &, € I we define
Uao...ap = Uao mUal ﬂ...mUap.

Let .% be a presheaf of abelian groups on X.
The Cech complex of .% and 7 is the differential complex (C*(% ,.%#),8) where Vp < 0,
CP(% ,.#) vanishes whereas Vp > 0

', F)= ] ZWUu-q)

<< 0t

and the differential § is defined as follows. Vo € CP(% ,F), set Ogyay a0, fOT its compo-
nent in .% (Ug,..q,), OG0 5 01 5 --- 5 @p Then we define d® by giving all its components

(60))%a1a2.”apap+l 6 ‘Q(Uaﬂ'“apﬁ»l)’ VO{O é 061 é cee § ap+1

(60)ayan op--cporpis = (Dot 0y 111 )|Uoc0¢xlor/2~~~apap+l

+ tee + (_ 1 )p+1 (a)aﬂa] a2"'ap)|Ua0a1a2---apa

- (wa()aZ“'apaerl)‘Uaoa] o --ap p+1 :

Op+1

Roughly speaking, (8®)q,e, o --atpa,,1» the component of 6@ on the intersection of p +2
open sets Uy, NUg, N...NUg,,,, is obtained by taking the restriction of the component of @ on
each intersection of p + 1 of them, and then summing the p + 2 results with alternating signs.

Note that here we need that our presheaf is a presheaf of groups, as we sum elements in them
and take some opposites.

The check that 6 o 6 = 0 needs the commutativity of the group: it is a straightforward
computation that we leave to the reader.

Definition 8.4.3 The Cech cohomology of the presheaf of abelian groups .% with respect
to the covering 7% is the cohomology of the Cech complex H*(% ,.%) := Hy(C*(% ,¥)), a
graded vector space whose graded pieces are denoted H? (% , 7).

It is not difficult to prove that the Cech cohomology does not depend, up to isomorphisms, from
the choice of the total ordering on /.

Example 8.3 Let m: E — B a G-bundle with fibre F, so G is a subgroup of Aut(F'). Assume
G abelian.

Choose a trivialization {Cba tEy, 7> Ug X F }ae ; and fix a total ordedring of /.
The cocycle {gqp } defines an element of C' ({Uy },%) where G is the presheaf of the con-
stant functions with values in G, which is 5-closed. So it also defines a class in H! ({Uy},%9).

Consider a manifold M and an open covering % := {Uy }ger-

Definition 8.4.4 The Cech-De Rham complex is the double complex obtained by taking
* the vector spaces KP4 := CP (% ,Q%);
» as "vertical" differential d: K”¢ — KP4+ the natural map obtained taking the usual
differential of forms on each component; so

VoS00 5. 50 (d0) gy o, = d(0gy-a,);

» as "horizontal" differential §: KP4 — KP*14 the differential of the Cech complex
C* (% ,Q17), where Q1 is the sheaf of the differential g—forms.

Here is the Cech-De Rham complex as commutative diagram.
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O, Q%) 2=\, @) 2 (w03 s (U, Q) —— -

d

U, Q%) =2 (U, 0 2 (U, Q%) S (U, ) — -

d
(%,

d

O, Q0 2V (w,Q%) 2 (U, Q) s (U, Q) —— -

d

d
1)

—2=cl(%,Qh)

d

5
—

d

d
C*(%,Qh

d

8
—

d

d

C(%,Q) —— -

d

8.7)

The reader can easily check that Cech-De Rham complex is a double complex fullfilling all
requirement of Definition 8.3.1. In particular dd = dd.
In the following Proposition 8.8 we prove that it has exact rows, giving rise to an augmented
double complex with, as extra column (the differential complex (A®,d) of Definition 8.3.6) the
De Rham complex (Q*(M),d), and as maps r: Q4(M) — CO(% ,Q4) = [1,Q9(Uy) the maps
induced by the restrictions, pull-backs for the inclusions Uy, C M.

Proposition 8.4.5 The diagram

A~

d d d d

d d d d

0

is an augmented double complex with exact rows.

0—— QM) —5 (% Q%) —— /(U ,0) —— CHU ,0) — - -
0—>Ql(M)%CO(%,Ql)Lcl(%’Ql)ch(%jgl)*%“

0—— QM) — CO(%,Q0) 2= c\(%,2%) 2= (%, Q%) — -

(8.8)

Proof. First note that, if 7 is a covering made by exactly two open sets {Up, U, }, the statement

follows by Theorem 7.3.2 setting U := Uy, V := Uj.
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The proof follows indeed exactly the same lines of the proof of Theorem 7.3.2.

First of all r is injective. Indeed if a differential form w € Q7(M) has r@ = 0 it means that
its restriction to every open subset Uy, vanishes, and therefore @), vanishes for all p € [ JUq. So
® = 0. This shows the exactness at Q7(M).

6or=0. Indeed for every differential form ®, the component dr@ on Q*(U,pg) is

(w\Ua)|Uﬁ - <w|UB) Ve = Oy = Ougg = 0.

kerd = Imr. Indeed if (@q) is in kerd, then V(e B) (@o)u; = (@p)u,- So there exists
o € QP(M) such that Va, Vp € Ug, ®p = (0x),: 7® = (®q). This shows the exactness at
Co(%,Q9).

It remains to prove the exactness at C” (% ,Q%), p > 1. Since 6 0 0 = 0, we are left with
the proof that for all T € CP(% ,Q4), p > 1, with §7 = 0, there is 6 € CP~ (% ,Q4) such that
60 =r1.

This can be proved by constructing explicitely ¢ by T using a partition of unity subordinate
to % as in the proof of Theorem 7.3.2. We leave the details to the reader. |

This in particular implies, by Theorem 8.3.8, that the De Rham cohomology equals the
cohomology of the double complex (8.7).

If also the columns of (8.7) were exact, then we would obtain a doubly augmented double
complex with exact rows and columns as (8.6) with a new row at the bottom of (8.8); by Theorem
8.3.12 the cohomology of the new row would be isomorphic to the De Rham cohomology of M.
Unfortunately, this is not always true.

Our candidate new row is the Cech complex of the presheaf of the locally constant functions.
Indeed, since smooth functions are closed if and only if locally constant, the kernel of the map
d: CO(w ,Q°%) — C%(%,Q") equals CO(% ,R).

Adding it we get the following commutative diagram.

(8.9

If all columns of (8.9) except the first (the De Rham complex) are exact, then (8.9) is a
doubly augmented double complex with exact rows and columns.
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Those columns are exact if and only if the De Rham cohomology of all the open sets Ug,...q,
is concentrated in degree zero. In other words, if and only if Vg > 0, Vp, Voo £ a1 -+ 5 0,
hr(Ugy-..ar,) = 0. This motivates the following definition.

Definition 8.4.6 % is acyclic if Vg > 0, Vp, Vo < -+ £
h%R(UaO.“ap) = 0.

Note that all good covers are acyclic, and therefore acyclic covers exist.
% is acyclic if and only if the columns of (8.9) are exact. Theorem 8.3.12 applies then, if %
is acyclic, to (8.9), showing

Theorem 8.4.7 If 7/ is an acyclic cover of M, then there is an isomorphism of graded vector
spaces

Hyx(M) = H* (% R).

Note that the augmenting column (the De Rham complex) does not depend on the cover, and
the augmenting row has nothing to do with differential forms, so the cohomology of the double
complex (assuming the cover acyclic) does not depend on both things.

This shows that indeed the De Rham cohomology can be computed without using the
differential forms (which is a rather surprising conclusion for these notes). If moreover % is
finite (for example a finite good cover of a manifold of finite type), then the Cech complex of the
constant presheaf R relative to % is finite dimensional and can be indeed explicitely written,
giving a concrete method to compute the De Rham cohomology groups of M.

Indeed one can show (and we are not far from that) that the De Rham cohomology ring is a
topological invariant.

I Complement 8.4.1 Complete the proof of Proposition 8.4.5.
| Exercise 8.4.1 Show that 505 =0.

Exercise 8.4.2 Choose two points of IP’]%Q and conside the cover % of IP’IlR formed by the
two open subsets complements of those points. Set G = {£1dr} and set ¢ for the constant
presheaf with values in G.

Prove that H' (% ,4) = G.

Write a trivialization of the trivial line bundle and of the tautological bundle with structure
group G, and show that their cocycles give different elements (so all elements) of H' (% ,%).

complement of a point. So % = {Up,U; }, with U; = S'\ p;, po # p1.
1. Determine if % is acyclic.
2. Compute the dimensions of all the graded pieces C?(% ,R) of C*(% ,R).
3. Write explicitly the differential & of C*(%,R).
4. Compute the cohomology groups of the Cech complex C*(% ,R) and compare the
result with the Hilbert function of the De Rham cohomology of S'.

‘ Exercise 8.4.3 Consider a cover % of S' given by two open subsets that are both the
I Exercise 8.4.4 Construct an acyclic cover % of S! made by three connected open subsets
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such that each open subset intersects exactly two other open subsets and the intersection of
each three of them is empty.
Then
Determine if %/ is acyclic.
Compute the dimensions of all the graded pieces C4(% ,R) of C*(% ,R).
Write explicitly the differential 6 of C*(%,R).
Compute the cohomology groups of the Cech complex C*(% ,R) and compare the
result with the Hilbert function of the De Rham cohomology of S'.

s> 2D =

Exercise 8.4.5 Write Vn > 4 an acyclic cover of S' made by n connected open subsets, such
that each open subset intersects exactly two other open subsets and the intersection of each
three of them is empty.

Then

1. compute the dimensions of all the graded pieces C(% ,R) of C*(% ,R);

2. deduce from it the Euler characteristic of S'.

Exercise 8.4.6 Consider a cover % of S* given by two open subsets that are both the
complement of a point. So % = {Up,U; }, with U; = S2\ p;, po # p1.
1. Determine if %/ is acyclic.
2. Compute the dimensions of all the graded pieces C?(% ,R) of C*(% ,R).
3. Write explicitly the differential 6 of C*(%,R).
4. Compute the cohomology groups of the Cech complex C*(% ,R) and compare the
result with the Hilbert function of the De Rham cohomology of S°.

Exercise 8.4.7 Consider a homeomorphism of the sphere S? onto a tetrahedron, and let
U = {Uy,U;,U,,Us} be an acyclic cover such that each U; is a small neighbourhood of the
preimage of a face of the tetrahedron. Here by small neighbourhood we mean the set of points
with distance < & (in the metric induced by R?) for some suitably small £ > 0.

1. Compute the dimensions of all the graded pieces C?(% ,R) of C*(% ,R).

2. Deduce from it the Euler characteristic of S2.

3. Compute the differential of C*(%,R).

4. Compute the cohomology groups of the Cech complex C*(% ,R).

Exercise 8.4.8 Let S be a compact manifold of dimension 2, and assume that S is homeo-
morphic to the external surface of a (possibly not convex) polyhedron.

So § is topologically union of f polygons (possibly with different number of sides), which
we call faces.

We assume that every vertex belongs to exactly three faces, and that the intersection of
two polygons is either empty or an edge of both. Let e be the total number of edges and let v
be the number of vertices.

Prove that the Euler characteristic e(S) of S equals

f—e+v.

Exercise 8.4.9 Prove the same statement as in Exercise 8.4.8 without any assumption on the
number of faces through any vertex, so allowing four or more faces through the same vertex.
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9. The Poincaré duality
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9.1 The Poincaré duality

This chapter is devoted to the Poincaré duality and some of its applications.
The Poincaré duality applies only to manifolds M that are orientable and wifiut boundary,
since it heavily uses [,, as element of the vector space dual of HY™¥ (1),
This includes several interesting cases, for example all manifolds wi
i.e. the underlying real manifold of any complex manifold.

a complex structure

Theorem 9.1.1 — Poincaré duality. Let M be an oriented manifold with dM = 0. Then
there exists, Vg, isomorphisms

Py Hpyp(M) — (HZ™(M))"

such that for all pairs of closed forms @ € Q4(M) and n € Q¢ (M)

Pu(@)((n]) = [ @nn.

Proof. We first show that Py is well defined. In other words, we show that f;, @ A1 depends
only on the classes (@] € HY(M) and [n] € H. 4 (M).

Indeed, chosen forms @ € Q4~! (M), 7 € Q2 ¢~ (M), by Stokes’ Theorem 6.2.9, since by
assumption M =0 and dw =dn =0

/M(a)+a@)/\(n+dﬁ):/Ma)/\n+/Md6/\n+/M(a)+dE)/\dﬁ
:/ wAn+/d(mn)i/d((m+da)Aﬁ)
M M M

:/Ma)/\n—i—/aM(E/\n)i aM((a)—Fm)/\ﬁ)

~ [ onn
M

Therefore the map Py, is well defined.
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We are left with the proof that all maps Py, obviously linear, are isomorphisms.

By sake of simplicity!, we prove it only for manifolds of finite type, so we take a finite good
cover {4 = {Uj,...,U;} and argue by induction on k.

If k = 1 then M is diffeomorphic to R”, whose De Rham and compact support cohomology
groups we know by the Poincaré lemmas: Corollaries 7.4.3 and 7.5.2.

Then for all ¢ # 0 both the domain and the codomain of Pgr» have dimension zero, and
therefore Pg- is the unique map amon them, an isomorphism.

In the case ¢ = 0, Pg» is a map among two spaces of dimension 1, and therefore either it is
the zero map or it is an isomorphism. If it were the zero map, then Pr-([1]) =0 € H(R")*, and
so V1 € Q'(R") [z = 0, which is obviously? false.

Therefore Pgn is an isomorphism for all ¢, and the starting step of the induction is proved.

By induction, arguing as in the proof of Proposition 8.1.5 we find two open subsets U and
V of M such that M = U UV and the statement holds for U, V and U NV all maps Py, Py and
Pyny are isomorphisms.

We consider the diagrams

HI U) @ He (V) — Y gt oy e B vy ©.1)
HI\(UNVY) ooy H - wnv)
HY(M) T H (M)
HIU) V) — L) gy g g a(vy»
HI(UNV) ooy HII(Unv)*

where

- the left column is the long cohomology exact sequence associated to the Mayer-Vietoris
exact sequence corresponding to the decomposition of M as union of U and V;
- the right column is the dual of the analogous exact sequence for the cohomology with
compact support.
Note that we are indeed considering 16 different diagrams, depending on the choice of 4 signs.
Since the dual of an exact sequence is exact (Exercise 7.2.2), both columns of the diagram
(9.1) are exact sequences. By the inductive assumption all maps + (Py @ Py) and +Pyny are
isomorphisms. Therefore, if there is a choice of the signs + such that the diagram (9.1) commutes,
the Five Lemma 8.2.2 implies that Pj is an isomorphism, concluding our proof.

We complete then the proof by proving that there is a choice of the signs + in the diagram
(9.1) making it commutative.

I'The Poincaré duality holds indeed also for manifolds not of finite type. Its proof in the general case follows the
same idea, and uses transfinite induction.
2Take 1) = fdx; Adxy A--- Adxy for any f € C2(R"), £ >0, f #0.
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We have to check the commutativity of four squares; the one at the bottom is

HIU) & HI(V) — N ey @ B2 9(v)

| |

HI(UNV) v H UMV

We check it by computing the two images of a general element ([@;], [@]) € HI(U) ® H4(V) in
H; 9(UNV)*: the one from the "top" way (through H, 4(U)* @ H; ?(V)*) and the one from
the "bottom" way (through HZ(U NV)).

Top:

Q@H@DHiQmHmW%LMAm+A@Am)

%i<[n]H ((02—(01)/\7]>

unv

Bottom:

([on]; [@2]) = ([(@2) v — (@1)jurv])
=+ <[n] — Umv(ab—an)

Then the bottom square of diagram (9.1) commutes for a suitable choice of the signs. The
same proof shows that the same holds also for the top square.
We study the commutativity of the square

Py

HY(M) He™(M)*

J |

HI(U) @ HI(V) “WON) L gy e HYV)

in a similar way.
Top:

@l (1n= [ onn)

> <([nd,[nz])H/MwA(j%mﬂXm))

Bottom:
(@] = ([o], [oy])

+—>i(([771],[172])r—>/Ua)/\m+/va)An2>



158 Chapter 9. The Poincaré duality

Since clearly [, @ A (jm +jym2) = [y @ AMi + [, @ Ay also this square commutes for
a suitable choice of the signs.
The last square is

HI\(UNV) ooy H- N unv)
H4(M) < H (M)

Here we need the coboundary maps of the long cohomology exact sequence induced by the short
exact sequences of Mayer-Vietoris, and then the function fy in the proof of Theorem 7.3.2.
Bottom:

([@]) = LV d(~fro)] = iV (~dfv N o)]

Hi([n]a—/mvdﬁ//\w/\n)

Top:

unv

k(o [ endtim)

and the commutativity up to a sign follows because 7 is closed, which implies d(fyn) =
dfy A n. |

@ (o [ onn)

The first simple consequence of the Poincaré duality is the following

Corollary 9.1.2 Let M be a connected orientable manifold without boundary of dimension n.
Then the map [,,: H!(M) — R is an isomorphism.
In particular 4" (M) = 1. Moreover a form @ is in the image d©~! if and only if [,, @ = 0.

Proof. Since we assumed M connected, by definition H°(M) = R is the space of the constant
functions. Theorem 9.1.1 implies then that H(M)*, and therefore also H (M), has dimension 1.
More precisely, the isomorphism in Theorem 9.1.1 for ¢ = 0 is the map

HOM) 3 ¢ ([n] '—>C/MT]> € H'(M)".

This gives for each c a different (as Py is an isomorphism) linear map among two vector spaces
of dimension 1, H"(M) and R. Since for ¢ = 0 it is the zero map, for ¢ = 1 it is a different map,
and a linear map among vector spaces of dimension 1 is either zero or an isomorphism. |

Exercise 9.1.1 Compute the De Rham cohomology groups of a torus with g holes (the
Riemann surface of genus g).
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| Exercise 9.1.2 Compute the De Rham cohomology groups of a torus with g holes minus »
points.

Exercise 9.1.3 Compute the De Rham cohomology groups of a torus with g holes minus »
small open” discs pairwise disjoint.

“Be careful, this manifold has a boundary!

Exercise 9.1.4 Prove that every good cover of an orientable manifold of dimension » has
cardinality at least n+ 1.

The degree of a proper map

Corollary 9.1.2 gives an interesting interpretation of the number /4™ (M) for a manifold without
boundary: it is the number of the connected components of M that are orientable.

The second part of the statement, claiming that two forms represent the same class if and
only if they have the same integral on each orientable component, leads naturally to the definition
of the degree of a proper map.

Let F: M — N be a smooth proper map among two connected oriented (possibly not
compact) manifolds without boundary of the same dimension. Then the pull-back induces a
map F*: H'(N) — H!(M). Corollary 9.1.2 shows that both spaces have dimension 1, and more
precisely the linear maps [;,: H!(M) — R and [y : H!(N) — R are isomorphisms. Composing
F* with these isomorphism, we get a linear map R — R which is then the multiplication by a
constant, the degree of F.

In other words:

Definition 9.2.1 Let M, N be oriented manifolds without boundary of the same dimension #,
N connected, and let F: M — N be a smooth proper map.
Choose w € Q(N) with [, @ = 1. We define the degree of F as

degF::/ F*o.
M

Note that we have required only the connectedness of N. This is necessary in the definition
to ensure that the definition of the degree of F does not depend on the choice of w: if N is
connected the forms @ € Q! (N) with [, ® = 1 form a cohomology class; then their pull-backs
belong to the same cohomology class and therefore they all have the same integral.

In contrast the connectedness of M is not necessary.

We deduce immediately by the definition

Vo € Q'(N) /MF*a):(degF)/N(o

p) The degree is a multiplicative function. Indeed, if F, G are proper maps such that the
codomain of G equals the domain of G, then F o G exists and directly by the definition we
deduce

deg (F oG) = (degF) (degG)
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p) If we change the orientation of M, the degree of F change sign.
If we change the orientation of N, the degree of F' change sign.
If we change the orientation of both N and M the degree does not change.

In particular, if we consider a proper map from an orientable manifold to itself, its degree
does not depend on the choice® of its orientation.

p) If F is adiffeomorphism that preserves the orientation, then degF = 1.
If F is a diffeomorphism that reverses the orientation, then degFF = —1.

Proposition 9.2.2 Let M,N be compact oriented manifolds without boundary of the same
dimension. If F,G: M — N are smoothly homotopic maps, then deg F' = degG.

Proof. This follows easily by Corollary 7.4.5. |

It follows the following Theorem, known as “Hairy Ball Theorem”, since it determines,
“roughly speaking”, if one can comb a hairy ball such that each hair lies flat.

Theorem 9.2.3 — The Hairy Ball Theorem. A sphere S” admits a smooth vector field without
any zero if and only if its dimension # is odd.

Proof. The readed should have already combed flat all odd-dimensional spheres solving Exercise
3.3.4. We only need then to show that if a sphere can be combed flat, its dimension is odd.
Consider a sphere 8" := {x = (x1,...,%,+1) € R"!| Zx,-z = 1} and a vector field v on it. We
can write it as
d
v(x) = Zvi(x)a?,.

where “v is orthogonal to x”: ¥ x;v;(x) = 0 for all x.

If v never vanish (combing the sphere), we can divide it by Zviz. So we can assume

without loss of generalities that Y v? = 1.

Set v := (vq,...,v,y1) for the point in R"*! whose coordinates correspond to the components
of v. Note that v € §".

Consider the following induced function on §" x R

H (x,t) = cos(mt)x + sin(7t)v.

Note that H(x,0) = x, H(x,1) = —x. Since x and v are orthogonal and of norm 1, H (x,7) belongs
to S” for all x and ¢, so H can be seen as a smooth homotopy

H:S"xR— 8"

It follows that the antipodal map A: " — S" is smoothly homotopic to the identity.
Then by Proposition 9.2.2 degA = 1, so A preserves the orientation. It follows n odd by the
forthcoming Lemma 9.2.4. |

3if we agree to use the same orientation as orientation of the domain and of the codomain
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Lemma 9.2.4 LetA: S" — S" be the antipodal map A(p) = —p. Then
if n is odd then A is a diffeomorphism that preserves the orientation;
if n is even then A is a diffeomorphism that reverses the orientation.

Proof. Since A is a diffeomorphism and S” is connected, then A either preserves or reverses the
orientation.

Notice that A is the restriction to the boundary of the diffeomorphism B: B"*! — B!
analogously defined by B(p) = —p. By definition of orientation induced on the boundary A
preserves the orientation if and only if B does. It is enough then if we prove the statement for B
instead of A.

B has a fixed point, the origin O. Since B"*! is connected, B preserves the orientation if and
only if dBp € Aut(TpB"!) preserves the orientation as well, i.e. if and only if its Jacobi matrix
has positive determinant.

The statement follows then by dBp = —Idy, ga1 = degB = (—1)""! [

In the next proposition we show that the degree has a geometrical interpretation that makes
it usually easy to compute; roughly speaking, it counts (in some sense) the cardinality of the
general fibre.

Recall that by Sard’s Lemma a smooth map among manifolds of the same dimension has
always at least a regular value.

Proposition 9.2.5 Let F: M — N be a smooth proper map among oriented manifolds without
boundary of the same dimension, and let g € N be a regular value of F'. Then

degF = Z g(p)
peF~(q)

where €(p) = 1 if F preserves the orientation in a neighbourhood of p, €(p) = —1 if F reverses
the orientation in a neighbourhood of p. In particular deg F € Z.

Proof. Since q is regular, then Vp € F~!(g), dF, is invertible and then &(p) is well defined. It
follows that F~!(g) is discrete: by the properness of F, F~!(g) is also compact, and therefore
finite. Then Y ,cp-1(4) €(p) is a finite sum of 1’s and —1’s, an integer.

We write F~'(q) = {p1,...,px}. By the local diffeomorphism theorem, there are open
neighborhoods U; of p; such that Fjy, is a diffeomorphism onto a neighborhood of g. By
restricting the U; we may assume that they are pairwise disjoint and that Vi F(U;) =V for a fixed
open neighborhood of g. We may also assume that V is contained in a chart (V', ¥) inducing
local coordinates xi,...,x,.

Finally, we may also assume, up to shrinking V, that F~! (V') = |JU;. Indeed, if this were
false, there would be a sequence {z;} in M \ JU; such that {F(z;)} converges to g. Then, since
{f(zi)} U{q} is compact, its preimage is a compact containing the sequence {z;}. Therefore, up
to passing to a subsequence, {z;} converges to some z € M and by continuity of F, F(z) = g, so
zis one of the p;. In particular {z;} intersects U;, a contradiction.

We choose a form @ with [y, @ =1 and suppw C V. This can be done for example by
picking any nonnegative function 0 # f € C°(N) with supp f C V. Then [y, fdx; A---Ax, #0
and we can define the form

UJIij‘\/z fdxi N\ Nxy, .
Iy fdxi N\ Axy

Then [, @ = [, ® = 1. Note that, since suppw C V, then suppF*® C {J; U;.
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By Definition 9.2.1 and Complement 6.2.1 of Chapter 2

k k k
degF:/MF*a):ZI'/UiF*w:ZI’e(pi)/Va):ZI'e(pi). [

There are several easy consequences of this results. First of all, recalling that a point of the
codomain of a map that is not in the image is always a regular value, we see* that every map that
is not surjective has degree zero. Conversely

Corollary 9.2.6 Let F: M — N be a smooth proper map among oriented manifolds without
boundary of the same dimension. If deg F = 0 then F is surjective.

If F is an holomorphic proper map among complex manifolds of the same dimension, then
we can consider F as a smooth map among real oriented manifolds without boundary. In this
case

Corollary 9.2.7 Let F: M — N be an holomorphic proper map among complex manifolds of
the same dimension, and let ¢ € N be a regular value of /. Then

degF =#F () > 0.

Proof. By Theorem 6.1.7 and its proof in this case €(p) equals always 1, and then the statement
follows immediately from Proposition 9.2.5. |

In particular the cardinality of the fibre of a regular value of a holomorphic proper map does
not depend on the choice of the regular value. This is not true in general for a smooth map among
real oriented manifolds where the same argument just proves that the parity of the cardinality of
the fibre is constant. In fact, the map f: R — R given by f(¢) = ¢ is not surjective, so it has
degree 0, although the preimage of each positive regular value has cardinality 2.

Corollary 9.2.8 Let F: M — N be a smooth proper map among oriented manifolds without
boundary of the same dimension.
Let g € N be a regular value of F. Then #F ~!(q) — |degF| € 2N.

For example, the map F: R — R given by F(x) = x> — x has two critical values i?,
dividing Reg(F) in three connected components.

A straightforward explicit computation shows that the preimage of a regular value ¢ has
cardinality 1 if ¢ belongs to one of the two unbounded components, so if |g| > ?, and then that

degF = 1. Still if |g| < 2, #F~(q) = 3.

Exercise 9.2.1 Show that a real projective space can be combed flat if and only if its
dimension is odd.

Exercise 9.2.2 Let F: M — N be a smooth map among compact oriented manifolds without
boundary of the same dimension.
Show that if deg F # 0 then the map F*: H*(N) — H*(M) is injective.

4At a first glance, the proof of Proposition 9.2.5 requires that F~! (g) is not empty, so k # 0, but this is not true.
For k = 0 the requirement Fg;, to be a diffeomorphism is an empty condition, so one may first take any open subset V
of N containing g, for example V = N. Then the following argument, showing that, up to shrinking V, F~! (V)=Uu;,
shows in fact that one can choose V so that F~! (V) is empty. This implies F*@ = 0 when supp® C V, so degF = 0.
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Exercise 9.2.3 Show that if F: M — N is a holomorphic map among compact complex
manifolds of dimension 1 and the genus of M is strictly smaller than the genus of N, then F
is not surjective.

Note: with some standard complex analysis one can conclude that F is constant.

Exercise 9.2.4 Let P be a real polynomial of degree d, and consider it as smooth function
P:R—R.

1) Prove that P is proper if and only if d > 0.

2) Prove that if d is even, then the degree of P as smooth proper map is 0.

3) Prove that if d is odd, then the degree of P as smooth proper map is either 1 or —1.

Exercise 9.2.5 Let P be a complex polynomial of degree d, and consider it as holomorphic
function P: C — C.

1) Prove that P is proper if and only if d > 0.

2) Use Proposition 9.2.5 to prove that deg F' # 0.

3) Deduce that P is surjective (this is the fundamental theorem of algebra).

4) Prove that the degree of P as smooth proper map equals its degree as a polynomial, d.

9.3 The orientation covering

The Poincaré duality holds only for orientable manifolds, as its proof shows: we need to be able
to integrate. One could think that this is only a technical problem: maybe there is a different
duality which works more generally?

In this section we will see that the answer to this question is negative. Actually, this negative
answer is very useful, since it produces a cohomological criterion for orientability.

We first need a couple of Lemmas.

Lemma 9.3.1 Let A: M — M be a smooth involution® without fixed points and consider the
quotient N := M/ ~ by the equivalence relation generated by p ~ A(p).

Then there is a unique differentiable structure on N such that the projection map w: M — N
is a local diffeomorphism. Moreover

T Q*(N)={w e Q*(M)|A"w = o} 9.2)

9This means Ao A = Idy,.

The formula (9.2) says that the A—invariant forms on M are exactly the forms coming from N.

Proof. We first notice that, since A~! = A, A is a diffeomorphism.

Since M is Hausdorff, for all p in M there exists two disjoint open subsets U; and U
containing respectively p and A(p). Then U := U; NA(U,) is an open subset of M containing
p such that UNA(U) = 0. Shrinking U if necessary, we find a chart (U, ) in p for M with
UNA(U) =0.

We define the differentiable structure on N as follows: for each ¢ in N choose p in M such
that w(p) = g and take a chart (U, @) in p as above. Then 7 maps injectively U onto V := nt(U).
Then we say that (V, @ o £~ 1) is a chart for N. Varying ¢ in M we obtain an atlas for N such that
7 is a local diffeomorphism. The uniqueness of the structure is obvious.

We still have to prove (9.2). One inclusion is easy: since 7oA = 7 then for every @ € Q*(N),
A'n*w = (moA)*®w = n* 0, and then 7*® is A-invariant.
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For the other inclusion, take @ € Q°*(M) such that A*@ = @. For all point g in N take a chart
(V,y) as above, so that 7! (V) is the disjoint union of an open subset U with A(U). Since 7
defines a diffeomorphism among U and V we can pull-back @y to a form on V using n !

Notice that, since A*® = ®, the induced form on V does not change if we replace U with
A(U).

Now consider two open subsets V| and V, of N as above. The above construction gives
two forms n; € Q*(V;) by setting n; := (ﬂ‘fji)*a)wj. The reader can easily show that 1; and
1M coincide on the common domain Vi NV;. Therefore all the forms obtained in this way are
restriction of the same global form 11 € Q°*(N). The equality 7*1 = ® holds since it holds on

each open subset U as above by definition of 1. |

An interesting example of the above situation is given by the antipodal map of a sphere, in
which case the quotient is a projective space.
We can now prove that the Poincaré duality fails for the real projective plane ]P’%R.

Proposition 9.3.2 If n is even then hj, (PR ) = A2 (Pg) =0

Proof. Consider the natural projection map 7: §" — Pp.

Pick any n—form @ € Q"(Pf). Consider @ := n*w € Q"(S"). By Lemma 9.3.1 @ is
A-invariant: A*® = @.

Since A reverses the orientation (Lemma 9.2.4) then

O=— A*":—/(Z):> @ =0.
sn sn n sn

Then, by Corollary 9.1.2, @ is exact. Pick then 7}’ such that d7}’ = @, and define 7} := ﬁu“; i
averaging )" with respect to A.
Notice that A*7) = 7] so by Lemma 9.3.1 7] = n*n for some 1 € Q°*(IP}).

Since 7 is a local diffeomorphism by

_ (AR dR'+ AR O+ATD o+
an=d < 2 )T 2 T2 T2 7°
it follows dn = ® completing the proof. |

Proposition 9.3.2 implies, since by Corollary 9.1.2 for every connected orientable manifold
M of dimension n, K (M) = 1.

Corollary 9.3.3 Every real projective space of even dimension is not orientable.

The proof of Proposition 9.3.2 relies on the use of the Poincaré duality on an orientable manifold,
§", strictly related (through the maps A and 7) with the variety under investigation, Pp.

The argument fails for odd dimensional real projective spaces since the antipodal map of the
corresponding sphere preserves the orientation. In fact odd dimensional real projective spaces
are orentable, see Exercise 9.3.3.

We give now an analogous construction for every manifold, the orientation covering.

Definition 9.3.4 Let M be a connected manifold.
The orientation covering of M is defined, set-theoretically, as

M :={(p,0)|p € M, o is an orientation® of T,M}.

Denote by : M — M the projection 7(p,0) = p. M has a natural structure of (possibly
disconnected) differentiable manifold making 7 a local diffeomorphism, as follows.
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Let {(Uq, ®a) } aer be the maximal atlas of M. Every chart (Uy, @q) gives local coor-
dinates xi,...,X,; 8%1’ ey 8%” determining, for each p € Uy an orientation of 7,(M). This
gives a subset, say Vg, of M, such that 7 maps Vy, bijectively onto Uy.

We give to M the topology generated by the V,, and the differentiable structure obtained
by restricting the "atlas" {(Vy, Qo © T) } er-

“We are using here Definition 6.1.1: an orientation of a vector space V is an equivalence class of bases of V.

p) Notice that by definition the transition functions (¢ o ) o (@p o 7t)~! preserve the orien-
tation, so M is an oriented manifold!

p) Since for every p € M T,M admits exactly two orientations, we have a natural map
A:M—M

defined by A(p,0) := (p,0) where 0 is the opposite orientation o # o.
A is a diffeomorphism that reverses the orientation with Ao A =1Idy;, ToA = 7.

p) By the definition of the differentiable structure on M, 7 is smooth, and for all (p,0) € M,
dm, ) is an isomorphism.
Therefore 7 is a local diffeomorphism and then, by Theorem 2.4.4, an open map. Moreover
7 is obviously a proper map. Since M and M are both locally compact Hausdorff spaces,
then 7 is a closed map too.

Lemma 9.3.5 Let M be a connected manifold.

If M is not orientable then M is connected.

If M is orientable then M has two connected components, say M, and M,, and Vi,
T, M; — M is a diffeomorphism. More precisely, if we fix an orientation on M, one
of the diffeomorphisms Ty, preserves the orientation whereas the other one reverses the
orientation.

Proof. If M is orientable fix an orientation of M and denote as usual by M the same manifold
with the opposite orientation. We have a natural map F: M [[M — M mapping each point p in
the disjoint union M ][ M to the pair (p,0) where o is the orientation of p as point of M or M. It
is easy to show that F is a preserving orientation diffeomorphism. Then M has two connected
components, F (M) and F (M) and the rest of the statement for the orientable case follows easily.

We conclude the proof by showing that, if M is disconnected, then M is orientable.

So assume M disconnected. Then there exists an open and closed proper nonempty subset
M 1 of M .

Since 7 is at the same time an open map and a closed map, 7(M;) is an open and closed
nonempty subset of M, so m(M;) = M.

We recall that for every point p € M there are exactly two possible distinct orientations, so
= (p) = {(p,0),(p,0)}. It follows that if (p,0) does not belong to M, then (p,o) will belong
to it, since otherwise p would not belong to 7(M,) contradicting 7t(M;) = M. In other words
M = M, UA(M): for any point g in the complementary subset M \ M1, A(q) € M.

Now we show that M; NA(M,) is the empty set. Since M is a proper open and closed
subset and A is a diffeomorphism, A(Ml) is a proper and closed subset too, and then M; N
A(M;) is a proper and closed subset of M as well. If it were not empty, then by the argument
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above 7 (M, NA(M,)) = M. However, since M; NA(M,) is A—invariant, that would imply
M;NA(M,) = M, a contradiction.

Finally consider the restriction of the map 7 to the open subset M;. We have shown that it
is a surjective local diffeomorphism from M; — M. The fact that M; NA (M) is the empty set
implies that it is injective too. So M is diffeomorphic to an open subset of the oriented manifold
M and then it is orientable too. |

It follows the following criterion for orientability.

Theorem 9.3.6 Let M be a connected manifold without boundary of dimension n. Then

h!(M) =1 if Mis orientable
h:(M) =0 if M is not orientable

Proof. When M is orientable, this is just Corollary 9.1.2.

Assume now M not orientable, and consider the reversing orientation diffeomorphism
A: M — M defined already as A(p,0) = (p,d). The proof now follows now exactly the strategy
of the proof of Proposition 9.3.2 just by substituting S" with the orientation covering M of M. W

I Complement 9.3.1 Prove that the orientation covering of IP’]% is diffeomorphic to S2.

Exercise 9.3.1 Let My,...,M; be compact manifolds without boundary. Prove that M; X
-+ X M, is orientable if and only if all M; are orientable.

I Exercise 9.3.2 Compute the De Rham cohomology ring of the real projective plane.

Exercise 9.3.3 Show that all real projective spaces of odd dimension are orientable.
Hint: The Mayer-Vietoris exact sequence may be useful

| Exercise 9.3.4 Compute the De Rham cohomology rings of all real projective spaces P}, =
S"/x ~ —x.

Exercise 9.3.5 Compute the De Rham cohomology ring of the Klein bottle R?/ ~ where the
equivalence relation is given by (xo,yo) ~ (x1,y1) < (x0 — x1,y0 — (—1)°¥1y;) € Z2.

Exercise 9.3.6 Let w: E — B be a fibre bundle with fibre P, on a manifold B of finite type.
Prove that if r is even then the map ©n*: H})x(B) — H})g(E) is a ring isomorphism.

The Poincaré duals of a closed submanifold

Let M be an oriented manifold without boundary of dimension » and let S be a closed oriented
submanifold without boundary of dimension k.
In other words S is an oriented manifold without boundary and the inclusion

itS—~>M

is an embedding whose image i(S) is closed.
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Then, Yo € QF(M), the support of o5 := " @ is compact. Integrating along S we get a linear
application

[w]w/sw::/sw‘s

in QX(M)* that vanishes, by Stokes’ Theorem 6.2.9, on dQt~! (M).
So [ defines an element of HX(M)*. Since by the Poincaré duality 9.1.1 H*(M)* = H}\ .5 (M)
this associates to S a De Rham cohomology class on M.

Definition 9.4.1 The Poincaré dual or the closed Poincaré dual of S in M is the unique
cohomology class 1§ € Hjbp* (M) representing .

In other words 1 € Hgl_ek(M ) is the unique De Rham cohomology class such that for
every compact support cohomology class @ € H*(M)

/a):/ » AN
S M

p ) Note we are considering the wedge product ® A 11 of two cohomology classes belonging
to different cohomology theories, this at a first glance does not make much sense!

The meaning is the following.

We consider a representative of @ in QX(M) and a representative of n§ in Q"*(M), their
wedge product is a closed n—form whose support is compact, so we can integrate it.
A standard argument shows that the integral does not depend on the choice of the two
representatives.

The closed Poincaré dual behaves well under diffeomorphisms, as follows.

Proposition 9.4.2 Let M, S be oriented manifolds without boundary of respective dimension
n, k,and leti: S — M be an embedding with closed image, and set 1§ for the closed Poincaré
dual of Sin M. Let F': M — M be a diffeomorphism.

If F preserves the orientation, then ng = F *n}(s), else N = —F *771/?(5)'

Proof. By the characterizing property of the Poincaré dual, for all cohomology classes w €
HE(M),

/M Nr(s) () s( o) Sl o UK

If F preserves the orientation the left hand term equals [;, F*(@ A nl’p( S)) = [y FFoNF*n 1,’7(5)‘
Since this holds for all @, then ng = F*n}(s).
Similarly we obtain the equality n¢ = —F *n;(s) when F' reverses the orientation. |

Corollary 9.4.3 Let M be an oriented manifold without boundary, and let F': M — M be an
orientation preserving diffeomorphism which is smoothly homotopic to the identity.

Let S be a closed oriented submanifold without boundary. Then S and F(S) have the same
closed Poincaré dual in M.

Proof. By assumption F preserves the orientation, so Proposition 9.4.2 gives ng = F* 771,7(5) €
H.X(M). On the other hand, by Corollary 7.4.5, F*: Hp.K(M) — H.F(M) is the identity map.
Son }(5) = 1. [ |
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If we further assume S compact, we similarly also associate to S a De Rham cohomology
class. We need however to assume that all De Rham cohomology group are finitely dimensional
(as for manifolds of finite type) so that dualizing the Poincaré duality 9.1.1 we obtain the
following

Theorem 9.4.4 Let M be an oriented manifold with dM = 0 and assume moreover that
H}\ (M) is finitely dimensional. Then there are isomorphisms

Piy: HI(M) — (Hpe? (M)
defined by

V[nl € H(M) Vo] € Hpg* (M) P&([n])([w])ZAwAn.

Proof. The defition of Pj, may be written simply as

Py([n)([@]) = Py ([@])([n])-

and therefore, since Py, is well defined, PA,, is well defined too.
Moreover

] € ker P}y & V][] € H2(M) / OAT =0
M

& Vo] € Hpp' (M) [n] € ker Pu([0])
Ve (HI(M))" [n] €kere
< [n=0

So Py, is injective. Since its domain and its codomain are by assumption finitely dimensional,
and of the same dimension by Poincaré duality, P;, is an isomorphism. |

So, if all the De Rham cohomology groups of M are finitely dimensional, then we can
exchange the role of the De Rham cohomology and of the compact support cohomology in the
discussion above.

Definition 9.4.5 Let M be an oriented manifold of dimension n without boundary whose
De Rham cohomology is finitely dimensional. Let S be a compact oriented manifold of
dimension k without boundary embedded in M.

By Poincaré duality, there is a unique cohomology class 7 € H"~*(M) representing |. <
in other words there is a unique ng € H"*(M) such that Vo € HX (M)

/w:/ O As.
s M

We will say that 7 is the compact Poincaré dual of S in M.

Of course, if M is compact, then closed and compact Poincaré duals coincide.
The proof of Proposition 9.4.2 gives in the case of compact Poincaré duals the following
analogous statement.

Proposition 9.4.6 Let M be an oriented manifold without boundary of dimension n such that
H} (M) is finitely dimensional, and let F: M — M be a diffeomorphism.

Let S be an oriented compact submanifold of dimension k. Set 1 for the compact Poincaré
dual of S in M.
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If F preserves the orientation, then the compact Poincaré dual of F~!(S) is F*ns.
If F reverses the orientation, then the compact Poincaré dual of F~!(S) is —F*ns.

We cannot prove an analogous of Corollary 9.4.3 for compact Poincaré duals, since its proof
uses Corollary 7.4.5, which does not generalize to the compact support cohomology.

The compact Poincaré dual has the very useful property that we can shrink the support of it
in arbitrarily small neighbourhoods of S in M.

Theorem 9.4.7 — Localization principle. Let M be an oriented manifold without boundary
whose De Rham cohomology is finitely dimensional.

Let S be a compact oriented submanifold without boundary of M.

Let W C M be an open subset containing S such that H}x(W) is finitely dimensional.

Then there is a representative 11 € Q2 (M) of the compact Poincaré dual ng of S in M such
that suppn C W.

p ) The finite dimension of Hp (W) is automatic for the tubular neighbourhoods in Theorem
3.3.5, since in that case W is diffeomorphic to a vector bundle over S and then its De Rham
cohomology is isomorphic to the De Rham cohomology of S and then finitely dimensional
by the compactness of S.

Proof. Consider S as compact submanifold of the manifold W. Then S has a compact Poincaré
dual in H? (W). Choose a representative 7] € Q2(W) of it.

Since 7] has compact support, we can extend 7} to a smooth form 1 € Q2 (M) vanishing on
M\W.

Notice that Yo € Q¥(M), [0 = [, @ A7) = [, @ An. Then 7 is a representative of
the compact Poincaré dual ns of S in M. Since its support is contained in W the proof is
complete. |

Exercise 9.4.1 For each of the following oriented manifolds without boundary find closed
embedded submanifolds whose closed Poincaré duals form a basis of their De Rham coho-
mology.

- R™:

-5

- the torus §" x S™;

- R*\{0}.

Exercise 9.4.2 For each of the oriented manifolds without boundary of the previous exercise
find compact embedded submanifolds whose compact Poincaré duals form a basis of their
compact support cohomology.

Exercise 9.4.3 Show that if § is the boundary of a closed orientable manifold 7 embedded
in M, then its closed Poincaré dual is 0.

The Thom class

In this section we show how to concretely construct a representative of the Poincaré dual of
a closed oriented manifold S without boundary embedded in an oriented manifold without
boundary M.
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By the tubular neighbourhood Theorem 3.3.5 there is a neighbourhood W of S that is
diffeomorphic to the normal bundle .45,

If S is compact, by the localization principle Theorem 9.4.7 we can find a representative of
the compact Poincaré dual of S in M with support contained in W.

In this section we describe this representative rather explicitly as form on the manifold .45,
As we will see in Proposition 9.5.10 we will be able to do it even for the closed Poincaré dual,
without any compactness assumption on S.

We need to consider a new cohomology theory, coming from a differential complex contained
in the De Rham complex Q°(.#5)y,) that contains Q¢ (_#5jy). This is a cohomology theory defined
on every vector bundle. Recall that, from Proposition 3.2.2 on, we are implicitly assuming that
all vector bundles have the natural differentiable structure considered there.

Definition 9.5.1 Let w: E — B be a real vector bundle of rank r over a manifold B.

A form @ € Q°(E) has compact support in the vertical direction if VK C B, K compact,
7~ 1(K) Nsupp m is compact.

The subspace of Q°(E) of the forms with compact support in the vertical direction is
denoted by Q¢ (E). It is invariant by the standard differential d of the De Rham complex,
whose restriction makes then Q¢ (E) a differential complex with graded pieces Q¢ (E) :=
Qr, () N QU(E).

We denote by H?,(E) its cohomology and by H¢,(E) the graded piece of degree g of
H, (E).

The forms with compact support in the vertical direction are a natural place for generalizing
to vector bundles the integration along the fibres 7, : Q2 (M x R) — Q2 (M) considered in the
proof of the Poincaré Lemma for the cohomology with compact support Theorem 7.5.1. Indeed
if @ € Q,(E),Vp € B, supp @, E, 1s compact. Since we want to integrate on each E,, we need to
consider oriented vector bundles.

For the sake of simplicity, as in the proof of Theorem 7.5.1, we give the definition of 7, in
local coordinates, leaving to the reader to find an intrinsic definition to ensure that the definitions
are well posed, i.e. independent from the choice of the coordinates.

Definition 9.5.2 Let m: E — B be an oriented vector bundle.

Choose a trivialization {¢g } associated to a cover {Uy} of B made of charts (Ug, @ ).
For each chart (Ug, @) let xy,...,x, be the induced coordinates on Uy,.

Consider the chart of £ induced by ® and ¢,

P xIdgr
Epy, —% Ug xR *57 Do x R”

inducing coordinates x1,...,X,,t,...,f on Ey, such that 7*x; = x;.
For every form @ of type f(x;,t;)dx; A\--- Adx, Adtj A...\dtj, s #r, we define
.0 = 0.

For every form o of type f(x;,t;)dx;, A--- Adx;, Adt; \... \dt, we define

T — </ Floxintj)dty ---dtr> dxi, A+ Adx;,
R"

Since each form in Q2 (E) is a sum of forms as above, this defines a map of graded vector
spaces

7. QO (E) — Q°(B)

of degree —r called integration along the fibres.
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Please notice that if the bundle is the trivial bundle of rank 1 then the map 7, coincides
exactly with the map considered in the proof of the Theorem 7.5.1.
We will later need the following result

Lemma 9.5.3 — Projection formula. Let 7: E — be an oriented real vector bundle over a
manifold B. )
Then Vo € Q4(B), VT € Q& (E)

T (T"ONT) = 0 AT, T.

Moreover, if B is oriented of dimension 7, supp ® is compact and E has rank g + ¢’ — n, then

/n*w/\r:/w/\mr
E B

Proof. The first statement is local on B. Since every bundle is locally trivial, it is enough if
we prove it for the trivial bundle U x R” — U where U is a chart with coordinates xi,...,x;,.
Then, setting #; ...,t. for the vertical coordinates, by linearity it is enough if we prove our
statement for every form 7 of type f(x;,t;)dx; A\--- Adx;, ANdtj, \...\dtj, s # r or of type
f(xi,tj)dxil AR /\dx,'a Adty A ... N\dt,.

This is a straightforward computation: more precisely in the first case both 7, (7*® A 7) and
o A\ T, T vanish, whereas in the second case both are equal to

</fdl]"-dl‘r> O)/\dx,‘] /\---/\dx,-a.

The second statement, comparing the value of two integrals, is global. We consider a trivialization
{@q} related to a cover {Uy } made by charts, and a partition of unity p; subordinate to it. Setting
w; := p;o then w =Y, @; and

T"ONT = / T ;A T, /w/\n*r: / W; N\ T, T.

(0]

Therefore it suffices to prove |, Evaty T N\NT = fUa(i) w; A\ 1, 7. In other words, we can assume
that the bundle is trivial and the base is a chart.

We can then conclude by two explicit computations as in the previous case, checking the
equality for every form 7 of type f(x;,t;)dx;, A--- ANdx;, Adtj \...N\dtj, s #r or of type
f(xi,tj)dxil AREE /\dx,-a ANdty A ... N\dt,.

Indeed in the first case both integrals vanish since both integrands vanish, whereas in the
second case both integrals equal

[] (/er(x"’t.i)dtl"'dtr>w/\dxil/\"'/\dx,-ll, -

We show that . is a chain map.

Proposition 9.5.4 Let w: E — B be an oriented real vector bundle. Then dr, = 7.d.

Proof. It is enough to prove d7,.@ = m.d® for every form @ of type f(x;,t;)dx; N+ ANdx;, N
dtjl /\.../\dtjx, s # ror of type f(xl-,tj)dxil /\---/\dx,-q Adty A ... \dt,.

Ifw :f(x,',tj)dxil /\'-'/\dxiq/\dl‘j1 /\.../\dljs, S;é rthendm,w =d0 =0.
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If s £ r — 1 then dw is a sum of forms of the same type, and then m.dw =0. If s=r—1
then @ = f(x;,t;)dx; A+ Adx;, Adty \... Ndtp_1 Ndtiq A+ -dt, and therefore

mdw = Wod (f (xi,1;)dxi, A+~ Ndxi, Adty A Ndiy Ny A -+ diy)

=T, <af(xi7tj)

= 7dtk/\dx,~1 /\---/\dx,-q/\dtl A Nty Nt /\"'dl‘r>

8tk
d it
=4, (del-l/\w/\dx,- /\dtl/\.../\dt,>
8tk K
J iyl
— 4+ Mdtlmdtr dx; N--- Ndx;
r 8tk ! a

vanishes because, since ® has compact support in the vertical direction, [ %dtk =0.

If @ = f(x;,t;)dx;, \--- Adx;, Adt; A ... \dt, then a straightforward computation shows that
both dr,w and w.dw equal

0 iyl
Z(/ Mdty--dt,)dxk/\dx,-,/\---/\dxl-q. m
& r 8xk
It follows

Corollary 9.5.5 The integration along the fibres defines a morphisms of graded vector spaces
7.: HY(E) = Hiye(B)

of degree —r such that, for every closed form n € Q2 (E), m.[n] = [m.7].

A key very important result is the following generalization of the Poincaré lemma for forms with
compact support, whose proof we skip.

Theorem 9.5.6 — Thom isomorphism. If E is an oriented vector bundle on a manifold B of
finite type, then the integration along the fibres 7, : H3'"(E) — H{(B) is an isomorphism.

The Poincaré Lemma for the cohomology with compact support Theorem 7.5.1 corresponds
to the special case when B is compact (so Q& (E) = QI(E) and HL(E) = HI"'(E)) and E is
trivial.

Theorem 9.5.6 allows us to give the following definition.

Definition 9.5.7 The Thom class of an oriented vector bundle 7: £ — B is
®(E):=nr, (1) € H (E).

The following proposition shows how to recognize a representative of the Thom class.

Proposition 9.5.8 Let w: E — B be an oriented vector bundle of rank r and let ® € Q/, (E)
be a closed form. Then the map f: B — R defined by f(p) = J, g, P is locally constant.
Moreover the following are equivalent
- the cohomology class of @ is the Thom class of E;
- Vp€eB, fEPQDZ L;
- Jp € Bsuch that [ ®=1.

Proof. By definition of integration along the fibres ©,® = f. Therefore, by Proposition 9.5.4
df =0, and therefore f is locally constant. Then & is the Thom class if and only if f=1. W
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We consider now a closed oriented submanifold without boundary S of dimension & of an
oriented manifold without boundary M of dimension n.

By the tubular neighbourhood Theorem 3.3.5 we can see every form @ on 5y, as a form
on a tubular neighbourhood W of § in M. If w has compact support on the vertical direction,
then it vanishes near the boundary of its closure W, so we can extend it to a form in Q*(M) that
vanishes on M\ W. This defines a chain map from Qg (.#5)y/) to Q°*(M) inducing a graded ring
homomorphism

it H(Nspr) — Hpy(M). 9.3)

If S is compact, then supp @, that equals the support of its extension in Q°*(M), is compact, and
then we get also a graded ring homomorphism

iv: HE () — H2(M). ©.4)

The normal bundle of S in M is an orientable vector bundle (see Exercise 6.1.14). We need
to fix one orientation on it.

Definition 9.5.9 Let S be an oriented submanifold without boundary of the oriented manifold
without boundary M, dim S # dim M.

Choose an oriented basis vy, ..., v, of T,S and complete it to an oriented basis vy, ...,v,
of T,M.

We define the induced orientation as vector bundle of .#5))s as the one corresponding to
the basis of (.#5y1), given by the classes of vy1,..., V.

Notice that the definition is well posed since it does not depend on the chosen bases, but only on
the orientations they induce.

Consider the Thom class ® := ®(As)y) € HA ¥ (A5) of the normal bundle .45, oriented
as in Definition 9.5.9.

Proposition 9.5.10 Let S be a closed oriented submanifold without boundary of dimension k&
of an oriented manifold without boundary M of dimension 7.

Let ® € H? ¥ (A5)) be the Thom class of /45, oriented as in Definition 9.5.9.

Then i,® is the closed Poincaré dual 1 of S in M, where Z, is the map in (9.3).

If S is compact and M is of finite type then i, P is the compact Poincaré dual ng of S in M,
where i, is the map in (9.4).

Proof. By the tubular neighbourhood Theorem 3.3.5 there is an open neighbourhood W of §
in M such that W = 45y, and the inclusion of S in M is the composition of the zero section
s0: S — gy with the inclusion W C M.

In the following we identify W with .45y, so getting maps so: S — W (the inclusion) and
: W — S. Since sp o 7 is smoothly homotopic to the identity, by Corollary 7.4.5 (soo m)* =
Wy (w)-

Then, for every closed form @ € Q*(M), [@w] = *sg[ow] € Hjr(W). In other words
3n € Q*(W) such that @y = " i* O +dn = T* O +dn.

If moreover supp @ is compact, by the Projection Formula 9.5.3 and Stokes’ Theorem 6.2.9,
choosing a representative ¥ € Q°*(M) of i P

/w/\‘P:/ a)/\‘P:/(n*a)|S+dn)/\‘P:/ n*a)|s/\‘P+/ dnNY =
M w w w w

:/ ﬂ*a)|5/\‘l‘+/ d(nA‘I’):/a)An*‘I’JrO:/w
W 4 s s
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and therefore [P] = 7, P is the closed Poincaré dual of S in M.

If S is compact, then H?,(W) = H? (W) and therefore we can choose ¥ with compact support.
Then the same chain of equalities holds for every @ € Q4™S (M) showing that the class of ¥ in
H? (M) is the compact Poincaré dual of S in M. [

An useful property of the Thom class is its good behavior with respect to the direct sum of
line bundles.

Proposition 9.5.11 Let E, F be two oriented vector bundles over the same base B and consider
the vector bundle E & F with the induced orientation given in Definition 6.1.18.

Consider the natural projections ng: EGQF — E, ip: E®F — F. Let &p € QF (E),
®r € Q. (F) be representatives of the respective Thom classes of E and F. Then

np®p A dp

is a representative of the Thom class of E @ F.

Proof. First of all we notice that 7;Pg A ;P has compact support in the vertical direction
(even if neither ;P nor m;Pr have compact support in the vertical direction) since its support
is contained in the fibre product of the supports of 7;Pg and 7, Pr.

Then n;®p A 7 Pp is closed. Indeed

d(ﬂ%CDE A E;CI)F) = dTCEq)E VAN ﬂ;q)F + EE(I)E /\dTC;;CI)F =
= ﬂEdCbE VAN ﬂ;q)F + 71'2(135 VAN ﬂ;dq)F =04+£0=0.

Finally
/ EECI)E/\W;CI)F:/ ﬂgq)E/\ﬂ;q)F:</ CI)E> (/ CI)F>:11:
(E®F)) E,®F), E, F,
and the statement follows by Proposition 9.5.8. |

Complement 9.5.1 Show that the integration along the fibres is well defined. More precisely,
show that the given definition of 7, does not depend on the choice of the local coordinates

X1yeneyXp.
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10.1

10. Intersection th eo v

Transversal intersections

Let R, S be two submanifolds embedded in a manifold M. By sake of simplicity we ask that all
three manifolds R, S and M are without boundary.

Definition 10.1.1 Let p € RN S.
We say that R and § are transversal at p if T,R+T,S = T,M.
We say that R and S are transversal if they are trasversal at every point p € RN S.

p) By Definition 10.1.1, if R and § are transversal at a point p € RN.S then dimR + dim$ >
dimM. In particular, if dimR + dim S § dimM, R and S are transversal if and only if

RNS=0.
Notice that when dimR +dim S = dim M the trasversality at a point p gives T,M = T,R®
T,S.

We will use the following Lemma, generalization of Proposition 2.4.6, without proving it.

Lemma 10.1.2 — Transversality Lemma. Let R and S be two embedded submanifolds
without boundary of a manifold M without boundary.

Assume that R and § are transversal at p. Set r = dimR, s = dim S, n = dim M.

Then there is a chart of M in p giving local coordinates xi, ..., x, such that locally

R={xps1=...=x,=0}and S={x; =... = x,_, =0}.

From the Transversality Lemma 10.1.2 easily follows

Theorem 10.1.3 — Transversality theorem. Let R and S be two embedded transversal
submanifolds without boundary of a manifold M without boundary.

Then N := RN S has a structure of manifold embedded in R, in S and in M so that Vp € N,
T,N = T,RNT,S as vector subspaces of T,M. In particular

dim(RNS) =dimR+dimS —dimM.
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Moreover, if R, S and M are orientable, then N is orientable too.

As in other similar situations, since every connected component of RN .S has two possible
orientations, it is convenient to choose once and for all an orientation on a transversal intersection
RN S (so on every component N) induced by the orientations of R, S and M.

Let us start with the case dim R+ dim S = dim M. Then by Theorem 10.1.3 RN S is a discrete
set, and the orientation of a component (=point) p of RN is the choice of a sign.

Definition 10.1.4 Assume R and S are oriented transversal submanifolds without boundary
of the oriented manifold M without boundary such that dimR 4+ dimS = dimM.

For every p € RN S we define the induced orientation in p as follows: we pick an
oriented basis vi,..., v, of T,R and an oriented basis v},..., v, of 7,,S and

* if vi,...,vV],...,V, is an oriented basis of T,M we choose the sign +;

* else we choose the sign —.

In local coordinates, by Lemma 10.1.2 (up to exchange the sign of few coordinate functions x;),

we can assume that p is the origin of our system of coordinates, aixl, ceey % is an oriented basis
p] 9 - . .
of T,R and T dyy s an oriented basis of T,S.
Then we orient p with + if aixl, e % is an oriented basis of T,M, with — else.

In the general case

Definition 10.1.5 Assume R and S are oriented transversal submanifolds without boundary
of the oriented manifold without boundary M, and assume moreover dimR + dim S 3 dimM.
The induced orientation on RN S is the one such that, Vp € RN S

e if vi,...,v, is an oriented basis of 7,(RN.S)

* once completed it to an oriented basis vi,...,V4,Vay1,. ..,V of TR

* and to an oriented basis vi,...,vq,V,,,...,v; of T,,S

e thenvy,..., v,V ,...,V; is an oriented basis of T,M,
This gives an orientation of 7,,(RN.S) which only depends on the orientations of 7,R, T,,S and
T,M, and then is globally "coherent", producing an orientation on RN S.

By Lemma 10.1.2 we can assume that
d d

PrRRERE o is an oriented basis of 7,M;
8%1’ ey a%_ is an oriented basis of T,,R;
%ﬁ“, ceey 8%1 is an oriented basis of 7,S;
Then axni Syeees aix, is an oriented basis of 7,(RNS).
Indeed following Definition 10.1.5 we complete if first to the oriented basis
29 el
Oxp_si1 Ox, 0x1 T Oxp_s_1’ 0Xp_s

of T,R and then to the oriented basis

d d

77 ceey -
a)Cnferl oxy

of 7,,S. We conclude observing that the resulting basis of 7,M,

0 J 0 0 Lyra d 0 0
axnferl Y axr7 oxi Y OXp—s—1 ’ a)Cnfs’ aXr+l T a)Cn?
is in the same orientation class of i, cee, 2
dx dx,
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p) Note that RNS equals SN R as submanifold but possibly not as oriented submanifold.
More precisely the orientation is the same if and only if (dimM — dimR)(dimM — dim.S)
is even.

In particular if M is a compact complex manifold and R, S are complex manifolds holo-
morphically embedded in M transversally, then RNS = SN R as real oriented manifolds.
Indeed in this case one can use a complex version of the Trasversality Lemma 10.1.2 to
show that RN S has a structure of complex manifold holomorphically embedded in R, S
and M, and the orientation we have obtained is exactly the one induced by this complex
structure.

We can now prove

Lemma 10.1.6 Let R, S be transversal oriented submanifolds without boundary of the mani-
fold without boundary M, and consider RN S with the induced orientation.
There is an isomorphism of vector bundles

Nrrsim = (Nrim) |rns D (Hsim) |rrs (10.1)

Moreover, orienting the normal bundles Az~sjar, Az ~#5m as in Definition 9.5.9. con-
sider the natural induced orientations on (Az|ar)|rns» («#5)m)|rns by restriction and then on
their direct sum (Ag|a7)|rns © (As)m)|rns following Definition 6.1.18.

Then the isomorphism (10.1) preserves the orientation on each fibre.

Proof. For every point p € RN S let us consider oriented basis of 7,(RNS), T,R, T,,S and T,M
as in Definition 10.1.5 whose notation we borrow here.

Then by Definition 9.5.9, the classes of v, ,...,v; form an oriented basis of (A%u),-
Similarly an oriented basis of .#zng|y is given by the classes of vy 1,..., v,V ;... V]
An oriented basis of (z/VS‘M) p 1s given on each point by the classes of vyi1,...,v,_1,

(—1)(r=a)s=a)y_(can you see why (—1)"~9(=2)?) and the statement follows since the basis we
/

gave for Agng)y is orientedly equivalent to V), |, ...,V Vat1,---,Vr 1, (—1)r=a)s=a)y, |

We are now able to give an idea of the proof of the main result of this section, namely that
the wedge product is the Poincaré dual of the transversal intersection, that is almost a complete
proof. The only missing point, as you will read, is an argument at the beginning of the proof that
comes from the proof of the Tubular Neighbourhood Theorem 3.3.5, a Theorem that we did not
prove.

Theorem 10.1.7 Let M be an oriented manifold of finite type without boundary.
Let R, S be compact oriented manifolds without boundary transversally embedded in M.
Set Mg for the compact Poincaré dual of R in M, ng for the compact Poincaré dual of S in
M and ngns for the compact Poincaré dual of RN S (with the induced orientation) in M. Then

Nrns = MR A Ns.

Proof. (Sketch) By the proof of Theorem 3.3.5 one can choose a tubular neighbourhood Wy of R
in M such that the isomorphism among Wg and 4%y maps Wg NS onto (,/163‘ M)‘ rns- We choose
an analogous tubular neighbourhood Wy = #5); of S in M.

More precisely near any point p € RN S there are local coordinates x, .. .,x, such that R and
S are locally given as in Lemma 10.1.2, coordinates chosen related with the orientations of R, S
and M as in the local description we gave of Definitions 10.1.4 and 10.1.5.

Moreover we can choose those coordinates and the tubular neighbourhoods so that

Wg ={x} $1|Vi>r+1}, Ws={x? S 1|Vi<n—s+1},
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and the bundle maps 7g: Wg — R, ms: Wg — S are the projections
R(x1,. .oy xn) = (x1,...,%,0,...,0), Ts(x1y. o sXn) = (0,000, X054 1ye v vy Xn).

We set W := Wr N Ws. W is a vector bundle over RN S, with bundle map given locally by the
projection on the central coordinates X, 1, - .. X, isomorphic as vector bundle to (Ag|ur)|rns @
(45m)|rns- Therefore, by Lemma 10.1.6, W is a tubular neighbourhood of RN S in M.

The projections on the former addendum W — (A, M)‘ rns 18 the restriction of 7g to W. The
projections on the latter addendum W — (45)yr) |rrs is the restriction of 7z to W. In particular
the former addendum coincides, as subset of W, with RN Wy, and the latter addendum with
SN Wk.

Let us now choose a representative of the Thom class of .4%y,. By the characterizing property
of the Thom class, we can pick any form P of degree n — r such that the integral along the
fibres [ ®rdx, - --dx,, a function in the r variables xy, ..., x,, is the constant function 1. If &g
has this property then 75 (®Pg)|sw has the same property too. Then one can choose @ such that
(Pr)jw = 705 (Pr) 5w

In other words we choose @, so that in the chosen local coordinates

Pr = fR(xn—s+l yeo 7xn)dxn—s+1 A Ndxy

do not depend on the first n — s variables; then [ fr(Xy—si1,- -, %n)dXp—st1--dx, = 1.
Similarly, we can choose a representative ®g of the Thom class of .45, such that (Dy) w =
7z (Ps)|rnw > s0 locally not depending on the last n — r variables:

Dg = fs(x1,...,x.)dx; A+ Adx,

with [ fs(xi,...,x.)dx - dx, = 1.
Then, by Proposition 9.5.11, a representative for the Thom class of Agng)y is

@ := 75 (Pr) 50w A T (Ps) |rrw = Pr A Ps
The thesis follows now from Proposition 9.5.10. |

As first application, we compute the cohomology ring of all complex projective spaces.

Proposition 10.1.8 The graded ring H®(PP.) is isomorphic to the polynomial ring R[¢] /(")
with the grading induced by setting degt = 2.

Proof. Let (xo : -+ : x,) be homogeneous coordinates on P. and consider the hyperplanes
H; := {x; = 0}. They are holomorphically embedded submanifolds of P}, biholomorphic to P%’l,
so their Poincaré duals 1y, belong to Hp,(PL).

First of all we show that all g, are equal. Let F be the biholomorphism

Fxo:xp:xy - :x,) = (xo+Xx1:x1 120 Xp)-
F is homotopically equivalent to the identity, a homotopy being given' by
H((x0:x1 %01 2xp),8) = (X0 +1X] 1 X1 1 X0+ 2 Xp).

By Corollary 9.4.3 ng, equals the Poincaré dual of F(Hy) = Hy; = {xo = x1}. Replacing
F with the biholomorphism (xg : x; : X2+ : x,) — (X0 : X0+ X1 : X2+ : xp,), the same argument
shows that 1y, equals the Poincaré dual of Hy;. Then ng, = ng,.

IH is well defined since, among other things, for all ¢ € [0,1], xp +tx; = x; =xp = --- = x,, = 0 implies
Xo=x1=xp=---=x,=0.
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Iterating the same argument for all pairs of variables we get? Vi, j Ny = NH;-

Since Hy and H; are transversal, by Theorem 10.1.7 ng, A Na, = NH, A N, = NH)NH, - Since
H, is transversal to Hy N H; then 771/1\03 = NeynH, N MHy, = NHyNH,NH; -

Iterating this argument we obtain n,@g’ = NHyn--nH,_, = Np Where p is the point of homoge-
neous coordinates (0:---:0:1). So fIP’&’: Ni = *1, sign depending® on the orientation induced

on the point p.

Since N = 0 there is a graded homomorphism from R[]/ (" (with degr = 2) to
Mh, g rp g

H*(P}.) mapping 7 to ng,. Since f% N4 # 0 then " # 0 and then nj* # 0 forall 1 <k <n.
This implies that our graded homomorphism is injective.
We conclude the proof showing that the two rings have the same Hilbert function, which
means that their graded pieces corresponding to the same degrees have the same dimension.
We have then to prove

h(PL)=1 ifgisevenand 0 < g <2n

(10.2)
hi(PE) =0 else

We prove it by induction on n. For n = 0, P{. is a point and the statement is trivial.

Then assume the statement true for all complex projective spaces of smaller dimension.

Consider the open subset Uy = {xp # 0} complement of the hyperplane Hy. Note that
Uy = C", via the biholomorphism

(xo @ ixy) (xl,...,xn>.
X0 X0

Consider the point p’ € Uy of homogeneous coordinates (1:0:---:0) and set Vo =P¢ \ p'.
Then Vp is homotopically equivalent to the hyperplane Hy, with homotopy equivalence given by*
the map (xo : X1 :x2--- 1 x,) = (0 xp txp -+ 1 xp).

Then P, is the union Uy U Vg, with Uy = C" ~ P, Vo~ Pﬁ’c_l, the intersection Uy =V} as
subset of U 22 C" = R?" is the complement of a point and therefore homotopically equivalent to
a sphere §"~ 1,

Then the cohomology exact sequence induced by the Mayer-Vietoris exact sequence for the
decomposition P = Uy U Vp has the form

N Hggl(s2n71) —
—  Hpp(PE) — HgR(p,)@HgR(P%_I) —  Hpp($™ 1) —

— Hpy'(PL) —

and reader can easily complete the proof by induction on n. |

I Exercise 10.1.1 Show that JP’?C is not diffeomorphic as real manifold to S x §*.

2 Actually the reader can now easily prove that every hyperplane has the same Poincaré dual.

3 As in the Remark after Definition 10.1.5, since all H; are complex manifold holomorphically embedded, one can
show that the orientation of p is + and therefore jip% nﬁ,(’)’ = 1. This is not necessary for this proof, so we do not run
this computation here. -

4Note that the map cannot be extended continously to p’. This map is a retraction, the homotopy with the identity
of Vp being (xg 1 x1 :xp -1 xp) — (fx0 1 X 1 X0+ 1 Xp).
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Exercise 10.1.2 Show that if P, n > 1, is diffeomorphic as a real manifold to a product of k
spheres S (possibly of different dimensions), thenn =k = 1.

The Lefschetz fixed point formula

Let M be a compact oriented manifold without boundary.
Consider the manifold M x M with the induced orientation and the diagonal

A={(p,p)lp € M}.

The projections 7y, : M x M — M on the two factors restrict to A to the same map, a diffeo-
morphism onto M. We consider A with the orientation induced by it, and compute its Poincaré
dual. Note that since M x M is compact, closed and compact Poincaré dual coincide.

Lemmma 10.2.1 Let M be a compact oriented manifold without boundary, consider M x M with
the induced orientation and the diagonal A = {(p, p)|p € M} embedded in M x M oriented so
that both projections 7y, : M x M — M preserve the orientation.

Fix a basis {®; } of H})z(M) of homogeneous elements, and set ¢; = deg ;. Consider its
dual (respect® to Poincaré duality) basis {7;} of H})g(M).

Then the Poincaré dual of A in M X M is

M=)y (1) Am .

“In other words, degT; =n—g;, [, 0 A7, =1, and, if ¢; = q;, i # j = [j; ®; ATj = 0. Note that if g; # g,
deg(; A T;) # n, so we can’t integrate @; A T; on M.

Proof. By Kiinneth formula 8.2.3, a basis of HAmM (M x M) is {n} &; A5 T;|g; = q,}. So there
are constants ¢;; such that

na = Z C,'jﬂ']*(l),‘/\ﬂ;fj.
(i,j) such that g;=q;

Choose now k, with g; = q;. Then, since (71 ) |5 = (72)|a
/ ni“rkAn;a)l = / ETT](AETCO[ = / ﬂ'f(fk/\ a),) = / T\ = (_l)qk(nqu)é‘kl’
A A A M
s0, using Complement 6.2.2,
8y = (—1) %) / 70 T A T O
A

= (—1)%m=a) /M y T T AN T0, @p A M)A
X

= (_I)Qk(n—qk) Z Cij/ T T AT @ ATt 0; AT Tj
(i,j) such that g;=g; MxM
= (=1)%=a) ) (—1)"‘1"cl~j/ T AT T AT 0 AT T
MxM

(i,j) such that g;=q;

= (—1)%l=a) Y (—1)"qfcl~j/ T (0 A T) A5 (0 A T5)
(i,j) such that g;=g; MxM
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If g; = g is different from g, = g; then either @; A\ T, or @; A T; has degree strictly bigger than the
dimension of M and therefore equals zero; in particular in that case 7} (w; A7) Ay (0, AT;) = 0.

So
S = (—1)2(1=aw) Y (—1)"ic;; ( /M w,-mk) ( /M (Dz/\Tj)

(i,j) such that g;=q;=qx

= (—1)#(=a0) Z (—1)"ic; ;838

(i,j) such that g;=q =gy

= (=1)%cy

and then Ma = Y.(; j) such that g;=q; Cij O A5 Tj = Li(— 1) N7} @; A 5 7. [ |

Let F: M — M be a smooth map and consider its graph
Lr:={(p,F(p))} CMxM,

oriented so that the diffeomorphism (71 ), : T'r — M preserves the orientation.
We have then two oriented submanifolds A and I :=I'r of M x M and corresponding
Poincaré duals 1 and nr = nr,..

Definition 10.2.2 Let M be a compact? manifold , and let F: M — M be a smooth map;
consider its pull-back maps

HpR(F) :=F": Hpp(M) — Hpp(M)
The Lefschetz number of F is defined by

L(F):=Y (—1)trace(H} 5 (F)).

“In fact the definition extends obviously to manifolds of finite type and more generally to manifolds with
finitely dimensional De Rham cohomology

p ) The last summand in the definition of L(F) is, up to a sign, the degree of F'!

In fact, consider a connected oriented manifold without boundary M of dimension » and a
proper smooth map F: M — M. Then A(M) = 1 and by Definition 9.2.1, Vo € H*(M),

F'o = (degF)w

so H"(F) is the multiplication by deg F. In particular det H” (F) = trace H" (F) = deg F.
If M is a compact oriented manifold without boundary of dimension #n, for every smooth
map F: M — M,

det(Hpg(F)) = trace(Hpg(F)) = degF

p ) The first summand in the definition of L(F) equals 1. It does not depend on F!

Indeed, H O(M ) is the space of the constant functions, on which F* (that acts on functions
by F*f = foF) acts trivially!

Proposition 10.2.3 Let M be a compact oriented manifold without boundary and let F: M —
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M be a smooth map. Then

J e =),

Proof. By the definition 9.4.1 of Poincaré dual, using the explicit formula for 1, in Lemma
10.2.1

/TIFF :/ Nr ANa
A MxM

= (-1 [ mannr,

MxM

= (—1)”/ Y (—1)imia; Ams
I'r

:Z(_l)”%’/ T AT T

I'r

=Y (@) o
B o o)
“p [anes
=Y Y[ o

q ilgi=n—q

In the last equality we have grouped the terms by g :=n — g;.

By definition of the basis {7;}, for all cohomology class 1 of degree ¢ =n—gq;, [, ;AN
equals the coefficient of the term 7; in the expression of 7 in the basis {7;}.

Applying itto n = F*1;

) /a),-/\F*Ti:trace(Hq(F)). [ |
ilgi=n—q~M

It follows that the Lefschetz number of a function is related to its fixed points: indeed, if it does
not vanish, there is at least a fixed point somewhere!

Definition 10.2.4 — Fixed Locus. Let F: M — M be a function of a set on itself. Then the
fixed locus of F is

Fix(F) = {p € M|F(p) = p}.

Corollary 10.2.5 — Weak version of Lefschetz Fixed-point Formula. Let M be a compact
oriented manifold without boundary and let F: M — M be a smooth map. Assume that
L(F) #0.

Then Fix(F) # 0.

Proof. We argue by contradiction. If F has no fixed points, then Tr NA =0, so (M x M)\ Ais
an open subset of M x M containing I'z. By the localization principle® 9.4.7 we can assume that
suppNr, C (M x M)\ A, so L(F) = [,nr =0. [ |

3Tt is not difficult to show that (M x M)\ A has finitely dimensional cohomology by using the cohomology
exact sequence induced by the Mayer-Vietoris exact sequence obtained by writing M as union of it and a tubular
neighbourhood of A.
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We can say more: the Lefschetz number ’counts’, in some sense, the fixed points of F.

We consider smooth maps F: M — M whose graph I'r is transversal to the diagonal A.
Notice that if p is a point of M such that F'(p) = p, then dF,, is an operator on T,M and therefore
we can consider its determinant, trace, characteristic polynomial, spectrum, eigenvalues and
eigenvectors.

Definition 10.2.6 Let F: M — M be a smooth map, p € Fix(F).
We say that p is a non-degenerate fixed point of F if 1 is not in the spectrum of dF,.
If p is a non-degenerate fixed point then IdTp um —dF), is invertible and therefore we can
define

o) = signdet(Idz y —dF,) € {£1}.

The main motivation for Definition 10.2.6 comes from the following Lemma.

Lemma 10.2.7 Let M be a manifold without boundary, and let A C M x M be the diagonal.
LetI'r C M x M be the graph of a smooth function F': M — M.

Then I'r and A are transversal if and only if all p € Fix(F') are non-degenerate.

If moreover M is oriented, consider I'r and A with the induced orientation, so that the
diffeomorphisms 7|4 and 7|, preserve the orientation, and M x M with the natural product
orientation.

Then if I'r and A are transversal, I'r N A is a discrete set and the induced orientation on
each point (p, p) € I'r NA equals o,,.

Proof. The points of I'r N A are the points (p, p) for p € Fix(F).

Choose a chart of M x M near (p, p) given by a chart in p of M (for the given orientation)
taken twice. This gives local coordinates uy,...,u, on M and xy,...,x,,V1,...,y, on M X M such
the A = {Xj :yj}.

In these coordinates

Tipp)A= ﬂ ker ((dxj)(p,p) - (dyf')(pyp))
j=1

has a basis of the form

<aa> +<aa> ,...,(;) +(aa> . (10.3)
1/ (p.p) Y1/ (p.p) Xn/ (p.p) Yn/ (p.p)

Similarly, since I'r = {Fj(x1,...,x,) =y;}

T U = [ ket ((dFj) (p.p) = (d9)) (p.p))
=1

has a basis of the form

0 ) oF; d 0 oF; 0
5 +), 5 (p) <> ( > +Y —() () . (10.4)
<8x1 (pp) T OW i/ (p,p) 9% ) (pp) T Fttn i/ (p.p)

Then I'r and A are transversal at (p, p) if and only the 2n vectors in (10.3) and (10.4) are
linearly independent in 7),M, i.e if the block matrix

A= (J(ﬁf)p 52)
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is invertible, where I, is the identity matrix of order n, and J(F), is the Jacobi matrix of F in p
with respect to the coordinates uy,...,u,.
By a standard Gauss elimination detA equals the determinant of the matrix

I I
JF)p—1, 0)°
So I'r and A are transversal at (p, p) if and only if J(F), — I, is invertible. In other words if and

only if 1 is not in the spectrum of dF,.
Moreover, since the basis

) ) () (o)
oxi (p,p)7 "\ 0%, (p,p)’ Iy (p,p)7 "\ 9y (p,p)’

is compatible with the chosen orientation of M x M and the bases (10.3) and (10.4) are compatible
with the chosen orientations of A and I then if ['z and A are transversal at (p, p), its induced
orientation equals, by Definition 10.1.4, the sign of detA, i.e. of

I, I, n Ly In
det (J(F)p—ln 0) =(=1 det(o J(F)p—ln>
= (—1)"det(J(F), —1I,)
=det(I, —J(F)p). "

Let us now further assume the compactness of M, in order to apply Proposition 10.2.3.

Theorem 10.2.8 — Lefschetz fixed point formula for nondegenerate fixed points. Let M
be a compact oriented manifold without boundary, and let F': M — M be a smooth map with
only non-degenerate fixed points. Then

L(F)=) op.

Proof. By Lemma 10.2.7, I'r and A are transversal and each point (p, p) in I'r N A has induced
orientation, as connected component of I'r N A, equal to o).
Then by Proposition 10.2.3

L(F):/"?Fp:/ an/\TIA:/ nFFﬁA:/ 122(717' | |
A MxM MxM I'rNA P

If M is a complex manifold and F is holomorphic, det(Idz ), —dF,) can’t be negative by
the argument of the proof of Theorem 6.1.7. Therefore in this special case, always under the
assumption that 1 be not in the spectrum of dF,, the number of fixed points of F' equals exactly
L(F).

Exercise 10.2.1 Use Corollary 10.2.5 to write a simple proof that the antipodal map A: S" —
S" preserves the orientation if and only if » is odd.

Exercise 10.2.2 Let M be a connected manifold, F: M — M any smooth function.
Show that HO(F) = Idyg -
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I Exercise 10.2.3 Show that every holomorphic map from P to itself has a fixed point.
I Exercise 10.2.4 Show that, if F: M — M is smoothly homotopic to Idy, then L(F) = e(M).

Exercise 10.2.5 Let F be a biholomorphism of IP’(}: with only non-degenerate fixed points.
Show that F' has exactly 2 fixed points.
Construct an example of a biholomorphism of IF’(IC with exactly two fixed points.
Construct an example of a biholomorphism of Péj with exactly one fixed point.

Exercise 10.2.6 Let F be a biholomorphism of P, with only non-degenerate fixed points.
Show that F has n + 1 fixed points. Construct an example of a biholomorphism of P
with exactly n+ 1 fixed points.

The intersection multiplicity

Let us now consider two compact oriented manifold without boundary R and S embedded in an
oriented manifold without boundary M of finite type, such that dimR + dim S = dim M, without
any transversality assumption.

Then we may not consider g A 1s € QUMM (M) as the Poincaré dual of a submanifold of M,
but we can still integrate it on M.

Definition 10.3.1 If R and S are compact oriented manifolds without boundary embedded
in an oriented manifold without boundary M of finite type of dimension dimR + dim S we
define the intersection number of R and S to be

R'S:/ Nr A Ts.
M

Note that R-S = S - R unless both R and S have odd dimension, in which case R-S = —S-R.
If M is a complex manifold, and R and S are complex manifolds holomorphically embedded in
M,thenR-S=S-R.

If R and S are transversal, then by Theorem 10.1.7, R- S =} ,crns €p Where €, equals 1 or
—1 according to the orientation of p. In particular R - S € Z. This is however still true even in
weaker hypotheses.

Definition 10.3.2 Let R and S be compact oriented manifolds without boundary embedded in

an oriented manifold without boundary M of finite type of dimension dimR + dim S.
Assume that p € RN S is an isolated intersection point, so open in the topology of RN S.
Then we define the intersection multiplicity of R and § at p as

l‘nultp(R,S):/WT]R/\T]s.

where W is a connected component of the intersection of a tubular neighbourhood of R and a
tubular neighbourhood of S chosen small enough so that WNRNS = {p}.

If R and § are transversal at p, then by Theorem 10.1.7, mult, (R, S) equals 1 or —1 according
to the orientation of p.

In general mult,(R,S) € Z. Indeed choose a tubular neighbourhood W of R small enough
such that, if S, is the connected component of Wg N S containing p, then RN S, = {p}.

Let w: Wg — R be the bundle map given by the identification of Wg with Az .
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Let U C R be an open subset diffeomorphic to a disc centered in p, small enough so that
(‘/%?\M)\U is a trivial bundle. Let Wy := 7~ ! (U). Then Wy = U x RY4™S, Here we choose a
diffeomorphism compatible with the orientation of the bundle A%

Then we have a second projection ©t: Wy — R4S,

Since § is compact sy, : SN Wy — U is proper, so its degree (Definition 9.2.1) is well
defined and

Proposition 10.3.3 mult,(R,S) = deg &{sqw, -

Proof. By the localization principle we can choose representatives
ng of the compact Poincaré dual of R in M and
s of the compact Poincaré dual of S in M
with support shrinked in suitably small tubular neighbourhoods of R and § respectively.
Arguing as in the proof of Theorem 10.1.7, we can assume that there esists 1 € Q& (R4mS)
such that (N&) g, = s, (1) and [pams 7 = 1.
Then

mult, (R, S) :/WnR/\ns

=deg 7'E|SQWU. |

Example 10.1 Assume that M, R and S are complex manifolds of complex dimensions
dimc R = dim¢ S = 1. If locally R = {x = 0} and S = {x = y*}, then the intersection point p
has coordinates (0,0) and 7(x,y) = y.

It follows mult, (R, S) = deg Tsnw, = k.

This produces a bunch of straightforward consequences.

Corollary 10.3.4 Let R and S be compact oriented manifolds without boundary embedded in
an oriented manifold without boundary M of finite type of dimension dimR + dim S.
Assume that RN S is finite. Then R- S € Z.
If R and S are transversal, then the cardinality of RN S is at least |R - S|, and their difference
is even.

Corollary 10.3.5 Let R and S be compact oriented complex manifolds holomorphically
embedded in a complex manifold without M of finite type of dimension dim R+ dimS. Assume
that p € RN S is an isolated intersection point.

Then mult,(R,S) € N.

Corollary 10.3.6 Let R and S be compact oriented complex manifolds holomorphically
embedded in a complex manifold M of finite type of dimension dimR + dim S.
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Assume that RN S is finite. Then R-S € N.
The cardinality of RN.S is at most R - S.
If R and § are transversal, then R - S equals the cardinality of RN S.

We can now state a Lefschetz fixed point formula in weaker assumptions. First we need

Definition 10.3.7 — Multiplicity of an isolated fixed point. Let M be a compact oriented
manifold without boundary, let F: M — M be a smooth map and let p be an isolated fixed
point of F (in other words {p} is a connected component of Fix(F)).

Then define the multiplicity of p as fixed point

op :=mult(, ) ([F,A).

If 1 is not an eigenvalue of dF), then Definition 10.3.7 reduces to Definition 10.2.6.

If M is a complex manifold and p is an isolated fixed point of a holomorphic function
F: M — M then 6, > 1. Rewriting the proof of Theorem 10.2.8 in the weaker assumption that
Fix(F) be discrete using Definition 10.3.7 we obtain the following two results.

Theorem 10.3.8 — Real Lefschetz fixed point formula for isolated fixed points. Let M be
a compact oriented manifold without boundary, and let F : M — M be a smooth map such that
Fix(F) is a discrete set.

Then the Lefschetz number of F is an integer.

More precisely L(F) equals the sum on the fixed points of F of their multiplicity as fixed
points of F':

L(F)=) op.
p

Theorem 10.3.9 — Complex Lefschetz fixed point formula for isolated fixed points. Let
M be a complex manifold and let F: M — M be a holomorphic map such that, Fix(F) is a
discrete set.

Then the Lefschetz number of F is a natural number and more precisely it equals the sum
on the fixed points of F' of their multiplicity as fixed points of F:

LF)= ) o,

peFix(F)

A further application is a proof of the following well known result.

Theorem 10.3.10 — Bézout theorem on the plane. Let R, S C IP’%C be holomorphically
embedded compact submanifold set-theoretically defined as zero locus of a homogeneous
polynomial (in the homogeneous variables zg,z1,z2) of respective degrees dg and ds.

Then R - S = dgds.

In particular,

e if RN S is finite then its cardinality is at most dgds.

e If R and S are transversal then RN S is a set of drdy points.

Proof. By the proof of Proposition 10.1.8 all hyperplanes H, defined by the vanishing of a
homogeneous polynomial of degree 1, have the same Poincaré dual, ng,, who generates the
whole cohomology ring.

Then there are constants ag,as € R such that the Poincaré dual of R, ng, equals agng and
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he Poincaré dual of S, ng, equals asny.

Since H-H = 1,ag=agH -H =a, [ Mg ANy = /Mg ANy = R-H. Chosing H general, H
and R are transversal and eliminating one variable using the equationg of H one sees that H N R
is defined by the vanishing of a homogeneous polynomial of degree ar without multiple roots.
So ar = dg. Similarly ag = ds.

Finally

R-S:/TIR/\TIS:/anH/\dSnH:deS/TIIQZ:deS- u

Exercise 10.3.1 Let A C M x M be the diagonal. Show that the tangent bundle of A is
isomorphic to the normal bundle of A in M x M.

Exercise 10.3.2 Let M be a Riemann surface of genus g, i.e. a torus with g holes, and let A
be the diagonal in M x M with the natural orientation. Show

A-A=2-2g.

Exercise 10.3.3 Constructs , fo all n > 1, a biholomorphic map ¢: P¢. — Pf. with exactly
one fixed point. Compute the multiplicity of it.

Exercise 10.3.4 Let M be a compact complex manifold of dimension 1.

Assume that there exists a complex biholomorphism ¢ : M — M smoothly homotopic to
the identity, @ # Idy,.

Show that then the genus of M is 0 or 1.

((to : 11), (x0 : x1 : x2)), F1 C P x P2 defined as {fox; = t1x0}.
1) Show that [F; is a complex manifold of complex dimension 2 embedded in JP’(%: X IP’(Z:;
2) Show that the formula f(to : [1),()60 tXp XQ)) = ((lo : Z]),(lofz L HXo : ToXo —i—llf]))
defines a reversing orientation diffeomorphism.
Consider E C P} x P2 defined as {xo = x; = 0}. Then
3) Show that E is a complex manifold of complex dimension 1 embedded in [F;.
4) Show? that the self intersection of E as submanifold of IF; is

E-E=—1.

“Hint: use 2)

Exercise 10.3.6 Let M = P{. x P.. Consider homogeneous coordinates (xo : x1) on the first
factor, (yo : y1) on the second factor.

Let F € Clxo,x1,y0,y1]. We will say that F is bihomogeneous of bidegree (d,e) if F
is homogeneous of degree d as polynomial in the variables (xg,x;) (with coefficients in
Clyo,y1]) as well as homogeneous of degree e as polynomial in the variables (yo,y;) (with
coefficients in Clxg,x;]).

Show that the zero locus {F = 0} is well defined if and only if F is bihomogeneous.

‘ Exercise 10.3.5 — The first Hirzebruch surface ;. Consider P} x P% with coordinates
‘ Let R,S C M be holomorphically embedded compact submanifold set-theoretically de-
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fined as zero locus of a bihomogeneous polynomial of respective bidegrees (dg,eg) and
(ds,es).
Show that R-S = dges + erds.

Exercise 10.3.7 — Bézout Theorem in higher dimension. Let Xi,...,X, C P{. be em-
bedded submanifold, and assume that Vi, X; is exactly the zero locus of a homogeneous
polynomial (in the homogeneous variables zo, . ..,z,) of degree d;.

Assume that X; N---N X, is finite. Show that its cardinality is at most d; - - - d,.

Assume that each X; is transversal to the intersection X; N...NX; ;. Show that then
XiN---NX,isasetof d ---d, points.

10.4 The Poincaré-Hopf Theorem
Definition 10.4.1 Let 7: E — M be an oriented vector bundle and consider its Thom class
®(E) € H.(E).

Let so: M — E be the zero section. Then the pull back s;; of forms define a degree zero
chain map s;: Q2,(E) — Q°*(M), and therefore a degree zero graded ring homomorphism
so: He,(E) — Hpp(M).

The Euler class ¢(E) of E is the cohomology class s5® € Hjyp(M).

The Euler class is connected to the Euler number as follows.

Theorem 10.4.2 Let M be a compact oriented manifold without boundary. Then

e(M) = /Me(TM).

Proof. Let A= M be the diagonal of M x M.

As the reader can easily prove (Exercise 10.3.1) the tangent bundle T'A is isomorphic as
oriented vector bundle to the normal bundle A}y -

Every bundle is a tubular neighbourhhod of the image of its zero section, and therefore we
can write e(Aaxar) = P(Aaprxm)|a-

By Proposition 9.5.10 any representative of the Thom class @ (.4} y.p) is also a representa-
tive of the Poincaré dual Ny of Ain M x M.

Summing up, by the expression of 14 in Lemma 10.2.1

/ o(TM) = / o(TA) = / e(Napar) = / D(Npear) =
M A A A
— / Ma =Y (—1)ee / T AT T = Z(—l)deg“”'/ o AT =Y (—1)ee
A i A i M i
and the result follows since the number of @; in each H (M) equals its dimension. |
As the Lefschetz number is an obstruction to the existence of smooth maps F: M — M
without fixed points, the Euler number is an obstruction to the existence of vector fields without

zeroes on M. This allows us to prove the following generalization of the Hairy Ball Theorem
9.2.3.

Theorem 10.4.3 — Weak version of Hopf’s Theorem. Let M be a compact orientable
manifold without boundary. Assume that M can be combed flat, i.e., it admits a smooth vector
field without zeroes. Then e(M) = 0.
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Proof. The vector field is a smooth section of the tangent bundle, so it is an embedding v: M —
TM, and the condition about the zeroes ensures v(M) Nso(M) = 0, where as usual sy denotes
the zero section. We write 1, for the compact Poincaré dual of v(M), and 1 for the compact
Poincaré dual of so(M): 7, and 1 are both elements in H4™M (T M) which equals, M being
compact, Hi™M (T M).

Considering the embedding so of M in TM, a tubular neighbourhood of so(M) in TM is TM
itself and Proposition 9.5.10 implies

Mo = P(Nso(n)rm) = ®(TM) € H,(TM) = H(TM).

Let now @ € Q" (T M) be a representative of ®(T'M). Since both sgo 7w and vo 7 are smoothly
homotopic to the identity, s = v*: H} o(TM) — HJo(M). Since the integral of a closed form
only depends on its De Rham cohomology class, it follows [;,v*® = [}, s;®.

Then, by the localization principle 9.4.7,

o:/ no=/ q»:/v*q>:/s3q>:/e(TM):e(M).
v(M) v(M) M M M
n

As in the case of the Lefschetz fixed point formula, the statement can be refined by consider-
ing the case when so(M) and v(M) intersect trasversally: in that case we say that the vector field
has only nondegenerate zeroes.

Under such assumption the same argument shows that e(M) equals a sum on the zeroes of v
of 1s and —1s, where the sign is the orientation of the point as transversal intersection of so(M)
and v(M).

More generally, we can count the number of zeroes of a vector field with only isolated zeroes.
Definition 10.4.4 — Index of a vector field at a zero. Let v € X(M) be a vector field
and p € M be an isolated zero of v; in other words we are assuming that {p} is a connected
component of its zero locus.

Then we define the index of the vector field v at p as the intersection multiplicity at the
zero of T,M, say 0, of s and v:

i(v)p :=multy, (so(M),v(M)).

The index i(v), in an integer, and equals —1 or 1 if 5o(M) and v(M) are transversal at 0,,.
Following the same ideas one proves the following

Theorem 10.4.5 — Hopf’s Theorem. Let M be a compact orientable manifold without
boundary, and let v € X(M). Then

In particular, if v has only isolated zeroes. Then

M= Y i),
plv(p)=0

So every vector field on a sphere of even dimension with isolated zeroes has exactly two
zeroes if counted with multiplicity (here multiplicity=index). Indeed in the picture in the front
page of these notes you see represented a vector field on $? with just one zero, and you may
deduce by the picture that the index at that point is two.
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As usual, as for most results in this notes, we deduce also a complex version of the statement,
by recalling that the holomorphic tangent bundle is isomorphic, as a real vector bundle, to the
real tangent bundle (Proposition 3.4.3). Then for a holomoprhic vector field v the index i(v),, is
positive and so

Corollary 10.4.6 A holomorphic vector field on a compact complex manifold of dimension 1
and genus g has 2 — 2g zeroes, counted with multiplicity.

In particular,

* holomorphic vector fields on P! have exactly two zeroes (counted with multiplicity) or
vanish identically;

* holomorphic vector fields on a complex torus either vanish identically or have no zeroes
(combing them also from a complex point of view, the homolorphic tangent bundle of a
complex torus is trivial);

* every holomorphic vector field on a curve of genus g > 2 is identically zero.

Proof. If a holomorphic vector field has a zero that is not isolated then it must be identically
zero by standard complex analysis. Else we apply Theorem 10.4.5. |

Exercise 10.4.1 Prove that every compact orientable manifold without boundary of odd
dimension has Euler number zero.

Find a compact manifold with Euler number zero and one with Euler number different
from zero for every possible even dimension.

spaces (possibly of different dimensions). Show that M, X - -- X M} cannot be combed flat.

| Exercise 10.4.2 Let My,...,M; be real manifolds diffeomorphic to complex projective

Exercise 10.4.3 Show that a product of spheres can be combed flat if and only if one of the
factors has odd dimension.
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