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Abstract

In 1949 Fano published his last paper on 3-folds with canonical sectional
curves [8]. There he constructed and described a 3-fold of degree 22 in a
projective space of dimension 13 with canonical curve section, which we like
to call Fano’s last Fano. We report on Fano’s construction and we provide
various (in our opinion missing) proofs in modern language. Moreover, we try
to use results and techniques available at that time. After that we construct
Fano’s last Fano with modern tools, in particular via the Hilbert scheme of
zero cycles on a rational surface; as a consequence we easily point out the
corresponding example in the Mori-Mukai classification [17].

1 Introduction

In the early 1900, Gino Fano started a systematic study of projective varieties of
dimension 3. His pioneering work was remarkably original and deep, although at
that time the necessary mathematical tools, especially in the field of Algebra, were
not well developed. It is generally accepted that his proofs are not enough rigorous
for the modern standard; on the other hand, they contain many intuitions on the
geometry of projective varieties, which turned out to be correct and fundamental.
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We consider smooth projective varieties X defined over C; if n is the dimension
of X, we sometime call X an n-fold. We denote by KX the canonical sheaf of X.

Fano studied projective 3-folds X ⊂ PN such that for general hyperplanes
H1, H2 the curve Γ := X ∩H1∩H2 is canonically embedded into H1∩H2 (i.e. KΓ

embeds Γ). Fano called them Varietà algebriche a tre dimensioni a curve sezioni
canoniche 1, [5, 6, 7, 8].

He considered this class of varieties to provide a counterexample to a Castel-
nuovo type rationality criteria for 3-folds and to the Lüroth problem. Although
some of these varieties have all plurigenera and irregularity equal to zero, he un-
derstood that some of them should not be rational. It is generically accepted that
none of Fano’s attempts to prove nonrationality should be considered rigorous.
The first modern and accepted proof of the nonrationality of quartic 3-folds in
P4 is the celebrated Iskovskikh and Manin’s wheareas the nonrationality of the
cubic 3-fold in P4 was proved by Clemens and Griffiths, [3, 14]. B. Segre con-
structed some unirational quartic 3-fold in P4, [22]; therefore these unirational but
nonrational 3-fold represent counterexamples to the Lüroth problem in dimension
3.

Fano started also a biregular classification of his varieties in the case of di-
mension 3. Starting from Fano’s results a large number of mathematicians have
constructed clever theories in the last 50 years, which are among the most spec-
tacular achievements of contemporary mathematics. Initially, Fano’s legacy has
been taken into account in V. Iskovskikh’s work, as well as in V. Shokurov’s work,
and soon after in that of S. Mori and S. Mukai. The theory of Minimal Models
developed by S. Mori gave an enormous impulse; on the one hand the Minimal
Model Program changed the approach to the classification of projective varieties
and on the other hand the varieties studied by Fano had a central role in the
classification.

The following proposition is a well-known result; we provide a proof for reader’s
convenience.

Proposition 1.1. Let X ⊂ PN be a projective n-fold and let H := OPN (1)|X be the
hyperplane bundle on X. Assume for general hyperplanes H1, H2, ...,Hn−1 ∈ |H|
the curve Γ := H1 ∩H2 ∩ ... ∩Hn−1 is a canonically embedded curve of genus g.
Then −KX = (n− 2)H.

In particular, if n = 3 the linear system |−KX ] embeds X as a 3-fold of degree
2g − 2 into projective space of dimension g + 1, i.e. X := X2g−2

3 ⊂ Pg+1.

Proof. Let S := H1 ∩ H2 ∩ ... ∩ Hn−2 be a general surface section. Denote by
Γ = S ∩Hn−1 a curve section. For m ≥ 0 consider the exact sequence

0 → OS(m− 1) → OS(m) → OΓ(m) → 0

and the corresponding long exact cohomology sequence

1Algebraic Varieties of dimension 3 with canonical curve section.
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0 → H0(OS(m− 1)) → H0(OS(m))
α−→H0(OΓ(m)) → H1(OS(m− 1)) →

β−→H1(OS(m)) → H1(OΓ(m)) → H2(OS(m− 1)) → H2(OS(m)) → 0.

For m ≥ 1 the map α is onto since a canonically embedded curve, Γ, is projec-
tively normal (this is a classical result attributed to Noether and Enriques-Petri).
Therefore β is injective and by decreasing induction on m we have

H1(S,OS(m)) = 0, m ≥ 0.

For m > 1 we have, by Serre duality, H1(Γ,OΓ(m)) = H0(Γ,OΓ(1−m))∨ = 0;
again by decreasing induction, we get

H2(S,OS(m)) = 0, m > 0.

For m = 1 we have dimH1(Γ,OΓ(1)) = 1, which gives

dimH2(S,OS)) = 1.

Since dimH2(S,OS)) = 1, by Serre duality KS is effective or trivial. By
adjunction formula we have

(KS + Γ).Γ = KΓ = Γ.Γ.

hence KS
.Γ = 0. By Kleiman’s criterium for the ampleness (of Γ) this implies

that KS = 0. Since H1(S,OS) = 0, S is a K3 surface.

Adjunction formula on X implies the following

(KX + (n− 2)H).S = KS = 0.

By Weil’s equivalence criterium ([26], p.111, Th. 2) this implies −KX = (n−2)H.

The computations for the case of 3-folds are quite straightforward.

Nowadays we define a Fano manifold as follows.

Definition 1.2. A smooth projective variety X is called a Fano manifold if −KX

is ample.
The index of X is defined as the greatest integer r such that −KX = −rL for

a line bundle L. The ample line bundle L which achieves the maximum is called
the fundamental line bundle (or divisor).

If Pic(X) = Z, then X is called a Fano manifold of the first species or a prime
Fano manifold.
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Remark 1.3. By Proposition 1.1, the varieties considered by Fano are Fano man-
ifolds with −KX very ample and index n− 2. It is straightforward to check that
Fano manifolds with −KX very ample and index n−2 have canonical curve section.

The slightly more general definition with −KX simply ample was not on hand
at that time and it is absolutely appropriate for modern taste and techniques.

V.A. Iskovskikh, [12] and [13], has taken up the classification. By modern tools
he has been able to justify and generalize Fano’s work, thus obtaining a complete
classification of prime Fano 3-folds. If g is the genus of the curve section, he proved
that 3 ≤ g ≤ 12 and g ̸= 11. For every such g he gave a satisfactory description of
the associated Fano variety. He used the Fano’s method of double projection from
a line. In particular he needed the existence of a line and the existence of smooth
divisor in the linear system | − KX |. These are delicate results proved later by
Shokurov in [24] and [25].

Among his results, a nice one is the construction of a prime Fano manifold
X22

3 ⊂ P13, which apparently was omitted by Fano. Some years later, S. Mukai
gave a new method to classify prime Fano-Iskovskikh 3-folds based on vector bun-
dle constructions, [18], providing a new description of X22

3 ⊂ P13 (see also [19]).
In the same period, S. Mori and S. Mukai [17] gave a classification of all

Fano 3-fold with Picard number greater than or equal to 2 (i.e. not prime), and
they finished the classification of Fano 3-fold. Their classification is based on the
Iskovskikh’s and on the Mori Theory of extremal rays, via the so called ”two rays
game”.

Fano manifolds of any dimension n and index r ≥ (n − 2) were classified by
Kobayashi and Ochiai ([15], index n), T. Fujita ( [11], index (n−1)) and S. Mukai;
the latter classified all Fano manifolds of index (n− 2) under the assumption that
the fundamental divisor has an effective smooth member, [18]. Later on, M. Mella
proved that this assumption is always satisfied [16].

Let us now briefly describe the purpose and the content of our paper. In 1949,
Fano published in Rendiconti dell’Accademia dei Lincei his last paper on 3-folds
with canonical sectional curves, under the title Su una particolare varietà a tre
dimensioni a curve-sezioni canoniche 2 [8]. At the time he was 78 years old and
he died three years afterwards. In the paper, he constructed and described a 3-fold
of the type X22

3 ⊂ P13 with canonical curve section, which we like to call Fano’s
last Fano. At first, we even thought that this was the variety which was missing in
his classification, as claimed by Iskovskikh; very soon we realized that this variety
is not prime, i.e. it has Picard rank 2. Therefore it is not isomorphic to either the
Iskovskikh nor to the Mukai example and it should be searched in the Mori-Mukai
classification.

Fano’s paper was almost never quoted after its publication and it has been long
ignored by most modern mathematicians. Very likely, this is due to the fact that L.
Roth cited the paper on page 93 of his book Algebraic Threefolds (1955). He wrote

2On a special 3-fold with canonical curve section
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that Fano examined a particular fourfold of the third species ...; probably Roth
read the paper too quickly and did not realize that Fano was actually searching
for a 3-fold and not (only) for a 4-fold.

In Section 2, we will report on Fano’s construction, using his own words in
Italian, with our translation in English. His arguments are correct but very often
without a complete proof. We provide diverse proofs in modern language and try
to use results and techniques available at that time in order to support Fano’s
correctness. We hope that the reader might enjoy, as we did, the beauty as well
as the elegance and simplicity of Fano’s example.

In Section 3, we construct Fano’s with modern tools, in particular via the
Hilbert scheme of zero cycles on a rational surface. As a consequence we can
easily point out the corresponding example in the Mori-Mukai list. Within the
modern description the reader can easily derive the properties of the example
studied in the second part of Fano’s paper, for instance its rationality and the
description of ruled sub-surfaces.

2 Fano’s Construction of a X22
3 ⊂ P13,

2.1 Construction and smoothness

We report and comment on the first section of Fano’s paper of 1949, [8], using ver-
batim Fano’s words in Italian, providing an English translation in the footnotes.
Ho incontrato recentemente una varietà a tre dimensioni a curve-sezioni canon-
iche, che naturalmente appartiene alla serie delle M2p−2

3 di Sp+1 (qui p = 12),
oggetto di mie ricerche in quest’ultimo periodo, ma non ha finora richiamata par-
ticolare attenzione. Ne darò qui un breve cenno. 3

Let us explain Fano’s notation. Sn is what we denote now with PnC whereas
Md
m is a subvariety of PnC of dimension m and degree d (note that in what follows

he uses the world ordine for degree). Therefore, in the notation of the previous
section, he discovered a X22

3 ⊂ P13 of dimension 3 with canonical sectional curves.
We proceed with his notation.

Consideriamo nello spazio S5 una rigata razionale normale R4 (non cono), che
per semplicità supponiamo del tipo più generale, cioè con ∞1 coniche direttrici
irriducibili; e con essa la varietà ∞4 delle sue corde. Quale ne è l’immagine M4

nella Grassmanniana M14
8 di S14 delle rette di S5?

4

3Recently, I discovered a 3-dimensional variety with canonical sectional curves, which nat-
urally belongs to the collection of M2p−2

3 of Sp+1 (here p = 12), which was the topic of my
research in this last period, but which up to now has not drawn special attention. I will give
here a brief mention

4Let us consider in the space S5 a normal rational ruled surface R4 (not a cone), which for
simplicity we suppose of general type, that is, with ∞1 irreducible conics as ruling; with it we
consider the variety ∞4 of its chords. What is the image of M4 in the Grassmannian M14

8 in
S14 of lines in S5?
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The ruled surface R4 is viewed as the image of P1 × P1 embedded in P5 by
the complete linear system |(1, 2)|. It is rational and it has degree 4. It is normal
because the general hyperplane section is a normal rational curve of degree 4 in P4,
the image of general element of |(1, 2)|. Thus, the surface R4 has two rulings: one
is given by the lines contained in R4, the images of the divisors in the complete
linear system |(0, 1)|, and one given by the conics mentioned by Fano, which are all
irreducible conics in R4, the images of the divisors in the complete linear system
|(1, 0)|.

Consider the Grassmannian of the lines in P5 embedded via the Plücker embed-
ding and following Fano denote it as M14

8 ⊂ S14. To explain Fano’s notation note
that it is a compact complex manifold of dimension 8 which is embedded in a pro-
jective space of dimension 5·6

2 −1 = 14. Its degree as a subvariety can be computed
by standard Schubert calculus, namely it is equal to σ8

1 = 1 + 32 + 22 = 14.
The variety M4 is defined by Fano as the subset of the Grassmannian of lines

in P5 given by the chords of R4. Since we are looking for a complete variety, we
need to interpret the word ”corde” in a broad sense, that is secant and tangent
lines.

At this point, it seems to us that Fano gives for granted that M4 is a smooth
irreducible variety of dimension 4. This is in our opinion not obvious, in partic-
ular its smoothness. For these purposes we formulate the proposition below and
dedicate some pages at its proof. In the next section, we provide a second, more
geometric, proof.

Proposition 2.1. M4 ⊂M14
8 is an irreducible smooth variety of dimension 4.

For the proof we need to set up some notation and preliminaries. We take ho-
mogenenous coordinates ([x0, x1], [y0, y1]) on P1×P1 and we denote by πx, πy : P1×
P1 → P1 the natural projections, namely:

πx([x0, x1], [y0, y1]) =[x0, x1], πy([x0, x1], [y0, y1]) =[y0, y1].

We take coordinates [zij ] in P5 so that the embedding P1 × P1 → R4 ⊂ P5 is

given by identifying zij = xiy
2−j
0 yj1, that is:

z00 =x0y
2
0 , z01 =x0y0y1, z02 =x0y

2
1 ,

z10 =x1y
2
0 , z11 =x1y0y1, z12 =x1y

2
1 .

(2.1.1)

R4 is not the Veronese surface, therefore secant and tangent lines cover all P5

(Severi [23] proved that the Veronese surface, that is P2 embedded by O(2), is the
only surface in P5 whose secant and tangent lines do not cover P5).

Consider the 3-fold G3
3 ⊂ P5 defined by the condition

rk

(
z00 z01 z02
z10 z11 z12

)
= 1.
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We claim that G3
3 contains R4. More precisely if we consider the ruling by

conics of R4, G3
3 is the union of the planes containing these conics. It is obvious

that for each point in G3
3 there are at least two (in fact infinitely many) secants

to R4: the point, say p, is contained in a plane, say π, in G3
3 containing a conic

of the ruling by conics of R4 and thus all the lines through p contained in π are
secants to R4. We show that the converse is also true.

Lemma 2.2. For each point p ̸∈ G3
3 there is a unique secant of R4 through it.

In particular for each point on a general line l ⊂ P5 (i.e. disjoint from G3
3)

there is a unique secant to R4 through it.

Proof. The existence follows from the above quoted result of Severi [23] since R4

is not the Veronese surface.
To prove uniqueness, we argue by contradiction. Assume there are two distinct

secants lines through p, say s1 ̸= s2. Let π be the plane spanned by s1 and s2. The
hyperplanes containing π define a codimension 3 subsystem Γ of |OP1×P1(1, 2)|.

Γ does not have fixed components: assume by contradiction that Γ has a fixed
component (with reduced part) F . By dimension reasons, F has to be contained
in |OP1×P1(1, 0)| or in |OP1×P1(0, 1)|, since the movable part has dimension 2. F
can not be in |OP1×P1(1, 0)|, since the plane π coincides with the intersection of all
hyperplanes through an irreducible conic in R4, so that p is contained in G3

3, i.e. a
contradiction. F can not be in |OP1×P1(0, 1)|, because the plane π contains a line
of R4, say r. By assumption r is neither s1 nor s2, so each sj intersects R4 in at
least one point pi out of r. On the other hand, there is no plane in P5 containing
a line and two more distinct points all contained in R4, so p1 = p2. Then both pi
coincide with p contradicting the assumption p ̸∈ R4.

Since Γ has no fixed components, there is a hyperplane containing both s1
and s2 that cuts an irreducible curve of R4; however any irreducible element of
|OP1×P1(1, 2)| is smooth so this is then a smooth rational normal quartic C4. Both
s1 and s2 are secants to it, cutting respectively subschemes δ1 and δ2 of length at
least two on C4. Since p ̸∈ R4, δ1 ∩ δ2 = ∅ and therefore the plane π gives a pencil
in |OC4(1, 2) ∼= OP1(4)| with fixed locus of degree at least 4, a contradiction.

Proof of Proposition 2.1. Consider the rational map

(P1 × P1)2 99KM4 ⊂M14
8

associating, to each pair (p, q) of distinct points p ̸= q ⊂ P1 × P1, the unique line
pq through them.

This is a dominant map, hence M4 is irreducible.
The claim about the dimension dimM4 = dim(P1 × P1)2 = 4 follows since

this map is generically finite. To show this take a secant line r of R4 intersect-
ing R4 transversally; for example the line z01 = z02 = z10 = z11 which inter-
sects R4 trasversally in [1, 0, 0, 0, 0, 0] and [0, 0, 0, 0, 0, 1], the images of the points
([1, 0], [1, 0]) and ([0, 1], [0, 1]) of P1 × P1. Then r ∩ R4 is a finite set p1, . . . , pl of
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l ≥ 2 points and the pre image of r in (P1 × P1)2 is the set of pairs (pi, pj) with
i ̸= j, finite as well.

From now on we prove smoothness. We first show that the action (of possibly
a subgroup) of the automorphism group of the varietyM4 splits it in finitely many
orbits; this reduces our claim to finitely many local computations.

Consider the standard action of PGL2(C) on P1 and its standard linearization,
the action of GL2(C) on the coordinate ring of P1, C[x0, x1] =

⊕
dH

0(OP1(d)).
This associates to each matrix a ring homomorphisms as follows:(

a11 a12
a21 a22

)
: α0x0 + α1x1 7→ (a11α0 + a12α1)x0 + (a21α0 + a22α1)x1.

Taking two copies of this action, we get an action of GL2(C)2 on P1×P1 and a
linearization of it to each H0(OP1×P1(d1, d2)); in particular on H0(OP1×P1(1, 2)),
which we identify via (2.1.1) to H0(OP5(1)). The naturally induced action of
GL2(C)2 on P5 preserves R4, inducing on it the action (on P1 × P1) we started
with. Finally, the action on P5 induces an action on the Grassmannian of the lines
in P5 that preserves M4. Therefore we can define an action of GL2(C)2 on M4.

We show now that this action splits M4 in exactly 5 orbits.
We say that two distinct points p ̸= q of R4 are in general position with respect

to the rulings if p and q belong to two different lines and to two different irreducible
conics in R4.

For every element g ∈ GL2(C)2, if two points p and q are in general position
with respect to the rulings, then their images gp and gq are in general position
with respect to the rulings as well. In particular the orbit of pq ∈ M4 is made
by secants on two distinct points in general position with respect to the rulings.
Since the action of GL2(C) on P1 is 2−transitive 5 we conclude that the Zariski
open subsets of M4 of the secants on two points in R4 in general position with
respect to the rulings form an orbit.

A similar argument shows that the secants through two distinct points belong-
ing to the same irreducible conic of R4 form a second orbit of dimension 3. A third
orbit is obtained by considering the secants through two distinct points belonging
to the same line of R4: these are the lines contained in R4, forming an orbit of
dimension 1.

Considering the lines that are tangent to R4 we get similarly three orbits.
However, the tangent to a point in the direction of the line through it coincides
with the line itself, thus giving an orbit that has been already considered.

Summing up, GL2(C)2 decomposes M4 in 5 orbits as follows, the notation for
each stratum rd is settled so that d is its dimension:

04 the secants through two points in general position with respect to the rulings;

03 the tangents to a point p in a direction different from both the directions of
the line and of the conic through it;

5In fact it is 3−transitive, but we only need 2−transitivity here
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23 the secants through two points p ̸= q that belong to the same irreducible
conic;

22 the lines tangent to any irreducible conic contained in R4;

11 the lines contained in R4.

It is enough to show the smoothness of M4 in one point for each orbit. More-
over, since the smooth locus of a variety is a Zariski open subset, it is enough to
show the smoothness at a point of 22 and at a point of 11: in fact a neighborhood
of them intersects all other orbits.

Let us start with a point of 11.
We consider a ”standard” chart for the Grassmannian as follows. To each rank

2 matrix (
a00 a01 a02 a10 a11 a12
b00 b01 b02 b10 b11 b12

)
we associate the line through the points a, b ∈ P5 given by its rows. In other words
the coordinate zij evaluated in a and b gives aij and bij , respectively.

The matrices (
1 a01 a02 0 a11 a12
0 b01 b02 1 b11 b12

)
give a standard chart of the Grassmannian of the lines in P5, an open subset
parametrized by the affine coordinates a01, a02, a11, a12, b01, b02, b11, b12. Note that
its origin (

1 0 0 0 0 0
0 0 0 1 0 0

)
corresponds to the line z01 = z02 = z11 = z12 = 0 in R4, which by (2.1.1) originates
from the line y1 = 0 in P1 × P1. So the origin is a point in the orbit 11.

A point in this chart corresponds to the line in P5 given by parametric equa-
tions: (

α, αa01 + βb01, αa02 + βb02, β αa11 + βb11, αa12 + βb12
)
.

with parameters α, β. The rational surface R4 is contained in the following three
hyper quadrics in P5 :

z00z11 = z01z10, z00z02 = z201, z10z12 = z211.

Therefore, if a point in the above parametrized line belongs to R4, it will a
fortiori belong to each of these hyper quadrics, that is

α(αa11 + βb11) = β(αa01 + βb01), (2.1.2)

α(αa02 + βb02) = (αa01 + βb01)
2, (2.1.3)
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β(αa12 + βb12) = (αa11 + βb11)
2. (2.1.4)

These are three homogeneous equations of degree 2 in the variables α, β. If the
line is secant (or tangent) then these three homogeneous equations define a scheme
of P1 of length at least 2. Therefore the equations must be pairwise proportional.
This will allow to express the four variables aij as holomorphic functions in terms
of the other four as follows.

Assume a11 ̸= 0, b01 ̸= 0. The coefficient of α2 in (2.1.4) is equal to a211.
Therefore, in order to have (2.1.2) proportional to (2.1.4) we have to multiple it
by −a11. Comparing the other coefficients, we get the following two conditions:

2a11b11 − a12 =a11(b11 − a01) b12 − b211 = a11b01

Similarly, looking at the coefficient of β2, we see that (2.1.3) equals (2.1.2)
multiplied by b01. Comparing the other coefficients, we get

2a01b01 − b02 =b01(a01 − b11) a02 − a201 = a11b01

We use these four equations to express the variables a02, b02, a12, b12 as holo-
morphic functions of the others. Hence we obtain a smooth parametrization given
by the matrices of the form(

1 a01 a201 + a11b01 0 a11 a11(a01 + b11)
0 b01 b01(a01 + b11) 1 b11 a11b01 + b211

)
.

Note that the parametrization above is an embedding of C4 inM14
8 , thus giving

a smooth 4−dimensional manifold. By construction, this manifold contains the
intersection of M4 with our chart 6. Since M4 is irreducible of dimension 4, they
coincide. This proves the smoothness of M4 at a point of 11, the origin of this
chart.

Finally, consider a point in 22, a line tangent to a conic in R4, for example
the line z02 = z10 = z11 = z12 = 0. By the same techniques used in the previous
case, the reader can show that a neighbourhood of this point in M4 is the smooth
manifold given by the matrices(

1 0 a02 a10 a02b10 a02(a10 + b10b02)
0 1 b02 b10 a10 + b02b10 a10b02 + b10a02 + b10b

2
02

)
.

6We have parametrized the secants to the complete intersection of three quadrics, which is a
variety that contains R4 but does not coincide with it. Hence the parametrized locus contains
the intersection of M4 with the chosen chart.
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2.2 Computing the degree

Fano proceeds to compute the degree ofM4 with respect to the Plücker embedding
of the Grassmannian.

Determiniamo anzitutto l’ordine di questa M4, ad esempio l’ordine della su-
perficie sua intersezione con un S12, vale a dire della ∞2 di rette comune alla ∞4

suddetta e a due complessi lineari. Valendoci di due complessi costituiti risp. dalle
rette incidenti a due S3, questi ultimi contenuti in un S4 ≡ σ e aventi perciò a
comune un piano π, la ∞2 di rette in parola si spezzerà nei due sistemi delle corde
di R contenute in σ e di quelle incidenti al piano π. 7

Fano’s strategy is to compute the degree of M4 as the degree of a surface ob-
tained cuttingM4 by two hyperplanes sections inM14

8 . He chooses two very special
hyperplanes, given by the lines intersecting two linear subspaces of dimension 3 in
P5 which are in ”special position”. Namely, these two P3 in P5 intersect along a
plane π; equivalently both of them are contained in a hyperplane σ ⊂ P5.

He notices that the lines in the intersection of the two hyperplanes in M14
8 are

exactly the lines contained in σ and the lines intersecting π. In fact, on one side
a line intersecting π in a point p intersects both P3 in p; and also a line contained
in σ must intersect both P3, which are in σ. On the other side, if a line intersects
both P3 and does not intersect π, it intersects them in distinct points; the line
therefore contains two distinct points of σ, thus it is contained in σ.

Let us denote with Sσ the subvariety of M4 of the lines contained in σ and
with Sπ the subvariety of lines intersecting π. Fano uses the following formula,
which we like to justify with a proof.

Lemma 2.3.

degM4 = degSσ + degSπ

Proof. The degree of a variety equals the degree of any hyperplane section, in
particular the degree of M4 is equal to the degree of its intersection with the
above two (special) hyperplanes. So far, at the moment we have only proved that
this intersection coincides with Sσ ∪ Sπ set-theoretically. We need to prove that
the intersection is reduced or, equivalently, that there is a choice of the two P3s
such that the linear section is smooth in (at least) a point of Sπ and a point of Sσ.

Let us prove it in coordinates. Take the two hyperplane sections giving the
secant lines which intersect {z01 − z10 = z00 = 0} and {z01 − z10 = z11 = 0}
respectively, so that σ = {z01 − z10 = 0} and π = {z01 − z10 = z11 = z00 = 0}.

In the chart near a point of type 11 studied in the proof of Proposition 2.1,
the two hyperplane sections are defined respectively by b01 = 1 and a01b11 =

7Let’s first determine the order of this M4, for instance the order of the surface which is the
intersection with an S12, that is the order of the ∞2 common lines of the above ∞4 and two
linear complexes. Making use of two constituted complexes resp. from the incident lines to two
S3, both contained in an S4 ≡ σ and having therefore a common plane π, the ∞2 of straight
lines in question will break in the two systems of the chords of R4 contained in σ and of those
incident to the plane π.
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a11(b01 − 1). Their intersection is the locus b01 − 1 = a01b11 = 0. It is smooth at
the general point of both components, namely Sσ, which is b01 − 1 = a01 = 0, and
Sπ, which is b01 − 1 = b11 = 0.

Fano computes first the degree of Sσ.
Le prime sono le ∞2 corde di una C4 razionale normale, e nella Grassman-

niana delle rette di σ hanno per immagine una superficie φ9 di S9 di del Pezzo.
8

If σ is general, R4 ∩ σ is a rational normal curve of degree 4 in σ = P4, we
denote it by C4. The lines contained in a hyperplane σ ⊂ P5 are mapped by the
Plücker embedding into a linear P9 ⊂ P14. Since Sσ is the subvariety of M4 of the
lines contained in σ, it is contained in that P9. Fano’s claim can be formulated in
the following way.

Lemma 2.4. The surface Sσ is embedded in P9 as a del Pezzo surface of degree
9.

Proof. The subvariety Sσ in P9 is by construction the image of the map from
C4 × C4 → P9 which maps a pair (p, q) on the point of the Grassmannian of the
lines in P4 corresponding to the secant pq, embedded in P9 by the standard Plücker
embedding.

It factors through the second symmetric product of C4 ∼= P1, which is isomor-
phic to P2 as shown by the degree 2 map P1 × P1 → P2

([x0, x1], [y0, y1]) 7→ [x0y0, x0y1 + x1y0, x1y1]

A hyperplane section in P9 pulls back on P2 to a divisor in |OP2(d)| and on P1×P1

to |OP1×P1(d, d)| for some positive integer d. In order to compute d consider the
hyperplane section given by the secants of C4 intersecting a fixed general plane
π ⊂ σ and its pullback H to P1 × P1. The intersection of H with {p} × C4 ∼= C4

is the set of the points q ∈ C4 such that pq is a secant to C4 intersecting π. Since
H ∈ |OP1×P1(d, d)|, d equals the number of secant lines through a general point
p ∈ C4 intersecting π. Choose p ̸∈ π and take the projection fp : σ 99K P3. The
secant lines through p intersecting π are projected to the points of the plane fp(π)
intersecting the rational normal cubic fp(C

4), so there are exactly 3 of them, i.e.
d = 3.

We proved that Sσ is the image of a map from P2 on P9 given by cubics. Note
that Sσ is not contained in any hyperplane, otherwise, by contradiction, this would
imply that C4 is contained in a hyperplane of P4. Therefore Sσ is the image by
the full linear sistem |OP2(3)|, defining the del Pezzo surface of degree 9.

Let us now interpret Fano’s argument to compute the degree of Sπ.

8The first are the ∞2 chords of a normal rational C4, and in the Grassmannian of the lines
of σ they have as image a del Pezzo surface φ9 of S9
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Della seconda ∞2 prendiamo l’intersezione con un ulteriore complesso lineare,
anche con un S3 ≡ τ direttore incontrante π in una retta. Si ha una rigata
composta di una parte luogo delle corde di R contenute nello spazio S4 ≡ τπ e
incidenti a π, la cui immagine è sezione iperpiana di altra φ9 di del Pezzo; e di
una seconda parte luogo delle corde incidenti alla retta τπ. 9

Fano considers a special codimension 2 subspace τ ⊂ P5, special in the sense
that τ intersects π in a line. He takes then a special hyperplane section of Sπ, the
one given by the lines that meet τ . By the same argument used above, this curve
has two irreducible components: the secant lines in Sπ contained in the unique P4

generated by τ and π and intersecting π, call it C
⟨τ,π⟩
π , and those intersecting the

line τ ∩ π, call it Cτ∩π.

Lemma 2.5. For a general choice of π, τ , the following holds:

degSπ = degC⟨τ,π⟩
π + Cτ∩π

Proof. The argument, with coordinates, is the same as that used in the proof of
Lemma 2.3. We suppose again that π = {z01 − z10 = z00 = z11 = 0} and we work
in the same chart where we proved that Sπ is defined by b11 = b01 − 1 = 0, i.e. it
is the parametrized surface(

1 a01 a201 + a11 0 a11 a11a01
0 1 a01 1 0 a11

)
Choosing τ = {z01 − z10 = z12}, the corresponding hyperplane section is

det

(
a01 − 0 a11a01
1− 1 a11

)
= 0,

which is smooth at the general point of both components, C
⟨τ,π⟩
π (a01 = 0) and

Cτ∩π (a11 = 0).

Fano claims that C
⟨τ,π⟩
π is a hyperplane section of a del Pezzo surface of degree

9, therefore that
degC⟨τ,π⟩

π = 9 (2.2.5)

In fact, for a general choice, the hyperplane containing τ and π cuts on R4 a

rational normal curve C4 of degree 4. As proved above (see Lemma 2.4) C
⟨τ,π⟩
π is

contained in the degree 9 del Pezzo surface of its secants: more precisely it is given
by those intersecting the codimension 2 subspace π, therefore it is an hyperplane
of it.

9Of the second ∞2 we take the intersection with a further linear complex, also with S3 ≡ τ
as director, meeting π in a line. We get a ruled surface composed of a part which is the locus of
the chords of R4 contained in the space S4 ≡ τπ and incident to π, whose image is a hyperplane
section of another del Pezzo φ9; and of a second part, the locus of the chords incident to the line
τπ
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To study the curve Cτ∩π, Fano considers the union of the lines defined by it
as a ruled surface F ⊂ P5. More precisely, as we have proved above (see Lemma
2.2), for each point on a general line l ⊂ P5, therefore also for τ ∩ π, there is a
unique secant to R4 through it. Mapping each secant to its unique intersection
point with l one obtains a ruling of the surface F to l.

Quest’ultima rigata è di 4o ordine, avendo la retta τπ come direttrice semplice,
e 3 generatrici in ogni S4 per essa (poiché la proiezione della rigata dalla retta τπ
ha una cubica doppia) 10.

Here Fano claims that degF = 4. We interpret Fano’s computation of the
degree of this surface as follows.

Project the surface F from the line l = τ ∩ π and obtain a curve C ⊂ P3,
as each line in the ruling maps to a point. Then consider the same projection
from l this time restricted to R4, call it φl : R

4 → P3. Since l is general, it does
not intersect R4 and therefore φl is a morphism. Namely a finite morphism, as
every plane through l intersects R4 in finitely many points, or we would contradict
l ∩R4 = ∅.

We claim that φl is generically injective and C, defined as the projection of F ,
equals the singular locus of φl(R

4). In fact, we will see that C is a double curve
of φl(R

4).

Since R4 is defined as a codimension 3 subvariety in P5, a general plane through
each point p ∈ R4 intersects R4 transversally only at the point p. Thus, for a line
l in this plane not passing through p, the projection φl separates p from any other
point of R4; this proves that φl is generically injective.

Since φl is a birational morphism, the image of R4 is a quartic curve. Since
such a curve is contained in the 3−dimensional space parametrizing the planes
containing l, its canonical system is trivial. The singular locus of φl(R

4) is the set
of the planes containing a subscheme of R4 of length at least 2. Any such plane
contains a secant line, the unique line contained the given length 2-scheme. Since
this secant intersects l (they are two lines in the same plane), it is a curve in the
ruling of F . This shows that Sing

(
φl(R

4)
)
⊂ C. Conversely, every secant line r

to R4 intersecting l is contained in a unique plane, i.e. the plane spanned by r
and l, cutting the corresponding scheme of length 2 on R4. This shows that the
singular locus of φl(R

4) is C, that is in fact a double curve.

Finally, since the canonical class of φl(R
4) is trivial, by adjunction the reduced

transform of the double curve is an anticanonical divisor. Therefore, it is an
element in |OP1×P1(2, 2)|. The intersection computation (2, 2)(1, 2) = 4 + 2 = 6
shows that its image has degree 6

2 = 3 = degC.

Therefore, we can conclude, as Fano did, that the ruled surface has degree 4.
More precisely, choose a general hyperplane H containing the line l; its image via
φl in P3 is a hyperplane that intersects the curve C transversally in three points.
As a consequence, the intersection of the hyperplane H with the ruled surfaces

10This last ruled surface is of 4th order, having the line τπ as a simple directrix, and 3 generators
in each S4 for it (since the projection of the ruled surface from the line τπ has a double cubic)
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F is the union of three secants passing from the three points above and the line
l. All together, they are 4 lines and therefore the degree of F , which is equal to
deg(F ∩H), is 4.

Moreover, this will imply that

degCτ∩π = 4 (2.2.6)

Indeed, the degree of this curve is the number of secants in Cτ∩π in a transversal
hyperplane section as, for example, the one given by the secant lines intersecting
a general P3. As proved before, such a general projective space P3 intersects F in
degF = 4 points, each belonging to one of this secants, the line in the ruling of F
containing it. So degCτ∩π = degF = 4.

Fano summarizes his computation in this way:
Complessivamente la superficie immagine delle corde di R4 appoggiate a un

piano è dunque di ordine 9 + 4 = 13; e la M4 immagine del sistema di tutte le
corde di R è di ordine 9 + 13 = 22. 11

In other worlds he claims the following:

Proposition 2.6. M4 has degree 22.

Proof. The statement follows from Lemma 2.3, Lemma 2.4, Lemma 2.5 as well as
by (2.2.5) and (2.2.6).

2.3 M4 and its general hyperplane sections are Fano

Fano shows that the general curve section of M22
4 is a canonical curve of genus 12.

Le due superficie φ9 e F 13, costituenti insieme una sezione superficiale della
M22

4 , hanno a comune una curva sezione iperpiana della φ9 (collo spazio σ), perciò
ellittica, di ordine 9; la M22

4 ha quindi superficie-sezioni di genere uno, e curve-
sezioni canoniche di genere 12 (appunto = 1 + 3 + 9− 1) 12.

Fano picks a hyperplane section of the surface section he had consider, namely
of Sσ ∪ Sπ. Recall that in our notation Sσ = φ9, and Sπ = F 13).

Since Sσ is the del Pezzo surface of degree 9, its general hyperplane section is
a smooth plane cubic, which has genus 1.

We know a reducible hyperplane section of Sπ, namely C
⟨τ,π⟩
π ∪ Cτ∩π. Our

discussion shows that C
⟨τ,π⟩
π is a general hyperplane section of a del Pezzo surface

of degree 9 too, so a smooth curve of genus 1. On the other hand, Cτ∩π is smooth
and rational, being isomorphic to l by mapping each point of l in the unique

secant to R4 through it. The intersection C
⟨τ,π⟩
π ∩Cτ∩π is given by the secant lines

11Overall the image surface of the chords of R4 intersecting a plane is therefore of order
9 + 4 = 13; and the M4 image of the system of all the chords of R4 is of order 9 + 13 = 22

12The two surfaces φ9 and F 13, which together constitute a surface section of the M22
4 , have

a common hyperplane section curve of the φ9 (with the space σ), therefore elliptic, of order 9;
therefore the M22

4 has surface-sections of genus one, and canonical curves-sections of genus 12
(precisely = 1 + 3 + 9− 1)
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contained in the hyperplane ⟨τ, π⟩ intersecting the line l = τ ∩ π. These are the
secant lines to a general hyperplane section R4 ∩ ⟨τ, π⟩, a rational normal curve of
degree 4, whose secants form a cubic surface. Intersecting it with a codimension
2 linear subspace, we obtain 3 points, and the 3 secants through them are the

intersection points of C
⟨τ,π⟩
π and Cτ∩π. Summing up, we have hyperplane sections

of Sπ formed by 2 smooth curves of genus 0 and 1 respectively, which intersect
in 3 points. Hence the general hyperplane section is a smooth curve of genus
0 + 1 + 3− 1 = 3.

The intersection of Sσ and Sπ is a hyperplane section of Sσ, a curve of degree
9. The two curves obtained cutting Sσ and Sπ with a general hyperplane intersect
then in 9 points. We conclude that the sectional genus of M22

4 , which is the genus
of a hyperplane section of Sσ ∪ Sπ, is equal to 1 + 3 + 9− 1 = 12.

A general curve section of M22
4 is therefore a non-degenerate smooth curve of

genus 12 in P14−3=11 of degree 22; by Riemann-Roch, this general curve section is
a canonical curve, i.e. it is embedded by its complete canonical system.

To recap, we have the following Proposition.

Proposition 2.7. The 4-fold M4 = M22
4 ⊂ M14

8 is an irreducible smooth variety
of dimension 4 with canonical sectional curves.

In particular, by Prop. 1.1 it is a Fano 4-fold of index 2, i.e. −KM4 = 2H,
where H is the hyperplane bundle of the Grassmannian M14

8 .

Fano concludes by taking a very general hyperplane section M3 of M4. By
Bertini’s Theorem, this section is a smooth 3-fold whose curve section, by con-
struction, is canonical. Again by Proposition 1.1, this is a smooth Fano 3-fold of
degree 22.

Le sezioni iperpiane della M22
4 sono pertanto M22

3 di S13, corrispondenti al
tipo generale M2p−2

3 di Sp+1, per p = 12, e razionali (come risulterà pure dai
sistemi lineari di superficie che vi sono contenuti). Indicheremo d’ora in poi questa
varietà con µ22

3 , o semplicemente µ; essa è l’immagine del sistema ∞3 di rette Σ
intersezione della ∞4 delle corde di R con un complesso lineare K (che si supporrà
per ora del tipo più generale, e in posizione generica rispetto a R4) 13.

3 What is nowadays Fano’s Last Fano?

Where can we find Fano’s last Fano in modern literature? In order to answer this
question, we reformulate Fano’s construction via a modern and rather subtle tool,
namely the Hilbert scheme.

13The hyperplane sections of the M22
4 are therefore M22

3 in S13, corresponding to the general

type M2p−2
3 of Sp+1, for p = 12, and rational (as well as the linear systems of surfaces contained

in it). From now on we will denote this variety with µ22
3 , or simply µ; it is the image of the

system ∞3 of lines Σ intersection of the ∞4 of chords of R4 with a linear complex (which, for
now, we will suppose to be of very general type, and in general position with respect to R4)
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Let S be a smooth projective surface and consider the Hilbert scheme which
parametrizes its zero dimensional subschemes of length 2. By Grothendieck’s
theory this is a projective scheme of dimension 4 which is usually denoted as
Hilb2(S), or simply S[2]. One can also consider the Chow Scheme of the set of
two points on S, namely S(2) := (S × S)/σ2, where σ2 is the symmetric group of
permutations of two elements. Consider then the natural morphism Hilb to Chow,
S[2] → S(2).

A line bundle L on S induces the σ2-equivariant line bundle L⊠2 on S × S,
which descends to a line bundle L(2) on S(2), which in turn can be pulled back via
the Hilb to Chow morphism to the line bundle L[2] on S(2).

For simplicity, we assume that S has irregularity zero; we will use the following
very well known theorems by Fogarty, [9] and [10].

Theorem 3.1. Let S be a smooth projective surface with q = h1(OS) = 0.
a) Hilb2(S) = S[2] is a smooth projective variety of dimension 4 which resolves

the singularities of the Chow Scheme via the Hilb to Chow morphism S[2] → S(2).
b) Pic(S[2]) = Pic(S)⊕Z(B/2), where Pic(S) is embedded in Pic(S[2]) via the

above described map L→ L[2] and B is the locus of non reduced schemes, i.e. the
exceptional divisor of the Hilb to Chow map (Corollary 6.3 in [10]).

In the next Proposition, we specialise the results of Fogarty to the case S =
P1 × P1 and we add, for this case, the description of the Nef (or Mori) Cone of
(P1 × P1)[2]; for a proof we refer, for instance, to Theorem 2.4 in [2].

Proposition 3.2. Let S = P1 × P1. Denote by πi the two projections and Hi :=
π∗
i (OP1(1)) (the line bundles associated to the two fibers).
For brevity, we denote by H the Hilbert Scheme (P1 × P1)[2].

a) H is a smooth projective variety of dimension 4 and Pic(H) = Z(H [2]
1 ) ⊕

Z(H
[2]
2 )⊕ Z(B/2)
b) The Nef Cone of H is the simplicial cone spanned by H

[2]
1 , H

[2]
2 and H

[2]
1 +

H
[2]
2 − (B/2).

Let us describe the maps associated to the nef bundles which span the Nef
Cone. We will get six maps from H, one for each of the three extremal rays, and
one for each of the three extremal faces.

The map associated with (a sufficiently high multiple) of H1 (respectively H2),
call it ψ1 : H → M ′ (respectively ψ2 : H → M ′′), is a birational map which con-
tracts the divisor D2 ⊂ H consisting of the zero cycles supported on the fibers f2 of
the second ruling (respectively on the fibres f1 of the first ruling) of P1×P1. More
precisely the map contracts all zero cycles on a fiber to a point. This divisor is
clearly isomorphic to P1× (P1)[2] = P1×P2 and it is contracted to a rational curve
P1 by contracting each P2 to a point. The two divisors are disjoint (a zero cycle
of length two can be contained in at most one fiber) and they can be contracted
simultaneously, this contraction correspond to the face of the Nef Cone joining the
two rays, call it ψ : H → Q.
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The map associated to H
[2]
1 + H

[2]
2 − (B/2) is the Hilb to Chow map, (P1 ×

P1)[2] → (P1 × P1)(2), which contracts the divisor B. We have moreover two
natural map of fiber type, (P1×P1)(2) → (P1)(2) = P2. and finally other two maps
ϕ1 :M ′ → P2, ϕ2 :M ′′ → P2 making the following diagram commutative

P2 M ′ϕ1oo

  
(P1 × P1)(2)

%%

99

H

ψ1

>>

ψ2

  

oo ψ //

__

��

Q

P2 M ′′ϕ2oo

>>

Now we would like to give a concrete projective description of the above ab-
stract varieties. In order to do this we take a smooth projective surface S and we
choose an embedding S ↪→ PN . Note that to a subscheme of length 2 on S we can
now associate the unique line containing its image in PN . In this way we can think
at Hilb2(S) as ”the variety ∞4 of its (i.e. of S ↪→ PN ) chords” used by Fano.

Thus we have a natural map from Hilb2(S) to the Grassmannian of lines in PN ,
whose image is the variety of the lines that are secants or tangents to S ⊂ PN ; we
further compose with the Plücker embedding of the Grassmannian, Gr(1, N) →
P

(N+1)N
2 −1.

If S ⊂ PN with N ≥ dimS + 2 then the generic secant of S is not 3-secant.
This follows easily, cutting with general hyperplanes, by the classical so called
trisecant lemma, which states that a a nonsingular nondegenerate curve C ⊂ Pr,
r ≥ 3, admits only ∞1 trisecant lines (see for instance Cap. 7B in [20]).

This implies that if N ≥ 4 the total map Hilb2(S) → P
(N+1)N

2 −1 is a birational
map (onto its image).

If we embed S = P1 × P1 via the linear system H1 ⊗H⊗2
2 we get the normal

rational scroll of degree 4, R4 ⊂ P5, and the map Hilb2(P1 × P1) →M4 ⊂ P14 is
exactly the one in Fano’s paper.

Let us consider first the special case S = P1 × P1 and the embedding given
by the complete linear system H1 ⊗ H2, that is we embed P1 × P1 as a smooth
quadric surface Q2 ⊂ P3. Note that that the secant lines fill up the whole Grass-
mannian G(1, 3), since every line in P3 is secant to any quadric surface. The
Plücker embedding maps G(1, 3) into a (Klein) quadric 4−fold Q4 in P5.

Therefore we have a birational surjective map H → Q4 ⊂ P5. We show that it
is the map ψ in the above diagram.

Indeed it contracts the two divisors D1 and D2 to two curves, C1, C2 ⊂ Q4,
which describe in the Grassmannian the lines in the ruling. These curves are
conics. In fact their degree is the number of lines in a ruling that meet a fixed
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general line: since a general line intersect a quadric in two points, it will meet
exactly two fibers for each ruling.

As said before, all non zero dimensional fibers of ψ are isomorphic to P2, in
particular they all have the same dimension. By a general result, see Corollary
4.11 in [1], ψ : Hilb2(P1 × P1) → Q ⊂ P5 is the blow up of the quadric Q4 ⊂ P5

along two disjoint smooth conics, C1, C2.

Let us now go back to the Fano case, i.e. we embed S = P1 × P1 via the
linear system H1 ⊗H⊗2

2 as the normal rational scroll of degree 4, R4 ⊂ P5. The
birational surjective map H →M4 ⊂ P14 is the one studied by Fano. In this case
the map contracts only one of the two above mentioned divisors, namely the one
corresponding to the ruling in lines of R4 which we denote as above with D1. In
other words the map is the map ψ1 in the above diagram.

ThusM4 is smooth and ψ1 is the smooth blow-up along the transform C̃2 ⊂M4

of C2. This gives a different, more geometric, proof of the smoothness of M4.
The other divisor E := D1 remains isomorphically equal in M4 and it can be

contracted as a smooth blow-down to the curve C1 ⊂ Q4 ⊂ P5, ν : M4 → Q4. We
proved that C1 is a smooth conic, here we can add the fact that it is not contained
in any plane P2 ⊂ Q4 ⊂ P5. In fact, if this were the case, all lines in the ruling of
lines of R4, which are parametrized by C1, would be contained in a P4 ⊂ P5, and
the same for R4, a contradiction.

Let H be the hyperplane bundle in P5; the formula for the canonical bundle of
the blow up gives

−KM4
= ν∗(4H)− 2E = 2(ν∗(2H)− E).

The line bundle L := ν∗(2H) − E is very ample; it embeds M4 into P14 (the
space of quadrics in P5 containing a conic has dimension 15) as a Fano manifolds
of index 2 and genus 12.

Since M4 is the blow-up of a quadric we have Pic(M4) = Z2, that is M4 is not
”prime”.

On the other hand, the line bundle ν∗(H) − E is nef and it gives a map
ϕ1 : M4 → P2 which is a quadric bundle fibration over P2.

Looking at the classification obtained by Mukai [18] of Fano 4- folds of index
2 (coindex 3 in Mukai’ notation) one can find M4, given as the blow-up of a four
dimensional quadric along a conic, as the only one of genus 12 (Example 2); see
also the paper [27] with more detailed proofs. The classification was based on
Conjecture (ES) which was later proved in [16].

Since −KM4 = 2L, a general hyperplane section in L = ν∗(2H)− E is a Fano
3−fold, which we denote as Fano did with M22

3 . L embeds M4 as the image of
Q4 by the rational map given by the quadric hypersurfaces through a general
(=not contained in a plane) conic in Q4, therefore the hyperplane section M22

3

is obtained blowing up the conic in the intersection of Q4 with another quadric
containg the conic. This proofs that the M22

3 , Fano’s last Fano, is the number 16
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in the Mori-Mukai list of Fano 3-folds with Picard number 2, see [17, Table 2]. In
fact they describe this case as the blow up of a prime Fano 3−fold of degree 4 in
P5 along a conic; a prime Fano 3−fold of degree 4 in P5, according to Iskovskikh,
is a complete intersection of two quadrics in P5.

We summarize the results of the section in the following.

Proposition 3.3. The projective variety M22
4 ⊂ P14 constructed by Fano is a

smooth Fano 4-fold of index 2 which can be described also as the blow-up of a
smooth hyperquadric Q4 ⊂ P5 along a smooth conic not contained in any P2 of the
hyperquadric. This is Example 2 (5.(g=12)) in Mukai’s classification, [18].

A general hyperplane section of M22
4 is a smooth (non prime) Fano 3-fold,

denoted by Fano as µ := M22
3 ⊂ P13, which can be constructed as the blow up of

a complete intersection of two quadrics in P5 along a conic. This is number 16 in
Mori-Mukai classification, see [17, Table 2].

Remark 3.4. One can embed S = P1 × P1 via the linear system H1 ⊗ H⊗m
2 ,

with m ≥ 2, to get the normal rational scroll R2m in P2m+1. In this case, the
birational map Hilb2(P1×P1) →M4 ⊂ P(m+1)(2m+1)−1 is given by the contraction
of one divisor, corresponding to the ruling in lines of R2m. The immersion M4 ⊂
P(m+1)(2m+1)−1 is not given by the fundamental line bundle.

If we embed S = P1 ×P1 via the linear system H⊗l
1 ⊗H⊗m

2 , with l,m ≥ 2, the
above construction gives simply different embeddings of Hilb2(P1 × P1).
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