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Abstract. We classify the minimal surfaces of general type with

K2 ≤ 4χ − 8 whose canonical map is composed with a pencil, up

to a bounded family.

More precisely we prove that there is exactly one irreducible

family for each value of χ ≫ 0, 4χ − 10 ≤ K2 ≤ 4χ − 8. All these

surfaces are complete intersections in a toric 4−fold. They can also

be obtained as bidouble covers of Hirzebruch surfaces.

Introduction

In the celebrated paper [B], A. Beauville studies the surfaces of gen-
eral type whose canonical map is not birational; here we denote by
canonical map the map induced by H0(Ω2

S). Beauville’s approach is
“up to a bounded family”: he shows that if we assume χ(O) big enough,
which is equivalent to disregarding a finite number of components of the
moduli scheme of the surfaces of general type, the situation simplifies
considerably.

Beauville distinguishes two cases, since (if χ(O) ≥ 3) the canonical
image has dimension 1 or 2. We are interested in the first case, the
case of the surfaces whose canonical map is composed with a pencil. In
fact, by Stein factorisation, then the canonical map factors through a
rational map with connected fibres onto a smooth curve, which is said
to be a canonical pencil.

In this case [B] proves

Theorem 0.1 (Beauville). If S is a minimal surface of general type
whose canonical map is composed with a pencil and χ(OS) > 20 then
the pencil is free and the general fibre has genus 2 ≤ g ≤ 5.

Beauville first proves that the inequality K2 ≥ 2(g−1)(χ−2) holds,
and then the theorem follows by the Miyaoka–Yau inequality K2 ≤ 9χ.
This argument motivated many authors to improve the lower bound
for K2; when g = 2 [X] proves

Theorem 0.2 (Xiao Gang). If S is a minimal surface of general type
whose canonical map is composed with a free pencil of curves of genus
2 then K2 ≥ 4pg − 6 ≥ 4χ − 10.
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The inequality is sharp, since there are examples of regular surfaces
as above for all values of the pair of invariants (K2, pg) in the range
pg ≥ 2, 4pg − 6 ≤ K2 ≤ 4pg.

If g ≥ 3 stronger inequalities hold (see [S1], [S2], results summarised
in the Theorem 4.10; see also [Z], [YM]). Therefore, if K2 is sufficiently
near to 4χ−10 and χ is sufficiently big, then the genus of the canonical
pencil has to be 2.

A natural question arise: is it possible, up to a bounded family, to
classify the minimal surfaces of general type whose canonical map is
composed with a pencil and with K2 − (4χ − 10) “small enough”? To
the best of our knowledge, nobody has studied this problem up to now.

In this note we answer this question. The main result is the following

Theorem 0.3. Let S be a minimal surface of general type with K2
S ≤

4χ(OS)− 8 and canonical map composed with a pencil. Assume more-
over χ(OS) ≫ 0.

Then the canonical pencil is a rational pencil of genus 2 curves,
q(S) = 0 and S is birational to a complete intersection X = Q ∩ G
in the toric 4−fold P := Proj(Sym V ) where

V := OP1(1)x0 ⊕OP1(χ)x1 ⊕OP1(K2 − 2χ + 8)y ⊕OP1(K2 − χ + 7)z

and the grading of Sym V is given by deg xi = 1, deg y = 2, deg z = 3.
X has only canonical singularities and Q, G are of the form

Q :=
{

x2
0 + qxx

2
1 + qyy = 0

}

,

G :=















z2 +
∑

i,j,k≥0
i+j+2k=6

Gijkx
i
0x

j
1y

k = 0















,

where qx, qy and Gijk are homogeneous polynomial on P1.
Conversely, for any pair of positive integers (K2, χ), the minimal

resolution S of the singularities of a complete intersection X as above is
a minimal surface of general type with K2

S = K2, χ(OS) = χ, q(S) = 0

and the canonical map of S is the composition S
f
→ P1 V er

→֒ Pχ−2 where
f is the genus 2 pencil induced by the projection P → P1 and V er is
the (χ − 2)−Veronese embedding.

In particular, if (K2, χ) are integers with χ >> 0 and 4χ−10 ≤ K2 ≤
4χ−8, then the subscheme of the moduli space of the minimal surfaces
of general type given by the surfaces S with K2

S = K2, χ(OS) = χ whose
canonical map is composed with a pencil is irreducible of dimension
12χ − 2K2 − 15.

The construction in Theorem 0.3 gives also surfaces with canonical
map composed with a pencil and K2 > 4χ − 8; at least for every
pair (K2, χ) with χ ≥ 3, 4χ − 10 ≤ K2 ≤ 4χ − 6. Anyway, when
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K2 > 4χ − 8 we can’t guarantee that these are all the surfaces with
a canonical pencil. Indeed, using an alternative description of these
surfaces as bidouble covers, we show that if K2 = 4χ − 6 then this
family is always properly contained in a larger irreducible family of
surfaces with a canonical pencil.

We discuss the strategy of the proof.
By the above mentioned results we can assume that the pencil is

free, has rational base and fibres of genus g = 2. We classify these, for
χ ≫ 0 and K2 ≤ 4χ+8, computing their relative canonical algebra R.

The main difficulty is in the fact that these genus 2 fibration have
big Horikawa number H := K2 − 2χ+6 (cf. [H], [R]): it grows asymp-
totically as 2χ. When studying the relative canonical algebra R of
genus 2 fibrations over surfaces with fixed invariants (K2, χ), big H
corresponds to many a priori possibilities for its second graded piece
R2, which is the key computation. We will see that, if the fibration
is canonical, K2 ≤ 4χ + 8 and χ ≫ 1, then R2 is determined up to
isomorphisms, while this is not true for small χ, when some exceptional
family appear.

To prove it, we consider the relative canonical model X := ProjR
and the fixed part of |KX |, and we let h be the union of its horizontal
components, the components not contracted by the pencil. We consider
moreover the involution i on X induced by the hyperelliptic involution
of every fibre, and we denote by C the quotient X/i and by γ : X → C
the resulting double cover. C contains two interesting effective divisors:
the divisorial part ∆ of the branch locus of γ and the curve s := γ(h)
which is a section of the map C → P1 induced by the fibration. Xiao
Gang noticed that s cannot be contained in ∆, and he used it to prove
his inequality K2 ≥ 4pg − 6, which is equivalent to s · ∆ ≥ 0.

The above geometrical construction can be translated in algebra as
follows: C = X/i is the relative Proj of a sub-algebra A ⊂ R (cf. [CP]),
and the inclusion s ⊂ C determines a sheaf S, quotient of A by some
sheaf of ideals. The equation of ∆ is a map from a line bundle, say
L, to A and more precisely to its homogeneous component A6, which
depends from the multiplication map σ2 : Sym2 R1 → R2 in a rather
complicated way. On the contrary the relation between S and σ2 is
much simpler. The condition s 6⊂ A means that the composition map
L → A6 → S6 is nonzero; Hom(L,S6) 6= 0 implies (not surprisingly)
Xiao’s inequality but unfortunately it is not strong enough to determine
σ2.

We consider then the “intermediate” subscheme 2s. As s ⊂ 2s ⊂
A, 2s determines a new sheaf of algebras S ′, a quotient of A which
dominates S. S ′ is still reasonably easy to compute and Hom(L,S ′

6) 6=
0. Studying this condition, stronger than the previous one, we will be
able to compute R2, σ2 and then R.
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The paper is structured as follows.
In Section 1 we study the surfaces constructed in Theorem 0.3 as

complete intersections in a toric 4−fold, showing that the family is
not empty for every value of the pair (χ, K2) in the range χ ≥ 3,
4χ − 10 ≤ K2 ≤ 4χ − 6. Then we check that these surfaces have
the properties stated in Theorem 0.3. Moreover we note that, if χ is
big enough, these surfaces are bidouble covers of a Hirzebruch surface
F|4χ−8−K2| and use it to show that, when K2 = 4χ − 6 this family
is properly contained in a larger irreducible family of surfaces with a
canonical pencil.

In Section 2 we recall some results from the theory of genus 2 fi-
brations, and we introduce and compute the algebra of a section of
the related conic bundle C. In Section 3 we study the algebra of s,
and prove a version of Xiao’s inequality. In Section 4 we consider the
algebra of 2s and use this algebra (and a lifting lemma) to prove The-
orem 3.1 which determines exactly for which pair (K2, χ) there are
surfaces with canonical map composed with a free genus 2 pencil not
in the families described in Theorem 0.3. Theorem 0.3 follows then
easily.

Acknowledgements. I’m indebted with Miles Reid for suggesting
me the problem and for many enlightening discussions when I was
guest of the University of Warwick in the occasion of the WAG 07-08
Symposium, where most of the results of this paper were obtained.

1. Some surfaces with a canonical pencil

In this section we study the surfaces constructed in the Theorem 0.3.
For later convenience we introduce the integers pg := χ − 1 and Θ :=
K2 − 4χ + 10, so that

V = OP1(1)x0 ⊕OP1(pg + 1)x1 ⊕OP1(2pg + Θ)y ⊕OP1(3pg + Θ)z.

P is the 4−fold Proj(Sym V ) where the grading of Sym V , sheaf of
graded algebras over P1, is given by deg xi = 1, deg y = 2, deg z =
3. So the first graded pieces of Sym V are (Sym V )1 = OP1(1)x0 ⊕
OP1(pg + 1)x1, (Sym V )2 = OP1(2)x2

0 ⊕ OP1(pg + 2)x0x1 ⊕ OP1(2pg +
2)x2

1 ⊕OP1(2pg + Θ)y, and so on.
P is a bundle over P1 whose fibres are weighted projective spaces P(1 :

1 : 2 : 3). In P we have the hypersurfaces Q = {x2
0 + qxx

2
1 + qyy = 0},

G =
{

z2 +
∑

i+j+2k=6 Gijkx
i
0x

j
1y

k = 0
}

where the qi and the Gijk are

homogeneous polynomial on P1 of the right degree to have Q and G
well defined:

deg qx = 2pg

deg qy = 2pg − 2 + Θ

deg Gijk = −ipg + (k − 2)Θ + (6 − 2k)
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X := Q ∩ G is a surface and the fibres of the surjective morphism
f : X → P1 are complete intersections of type (2, 6) in P(1 : 1 : 2 : 3);
if X is not too singular then f is a genus 2 fibration.

Proposition 1.1. If 0 ≤ Θ ≤ 4 then the general X is smooth.

Proof. The equation of Q do not involve the variable z, so Q is a
cone over C := Q ∩ P′, where P′ := {z = 0} is a P(1 : 1 : 2)−bundle
over P1. Since pg ≥ 2 and Θ ≥ 0, qx and qy have positive degree and
therefore by Bertini the general C is quasi-smooth and more precisely
has only singularities of type A1 (nodes) at the intersection with the
section {x0 = x1 = 0}: 2pg − 2 + Θ nodes dominating the zeroes of qy.

By the equation of G, X is a double cover of C branched at these
nodes and along the curve ∆ := C∩∆̄ where ∆̄ := {

∑

Gijkx
i
0x

j
1y

k = 0}
is a surface in P′. To prove the smoothness of the general X we need
that for general choice of the Gijk, ∆ is smooth and does not contain
the nodes.

We study the fixed locus of |∆|. Note that |∆̄| has a big fixed locus:
in fact if pg ≫ 0 all Gijk with i > 0 vanish (having negative degree)
and therefore the curve {x1 = y = 0} is contained in Fix(|∆̄|).

If 0 ≤ Θ ≤ 3, since deg G003 = Θ and deg G060 = 6 − 2Θ, the
coefficients of both the monomials y3 and x6

1 can be chosen nonzero
and therefore Fix(|∆̄|) is contained in the curve {x1 = y = 0}. Since
this curve does not intersect C (due to the term x2

0 in the equation
of Q), |∆| has no base points and its general element is smooth and
irreducible.

If Θ = 4, G060 = 0 and therefore, if pg ≫ 0, the equation of G
is divisible by y: {y = 0} ∩ C is a smooth fixed component of |∆|.
Since deg G041 = 0, the residual linear system has no base points (as in
the previous case) and its general element does not intersect the fixed
component, so ∆ is disconnected but still smooth.

�

Proposition 1.2. If Θ ≤ 2 and pg > 6 − 2Θ the subscheme of the
moduli space of surfaces of general type given by these surfaces has
dimension 4pg + 9 − 2Θ.

Proof. The proof is identical to the analogous one in [P, Proposi-
tion 5.2].

�

One can use the same method to compute the dimension of the
other families, which can be a little bit bigger. Indeed, if Θ ≤ 2 and
pg > 6 − 2Θ, then no term including the variable x0 appears in the
equation of G: when these terms appear, they give a slightly larger
number of moduli.
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If pg > 2 these families are not irreducible components of the moduli
space, see the forthcoming Remark 1.3. We do not know the codimen-
sion of these families in the irreducible component of the moduli space
containing them.

The canonical system and the relative canonical algebra. By adjunction,
denoting by H the class of |OP(1)|, the linear system of the relative
hyperplanes defined by maps OP1 →֒ (Sym V )1, and by F the pull back
of a point of P1

KX|P1 = (KP|P1 + Q + G)|X

= ((6pg + 2Θ + 2)F − 7H − 2F + 2H − (6pg + 2Θ)F + 6H)|X

= H|X .

In fact the relative canonical algebra of the fibration is the quotient
of Sym V by the ideal I generated by the equations of Q and G.

In particular KX = (H − 2F )|X, the restriction map H0(P, H −
2F ) → H0(X, KX) is an isomorphism and H0(X, KX) is cut by the
hypersurfaces {hx1 = 0}, with h varying in H0(OP1(pg − 1)): the fixed
part of the canonical system is cut by {x1 = 0} and the canonical map
is the composition of f with the (pg − 1)−uple embedding P1 → Ppg−1.

Then pg(X) = pg and

K2
X = (H − 2F )2 · Q · G

= 12H4 − 4(3pg + Θ + 15)H3F

= 2

(

1 + pg + 1 +
2pg + Θ

2
+

3pg + Θ

3

)

− 4
3pg + Θ + 15

6

= 4pg − 6 + Θ.

Remark 1.3. M. Reid has shown me how to deform the above surfaces
with pg > 2 to surfaces which still have the genus 2 pencil but whose
canonical map is no longer composed with it.

The idea is to deform R1 = O(1)⊕O(pg +1) to any “more balanced”
bundle, as, e.g., O(2)⊕O(pg), so that f∗KS becomes generated. More
precisely we deform P by deforming V to O(2)⊕O(pg)⊕O(2pg +Θ)⊕
O(3pg + Θ) and then deform accordingly Q and G.

Description as bidouble covers. For pg > 6, x0 does not appear in the
equation of G. In this case X is invariant by the (Z/2Z)2 action on P
defined by (x0 : x1 : y : z) 7→ (±x0 : x1 : y : ±z).

The quotient X/(Z/2Z)2 is the P(1 : 2) bundle over P1 given by the
variables x1 and y, which is the Hirzebruch surface

F|2−Θ| = Proj(Sym(O(2pg + 2)x2
1 ⊕O(2pg + Θ)y)).

As in [C], a bidouble cover of a Hirzebruch surface is determined by
the branch divisors D1, D2, D3 of the 3 intermediate double covers. In
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our case D1 = {qxx
2
1 + qyy = 0}, D2 = {

∑

G0jkx
j
1y

k = 0}, D3 = {x1 =
0}.

Writing Γ∞ for the only negative section of the ruling |Γ| of Fr, and
|Γ1|, |Γ2| for the two rulings of P1 × P1, the Di are general in the
following linear system

Θ base |D1| |D2| |D3|

0 F2 |Γ∞ + 2pgΓ| |3Γ∞ + 6Γ| Γ∞

1 F1 |Γ∞ + 2pgΓ| |3Γ∞ + 4Γ| Γ∞

2 P1 × P1 |Γ1 + 2pgΓ2| |3Γ1 + 2Γ2| |Γ1|

3 F1 |Γ∞ + (2pg + 1)Γ| |3Γ∞ + 3Γ| |Γ∞ + Γ|

4 F2 |Γ∞ + (2pg + 2)Γ| Γ∞ + |2Γ∞ + 4Γ| |Γ∞ + 2Γ|

This table shows in particular that the surfaces we have constructed
with Θ = 2 are the same as those constructed by Catanese in [C,
Example 2], (the case a = 2, k = 0 in the notation there). Catanese
in the same Example gave also surfaces with Θ = 4 or 6 as bidouble
covers of P1 × P1: it is easy to see that our examples with Θ = 4 are
a degeneration of Catanese’s examples, obtained by deforming P1 ×P1

to F2.

Proposition 1.4. There are surfaces whose canonical map is composed
with a genus 2 pencil which are bidouble covers of a Hirzebruch surface
for each value of pg ≥ 2, Θ := K2 − 4pg + 6 ∈ {0, 1, 2, 3, 4, 5, 6}.

Proof. The above table proves the statement for Θ ≤ 4, and
Catanese’s examples above mentioned the case Θ = 6. For Θ = 5
it is enough to take a bidouble cover of F1 with branching divisors
D1 ∈ |Γ∞ + (2pg + 2)Γ|, D2 ∈ Γ∞ + |2(Γ∞ + Γ)|, D3 ∈ |Γ∞ + 2Γ|.

�

The existence of surfaces with these values of the invariants were
already know to Xiao Gang who constructed in [X] one example for
each value of pg, K2 in the above range.

2. Genus 2 fibrations, related conic bundles and their
sections

If a surface S has a fibration onto a curve f : S → B with fibres of
genus g ≥ 2, then S is birational to X := Proj(R(f)), where R(f) (or
R for short) is the relative canonical algebra

R :=
⊕

d≥0

f∗OS(dKS|B).
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X, the relative canonical model of f , is obtained from S by contract-
ing all vertical (−2)−curves. To simplify the arguments, it is conve-
nient to replace S by X, considering (with a mild abuse of notation)
the fibration f : X → B.

The hyperelliptic involution of the fibres extends to an involution i
of X, inducing a quotient surface C := X/i. The fibration f factors
as π ◦ γ where π : C → B is a conic bundle and γ : X → C is a finite
double cover branched at a finite sets of points P ⊂ C and along a
curve ∆ ⊂ C. Obviously

(1) P ∩ ∆ = ∅.

As X = Proj(R), C = Proj(A) for a subalgebra A ⊂ R which has
been studied in [CP] (see also [R]).

Lemma 2.1 ([CP]). A, as sheaf of algebras, is generated by A1 = R1

and A2 = R2 and related by the multiplication map

σ2 : Sym2 A1 →֒ A2

whose cokernel is the structure sheaf of an effective divisor τ on B of
degree K2

X − 2χ + 6.

Proof. This has been proved in [CP]. More precisely generators
and relations of A are computed by Lemma 4.4 and Remark 4.5 and
the cokernel of σ2 is computed in Lemma 4.1. For the degree of τ see
the formulae in Theorem 4.13.

�

In the next remark we recall the description of the stalks of A and R
at any point of the base curve B which will be used in the forthcoming
sections.

Remark 2.2. If p ∈ B does not belong to supp τ , then the stalk of R
at p is isomorphic to

OB,p[x0, x1, z]/(z2 − f6(x0, x1; t));

else, letting r be the multiplicity of p in supp τ , the stalk of R at p is
isomorphic to

(2) OB,p[x0, x1, y, z]/(try − f2(x0, x1; t), z
2 − f6(x0, x1, y; t)).

Here fd are weighted homogeneous polynomials of degree d, where
the variables xi have weight 1 and y has weight 2. The involution acts
as z 7→ −z (z has weight 3) fixing all the other variables. A is the
subalgebra generated by x0, x1 and, in the second case, y.

From this description follows that π maps P bijectively to supp τ
and, equivalently f maps bijectively the set of the isolated fixed points
of i to supp τ ; in fact, if p ∈ supp τ there is an isolated fixed point
contained in f−1(p) which is, in the local coordinates induced by the
above description of the stalk of R at p, the point Q0 := ((x0 : x1 : y :
z); t) = ((0 : 0 : 1 : 0); 0).



ON SURFACES WITH A CANONICAL PENCIL 9

Assume, by sake of simplicity, that r = 1 and f2(x0, x1; 0) is not
a square. Then f−1(p) is union of two elliptic curves intersecting
transversally in Q0, each of them mapped by γ to a rational curve:
the two rational curves intersect in P0 = γ(Q0) ∈ P , which is a node
of C.

By Remark 2.2 follows, if we denote by R′
3 the direct summand of

R3 of rank 1 locally generated by z,

Proposition 2.3 ([CP]). R ∼= A⊕(A⊗R′
3)[−3] as graded A−module.

The ring structure of R gives a multiplication map δ : (R′
3)

2 → A6

inducing the divisor ∆ ⊂ C. Moreover R′
3
∼= detA1 ⊗OB(τ).

Proof. See [CP], in particular Proposition 4.8. Note that R′
3 is V +

3

in the notation of [CP].
�

Definition 2.4. Let f : S → B be a genus 2 fibration, and consider
the associated conic bundle π : C = Proj(A) → B.

To any section s of π we associate a sheaf of graded algebras S, which
is the quotient of A by the ideal sheaf of the elements vanishing along
s.

Note that by definition each homogeneous piece Sd of S is of rank 1
and torsion free, so a line bundle.

Proposition 2.5. There exists an effective divisor τ ′ < τ such that
∀d ≥ 1, Sd

∼= Sd
1

(⌊

d
2

⌋

τ ′
)

.

Proof. The statement is empty for d = 1, so we start with d = 2.
By Lemma 2.1 we have a commutative diagram with exact rows and
columns

0 // Sym2 A1
//

��

A2
//

��

Oτ
// 0

0 // S2
1

//

��

S2

��
0 0

It follows that there exists a surjection from Oτ to the cokernel of the
map S2

1 →֒ S2, which is then isomorphic to Oτ ′ for some τ ′ < τ . In
particular S2

∼= S2
1 (τ ′).

To conclude we show that ∀k ≥ 2, S2k
∼= Sk

2 and S2k−1
∼= Sk−1

2 ⊗S1.
The composition of the maps Symk A2 → A2k → S2k is surjective

(since both maps are surjective) and factors through the multiplication
map Sk

2 → S2k, which is therefore surjective too; the injectivity follows
since it is a map between line bundles. A similar argument works for
the map Sk−1

2 ⊗ S1 → S2k−1.
�
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Recall that by Remark 2.2, π|P maps P bijectively onto supp τ . In
the next remark we show that, roughly speaking, τ ′ < τ marks those
points of P which belong to s.

Remark 2.6. Let p be a point of τ with multiplicity r > 0; we write
the stalks of R and A at p as in Remark 2.2 by asking further that x1

generates the kernel of the map A1 → S1.
S2 is a line bundle and the surjection A2 → S2 factors through

(A/x1)2, which has rank 1 but possibly torsion. More precisely, if
p ∈ supp τ then the stalk (A/x1)2,p

∼= (OB,p[x0, y]/(try − f2(x0, 0; t))2

has torsion when t divides f2(x0, 0; t). It follows that

S2,p
∼= (OB,p[x0, y]/((try − f2(x0, 0; t))/tr

′′

)2

where r′′ is the maximal power of t which divides try − f2(x0, 0; t).
The stalk at p of S1 is generated by the class of x0. Therefore

Oτ ′ ∼= coker(S2
1 → S2) ∼=

⊕

p∈supp τ

(OB,p[y]/(tr−r′′y))2;

the multiplicity of p in τ ′ is r′ := r − r′′.
Note that p belongs to τ ′ if and only if r 6= r′′ i.e. the section passes

through P0. Therefore, if τ is reduced, then τ ′ < τ marks the points of
P contained in s. Moreover

(3) τ ′ = 0 ⇔ P ∩ s = ∅.

3. The section of the conic bundle induced by Fix(K)

We want to prove the following

Theorem 3.1. Let S be a minimal surface of general type with K2
S ≤

4χ − 8, having a free canonical pencil of genus 2 curves. Then S is
regular and the pencil has rational base.

If moreover we assume either Θ := K2 − 4χ + 10 = 0 or pg > Θ + 4
then R ∼= (Sym V )/I, with

V := OP1(1)x0 ⊕OP1(χ)x1 ⊕OP1(K2 − 2χ + 8)y ⊕OP1(K2 − χ + 7)z,

the grading of Sym V is given by deg xi = 1, deg y = 2, deg z =
3, and I is the sheaf of ideals generated by x2

0 + qxx
2
1 + qyy, z2 +

∑

i,j,k≥0
i+j+2k=6

Gijkx
i
0x

j
1y

k = 0, where qx, qy and Gijk are homogeneous poly-

nomial on P1.

The proof of Theorem 3.1 requires some preparation, and we delay
it to the end of the next section.

If K2 ≤ 4χ − 8 Xiao Gang’s inequality ([X]) K2 ≥ 4pg − 6 forces
q(S) = 0, so the base curve is P1, which is the first part of Theorem 3.1.
The difficult part is the computation of R.

Lemma 3.2. R1
∼= OP1(1) ⊕OP1(pg + 1)



ON SURFACES WITH A CANONICAL PENCIL 11

Proof. S has genus 2 pencil and we are assuming KS composed
with f . i.e. |K| = Φ + |f ∗L| so f∗OS(KS) = f∗OS(Φ) ⊗ OP1(L). By
pg = h0(K) = h0(L), f∗OS(KS) ∼= OP1(a) ⊕OP1(pg − 1) with a < 0.

Finally q(S) = 0 implies h1(f∗OS(KS)) = 0 and therefore a = −1.
�

Let h be the horizontal fixed part of |KX |, the union of the compo-
nents of Fix(|KX |) which are not contracted by f . Since, on a general
fibre, h cuts a canonical divisor, the pull back of a point of the canoni-
cal image, h = γ∗(s) for some section s of the conic bundle π : C → B,
to which we can apply the results of the previous section.

h

����

�

�

// X

γ
����

f
// // B

s �

�

// C
π // // Bgg

Since h does not move in X, s can’t move in C and Hom(A1,S1) = C.
Therefore by Lemma 3.2

Remark 3.3. If S is the sheaf of algebras of the section s ⊂ C, S1
∼=

OP1(1). Then, by Proposition 2.5, S is determined up to isomorphisms
by a divisor τ ′ < τ .

Lemma 3.4. τ ′ 6= 0 and s 6⊂ ∆.

Proof. Assume by contradiction s ∩ P = ∅. Then, in a neigh-
bourhood of h, OX(KX) is the pull back of OC\P (KC + δ) where
OC\P (2δ) ∼= OC\P (∆). Therefore hKX = 2s(KC + δ).

Since KX|P1 is the relative O(1) of Proj(R), |KX | is given by maps

ω−1
P1 → R1, |KC + δ| by maps ω−1

P1 → A1, and (KC + δ)|s by maps

ω−1
P1 → S1.

So s(KC + δ) = deg(KC + δ)|s = deg S1 − deg ω−1
P1 = 1 − 2 = −1. It

follows that KXh = −2 contradicting the assumption KX nef.
Therefore s ∩ P 6= ∅, which by (3) implies τ ′ 6= 0, and, since s is

irreducible, by (1) follows s 6⊂ ∆.
�

Remark 3.5. Since s 6⊂ ∆, then the composition of maps (R′
3)

2 δ
→

A6 → S6 is nonzero. Therefore Hom((R′
3)

2,S6) 6= 0.

It follows a version of Xiao’s inequality

Corollary 3.6 (Xiao’s inequality). K2 ≥ 4χ − 10 + 3 deg(τ − τ ′). In
particular, if K2 ≤ 4χ − 8, then τ = τ ′

Proof.

3(2 + deg τ ′) = deg S6 ≥ deg(R′
3)

2 = 2(deg τ + χ + 1)

and the inequality follows by the formula (see [H, Theorem 3], [CP,
Theorem 4.13]) K2 = 2χ + deg τ − 6.
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�

Remark 3.7. As mentioned in the introduction our proof is very similar
to Xiao’s proof; what we have shown is that deg S6 − deg(R′

3)
2 = ∆s

is nonnegative.
In the next section we will see how, considering the non reduced

divisor 2s, this approach gives formulae which cannot be obtained by
intersection arguments.

Remark 3.8. Maybe τ = τ ′ holds more generally, and not only when
K2 ≤ 4χ − 8.

In fact, as pointed out to the author by Polizzi, P ⊂ γ(Fix(|KX |)),
since each isolated fixed point of the involution on X is a base point
of the canonical system of the fibre through it, and therefore it is con-
tained in the fixed locus of |KX |.

Anyway, the condition τ = τ ′ is slightly stronger; if we assume τ
reduced (by sake of simplicity) then τ = τ ′ ⇔ P ⊂ s, and in general
s ( γ(Fix(|KX |)).

Assumption: From now on we assume K2 ≤ 4χ− 8, and therefore
τ = τ ′.

By Lemma 2.1 and Lemma 3.2

(4) A1
∼= OP1(1)x0 ⊕OP1(pg + 1)x1

labelling for our convenience its summands with the variables x0, x1.
By Remark 3.3, x1 belongs to the kernel of the map A → S. In fact

Lemma 3.9. S ∼= A/x1.

Proof. Since x1 belongs to the kernel of the map A → S we have
a surjection A/x1 → S, and we conclude by showing that each graded
piece of A/x1 is a line bundle.

Looking at the stalks of A as described in Remark 2.2 this fails if and
only if there is a point p ∈ supp τ such that t divides f2(x0, 0; t) (here
f2 is the one in (2)). It follows that the corresponding parameter r′′

(introduced in Remark 2.6) is nonzero and then τ 6= τ ′, contradicting
Corollary 3.6.

�

In particular, denoting by q : A2 → S2 the second graded piece of
the surjection A → S, we have an exact sequence

(5) 0 → OP1(pg + 2)x0x1 ⊕OP1(2pg + 2)x2
1

(σ2)|(x1)

−→ A2
q
→ S2 → 0

where S2
∼= OP1(2 + deg τ) = OP1(2pg + Θ) with Θ := K2 − 4pg + 6 ∈

{0, 1, 2}.
A2 is a rank 3 vector bundle over P1, so there are d0 ≤ d1 ≤ d2 with

A2 = OP1(d0)y0 ⊕OP1(d1)y1 ⊕OP1(d2)y2

Lemma 3.10. d2 = 2pg +2. In particular, we can assume y2 = σ2(x
2
1).
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Proof. The injectivity of σ2 forces d2 ≥ 2pg + 2. If d2 > 2pg + 2,
then d2 > 2pg + Θ so OP1(d2)y2 ⊂ ker q. But by (5) ker q ∼= OP1(2pg +
2) ⊕OP1(pg + 2), a contradiction.

�

Proposition 3.11. There is α ≥ 0 such that

d0 = pg + 2 + α

d1 = 2pg + Θ − α

d2 = 2pg + 2

Proof. We have computed d2 in Lemma 3.10; since by (4) and
Lemma 2.1 degA2 = 5pg + Θ + 4, we only have to prove α ≥ 0.

Else d1 > 2pg+Θ, so y1 ∈ ker q. To embed OP1(d1)y1⊕OP1(2pg+2)y2

in ker q ∼= OP1(2pg + 2)x2
1 ⊕ OP1(pg + 2)x0x1 we need d1 ≤ pg + 2, so

2pg + Θ < pg + 2, a contradiction to Θ ≥ 0, pg ≥ 2.
�

The matrix of σ2 can now be written as

(6) σ2 =







g0 f0 0

g1 f1 0

g2 0 1







where we have chosen {x2
0, x0x1, x

2
1} and {y0, y1, y2} as ordered bases

of the source and of the target. In other words, σ2(x
2
1) = y2, σ2(x0x1) =

∑

fiyi, σ2(x
2
0) =

∑

giyi. The exact sequence (5) gives

(7) gcd(f0, f1) = 1

which we have used to set f2 = 0 by a suitable change of coordinates
in the target.

Proposition 3.12. If α = 0, then R ∼= (Sym V )/I, with

V := OP1(1)x0 ⊕OP1(χ)x1 ⊕OP1(K2 − 2χ + 8)y ⊕OP1(K2 − χ + 7)z,

the grading of Sym V is given by deg xi = 1, deg y = 2, deg z =
3, and I is the sheaf of ideals generated by x2

0 + qxx
2
1 + qyy, z2 +

∑

i,j,k≥0
i+j+2k=6

Gijkx
i
0x

j
1y

k = 0, where qx, qy and Gijk are homogeneous poly-

nomial on P1.

Proof. If α = 0, then deg f0 = d0 − (pg + 2) = 0 and by (7) we can
assume f0 = 1. Then the exact sequence (5) splits and therefore by
Lemma 2.1, A is the quotient of SymW, where

W ∼= OP1(1)x0 ⊕OP1(pg + 1)x1 ⊕OP1(2pg + Θ)y1

by the ideal generated by

(8) x2
0 − (g0x0x1 + (g1 − f1g0)y1 + g2x

2
1).

By changing the splitting of A1 in (4) , i.e. by changing the choice of
x0, we can assume g0 = 0.
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The statement follows, setting y := y1, from Proposition 2.3 since
each map Symd W → Ad splits (because of the term x2

0 in the equation
(8)). In particular the map δ lifts to Sym6 W giving the equation
∑

Gijkx
i
0x

j
1y

k.
�

4. The algebra of 2s and a lifting lemma

Definition 4.1. We consider the sheaf of algebras S ′ := A/x2
1. Since

S = A/x1, the surjection A → S ′ correspond to the inclusion of the
non reduced divisor 2s ⊂ C.

A6 is a quotient of Sym3 A2, the cokernel of (see [CP, Lemma 4.4])

i3 : detA2
1 ⊗A2 → Sym3 A2

defined by

i3((x0 ∧ x1)
2 ⊗ v) = (σ2(x

2
0)σ2(x

2
1) − σ2(x0x1)

2)v.

S ′
6 is the quotient of A6 by the multiples of x2

1. Killing first y2 = x2
1

and then the multiples of σ2(x0x1)
2 = (f0y0 + f1y1)

2, we obtain S ′
6 as

cokernel of the map

OP1(3d0)y
3
0

⊕

OP1(2pg + 4 + d0) OP1(2d0 + d1)y
2
0y1

⊕ → Sym3 S ′
2
∼= ⊕

OP1(2pg + 4 + d1) OP1(d0 + 2d1)y0y
2
1

⊕

OP1(3d1)y
3
1

given by the matrix












f 2
0 0

2f0f1 f 2
0

f 2
1 2f0f1

0 f 2
1













and therefore by (7) S ′
6 is locally free of rank 2 and more precisely

S ′
6
∼= OP1(5pg + 2Θ + α + 2) ⊕OP1(6pg + 3Θ − α)

and the surjection Sym3 S ′
2 → S ′

6 is given by the matrix

(9)

(

3f 2
1 −2f0f1 f 2

0 0

0 f 2
1 −2f0f1 3f 2

0

)

It follows

Proposition 4.2. 0 ≤ α ≤ Θ.
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Proof. The surjection A → S factors through S ′. By Remark 3.5
Hom(R′2

3 ,S ′
6) 6= 0, so 2(3pg + Θ) ≤ 6pg + 3Θ − α ⇔ α ≤ Θ.

�

Corollary 4.3. If Θ = 0, then R ∼= (Sym V )/I, with

V := OP1(1)x0 ⊕OP1(χ)x1 ⊕OP1(K2 − 2χ + 8)y ⊕OP1(K2 − χ + 7)z,

the grading of Sym V is given by deg xi = 1, deg y = 2, deg z =
3, and I is the sheaf of ideals generated by x2

0 + qxx
2
1 + qyy, z2 +

∑

i,j,k≥0
i+j+2k=6

Gijkx
i
0x

j
1y

k = 0, where qx, qy and Gijk are homogeneous poly-

nomial on P1.

Proof. If Θ = 0, by Proposition 4.2 follows α = 0 and we can apply
Proposition 3.12.

�

For the case Θ > 0 we need to study some lifting properties.
One can always find a line bundle M and a map m ∈ Hom(R′2

3 ⊗
M−1,R′2

3 ) such that δ ◦ m lifts to Sym3 A2, giving a commutative
diagram

(10) R′2
3 ⊗M−1 δ̄ //

m

��

Sym3 A2

��

R′2
3

δ // A6

Once we have m, to compute Hom(R′2
3 ,A6) we need to study which

δ̄ ∈ Hom(R′2
3 ⊗M−1, Sym3 A2) belong to a diagram as (10). To simplify

this computation, we need M of degree as small as possible. The
forthcoming Lemma 4.5 shows that we can take m = f 4

0 , so degM =
4α.

Definition 4.4. Consider the natural decomposition

Sym3 A2 =
∑

i+j+k=3

Lijky
i
0y

j
1y

k
2

as sum of vector bundles. Clearly Lijk
∼= O(id0 + jd1 + kd2). Then

Vi≤1 :=
⊕

i≤1

Lijky
i
0y

j
1y

k
2 ⊂ Sym3 A2.

Similarly we define Vi≥2; clearly Sym3 A2 = Vi≤1 ⊕ Vi≥2.

Lemma 4.5 (Lifting Lemma). Consider a map L → A6 where L is

any line bundle. Then the composition map L(−4α)
·f4

0→ L → A6 lifts
to Vi≤1 ⊂ Sym3 A2.
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Proof.
Let J ⊂ SymA2 be the kernel of the map SymA2 → Aeven ⊂ A.

The stalk of J at each point is a principal ideal generated by the class
of

(11) Q := (f0y0 + f1y1)
2 − y2

∑

giyi.

Therefore the kernel J3 of the map Sym3 A2 → A6 is generated
by Qy0, Qy1, Qy2. By (7), f0 6= 0, and then there are no nonzero
relative cubics in the kernel without the terms y3

0, y
2
0y1, y

2
0y2: Vi≤1∩J3 =

{0}. Defining T := coker
(

J3 ⊕ Vi≤1 → Sym3 A2

)

we get the following
commutative diagram of exact sequences

(12) 0

��

0

��

0 // J3
//

��

J3 ⊕ Vi≤1
//

��

Vi≤1
//

tt

0

Sym3 A2

��

Vi≥2 ⊕ Vi≤1

��
A6

//

��

T //

��

0

0 0

from which we deduce that Vi≤1 maps isomorphically to ker (A6 → T ).
In other words a map to A6 can be lifted to Vi≤1 if and only its image
goes to 0 on T : we conclude if we prove that T is annihilated by f 4

0 .
Simplifying the term Vi≤1 in the second column of (12), we see T as

cokernel of a map between J3 and the Vi≥2, both sum of 3 line bundles.
Since

Qy0 = f 2
0 y3

0 + 2f0f1y
2
0y1 − g0y

2
0y2 + . . .

Qy1 = f 2
0 y2

0y1 + . . .

Qy2 = f 2
0 y2

0y2 + . . .

(here we have explicited the terms divisible by y2
0, which are the only

terms relevant for this computation)

T ∼= coker







f 2
0 0 0

2f0f1 f 2
0 0

−g0 0 f 2
0






.

Therefore f 4
0 annihilates T .

�

The map SymA2 → A induces an inclusion C ⊂ Proj(SymA2) and
more precisely C = {(f0y0 + f1y1)

2 = y2

∑

giyi}. By Lemma 4.5,
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∆ ⊂ C is cut by

(13) F∆ :=

∑

i≤1 Fijky
i
0y

j
1y

k
2

f 4
0

where Fijk are polynomials on P1 of degree

deg Fijk = (id0 + jd1 + kd2) − (6pg + 2Θ) + 4α,

and moreover, since F∆ has no poles when restricted to C

(14)
∑

i≤1

Fijky
i
0y

j
1y

k
2 =

(

∑

Biyi

)

Q mod f 4
0

where the Bi are rational functions on P1 whose denominators are in-
vertible modulo f0, and Q is as in (11).

Lemma 4.6. If pg > α + 2 then F120 = 0 and F030 is nonzero and
divisible by f 2

0 . Moreover gcd(f0, g0) = 1.

Proof. We compute the nonzero map (R′
3)

2 → S ′
6 by composing

the map δ̄ : (R′
3)

2(−4α) → Sym3 A2 given by the numerator of (13)
with the restriction Sym3 A2 → Sym3 S ′

2, then with the matrix (9),
and finally dividing the result by f 4

0 .
We find that the map (R′

3)
2 → S ′

6 is represented by the matrix
(F120

f2
0

, 3F030

f2
0

− 2 f1F120

f3
0

).

It follows f 2
0 |F120. The assumption pg > α + 2 is equivalent to

deg F120 < 2α, so F120 = 0 and F030 must be nonzero and divisible
by f 2

0 .
Assume that there is a point p with g0(p) = f0(p) = 0. Then (see

(6)) p ∈ supp τ . The node of C above p, say P0, belongs to s = {y2 =
f0y0 + f1y1 = 0} and therefore has relative coordinates (y0 : y1 : y2) =
(1 : 0 : 0).

Near P0, f1 6= 0 by (7), so to restrict F∆ to s in a neighbourhood of
P0 we can substitute y2 = 0 and y1 = −y0f0/f1: an equation for ∆|s is

(−f 3
0 F030 + f 2

0 f1F120)y
3
0

f 4
0 f 3

1

= −
F030

f0

y3
0

f 3
1

.

Since f 2
0 |F030, P0 ⊂ ∆, contradicting (1).

�

Now we study the Bi in (14).

Lemma 4.7. If pg > α + 2, then, modulo f 4
0 ,

B0 = −2f0
F030

f 3
1

B1 =
F030

f 2
1

f 2
0 B2 = −2f0

g0F030

f 3
1
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Moreover F111 is nonzero and divisible by f 2
0 .

Proof. The expressions of the Bi follow by looking at the coefficients
of (14): B1 by the term y3

1, B0 by y0y
2
1 (since F120 = 0 by Lemma 4.6),

and f 2
0 B2 by y2

0y2.
Finally, looking at the coefficient of y0y1y2, we find that modulo f 4

0

f0F111 = − f0(B0g1 + B1g0) + 2B2f
2
0 f1

= f0
F030

f 3
1

(2f0g1 − f1g0 − 4f1g0)

= uf0F030

where by Lemma 4.6, gcd(u, f0) = 1.
As f 2

0 divides F030, it divides F111 too. Moreover, since 0 6= F030 =
hf 2

0 with h of degree Θ−α ∈ {0, 1}, then f0F030 cannot vanish modulo
f 4

0 and therefore F111 is nonzero too.
�

As a consequence we find the following

Corollary 4.8. If α > 0 then pg ≤ 2α − Θ + 4.

Proof. We can assume pg > α + 2 and apply Lemma 4.7 to find
2α = deg f 2

0 ≤ deg F111 which is equivalent to pg ≤ 2α − Θ + 4.
�

Proof of Theorem 3.1. Xiao Gang’s inequality guarantees that S is
regular and the pencil has rational base. If Θ = 0, Corollary 4.3 ensures
that R ∼= (Sym V )/I. Else, by Proposition 4.2 and Corollary 4.8 pg >
Θ+4 ≥ 2α−Θ+4 implies α = 0 and we conclude by Proposition 3.12.

�

The inequality in Corollary 4.8 is sharp. Indeed its proof shows a
method for constructing more examples with pg = 2α−Θ+4 by fixing
F111/f

2
0 and consequently computing F030 and the Bi.

Example 4.9. We give examples for each pair (α, Θ) with 1 ≤ α ≤ Θ ≤
2, pg = 2α − Θ + 4: three examples with (α, Θ, K2, pg) which equals
respectively (1, 1, 15, 5), (1, 2, 12, 4) and (2, 2, 20, 6).

f0 is a homogeneous polynomial on P1 of degree α: we choose

f0 :=

{

t0 if α = 1

t0(t0 − 2) if α = 2

Note that deg g1 = 2pg + Θ − α − 2 = pg + α + 2 is even when α = 2,
so we can choose g1 pure power of f0. We take

f1 = tα+2
1 , g0 = t

pg+α
1 , g1 = f

pg+2

α
+1

0 , g2 = 0

so that τ = {f
pg+2

α
+2

0 = t
pg+2α+2
1 }.

The reader can check that

f0(t
Θ−α
1 y2

1 − y0y2)(f0y1 − 2t
pg−2
1 y2) − 4f 2

0 y0y1y2
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is, modulo f 4
0 , of the form (

∑

Biyi)Q (as prescribed by (14), note
F111 = −5f 2

0 ). So a candidate for the equation of ∆ is

F∆0 :=
(tΘ−α

1 y2
1 − y0y2)(f0y1 − 2t

pg−2
1 y2) − 4f0y0y1y2

f 3
0

.

The divisor ∆0 of the restriction of F∆0 to C is effective, but could
be too singular. Let D be the linear system of the effective divisors on
C defined by the restriction of F∆0 +λy3

2, where λ is any homogeneous
polynomial on P1 of degree 6− 2Θ > 0. Since Fix D ⊂ {y2 = 0}∩C =
2s, its base points are contained in s. On the other hand the restriction
of F∆0 to s, computed as in the proof of Lemma 4.6, is tΘ−α

1 f0, which
has Θ distinct roots. So our pencil has Θ simple base points, all along
s, and the general ∆ ∈ D is smooth by Bertini.

Finally we can write a proof of Theorem 0.3. We need the following
result of Xiao Tao Sun

Theorem 4.10 ([S1], [S2]). If S is a minimal surface of general type
whose canonical map is composed with a pencil of curves of genus g
without base points then

g = 3 ⇒ 12K2 ≥ 63pg − 142

g = 4 ⇒ 7K2 ≥ 48pg − 134

g = 5 ⇒ 9K2 ≥ 80pg − 262

Proof of Theorem 0.3.
If S is a minimal surface of general type with a canonical pencil,

K2
S ≤ 4χ(OS) − 8 and χ(OS) ≫ 0, by Beauville’s Theorem 0.1 the

pencil is free, and by Theorem 4.10 the pencil is a pencil of genus 2
curves.

Then S is birational to the relative canonical model X = Proj(R) of
the pencil and we have computed R in Theorem 3.1: the description
as complete intersection in P follows trivially. All the other statements
have been proved in Section 1.

�
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