Appendix A. The minimal product-quotient surfaces of general TYPE WITH $p_{g}=0$ AND $K^{2}<8$

In this section we describe all the minimal product-quotient surfaces we have listed in tables 1 and 2, with the exception of the one whose singular model X has at worse canonical singularities (these are already described in [BCG08] and [BCGP08]).

In the sequel we will follow the scheme below:
G : here we define the group G (usually as permutation group);
t_{i} : here we specify the respective signatures of the pair of spherical generators of the group G;
S_{1} : here we list the first set of spherical generators;
S_{2} : here we list the second set of spherical generators;
H_{1} : the first homology group of the surface;
π_{1} : the fundamental group of the surface;
A.1. $K^{2}=5$, basket $\left\{\frac{1}{3}(1,1)+\frac{1}{3}(1,2)\right\}$.
A.1.1. Group $\mathfrak{S}_{4} \times \mathbb{Z}_{2}$:
$G:\langle(12),(13),(14),(56)\rangle<\mathfrak{S}_{6} ;$
$t_{i}:\left(3,2^{4}\right)$ and $(6,4,2)$;
$S_{1}:(134),(34)(56),(13)(24)(56),(23)(56),(13)(24)(56) ;$
$S_{2}:(234)(56),(4321)(56),(14) ;$
$H_{1}: \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4}$;
π_{1} : the fundamental group of this surface fits in two exact sequences

$$
\begin{aligned}
1 & \rightarrow \mathbb{Z}^{2} \rightarrow \pi_{1} \rightarrow D_{2,8,3} \rightarrow 1 \\
1 & \rightarrow \mathbb{Z}^{2} \rightarrow \pi_{1} \rightarrow Q(16) \rightarrow 1
\end{aligned}
$$

where $Q(16)$ is the generalized quaternion group of order 16 .
The normal subgroups of index 16 of π_{1} on the left have minimal index among the normal subgroups of π_{1} with free abelianization. Let us recall that $D_{2,8,3}$ is the group $<x, y \mid x^{2}, y^{8}, x y x^{-1} y^{-3}>$ and $Q(16)$ is the group $<x, y \mid x^{8}, x^{4} y^{-2}, y x y^{-1} x>$.

A.1.2. Group \mathfrak{S}_{4}.

$G: \mathfrak{S}_{4}$;
$t_{i}:\left(3,2^{4}\right)$ and $\left(4^{2}, 3\right)$;
$S_{1}:(124),(23),(24),(14),(13) ;$
$S_{2}:(1243),(1234),(123) ;$
$H_{1}: \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{8} ;$
π_{1} : the fundamental group of this surface fits in an exact sequence

$$
1 \rightarrow \mathbb{Z}^{2} \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{8} \rightarrow 1
$$

and the normal subgroup of index 8 of π_{1} on the left has minimal index among the normal subgroups of π_{1} with free abelianization.
A.1.3. Group $\mathfrak{S}_{4} \times \mathbb{Z}_{2}$:
$G:\langle(12),(13),(14),(56)\rangle<\mathfrak{S}_{6} ;$
$t_{i}:\left(3,2^{3}\right)$ and $\left(6,4^{2}\right)$;
$S_{1}:(143),(12),(24)(56),(12)(34)(56)$;
$S_{2}:(134)(56),(1342)(56),(1234) ;$
$H_{1}: \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{8}$;
π_{1} : the fundamental group fits in an exact sequence

$$
1 \rightarrow \mathbb{Z}^{2} \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{8} \rightarrow 1
$$

and the normal subgroup of index 8 of π_{1} on the left has minimal index among the normal subgroups of π_{1} with free abelianization.
A.1.4. Group \mathfrak{S}_{5}.
$G: \mathfrak{S}_{5}$;
$t_{i}:(6,5,2)$ and $\left(4^{2}, 3\right)$;
$S_{1}:(13)(245),(14253),(34) ;$
$S_{2}:(4321),(1534),(235) ;$
$H_{1}: \mathbb{Z}_{8}$;
$\pi_{1}: D_{8,5,-1}=<x, y \mid x^{8}, y^{5}, x y x^{-1} y>$.
A.1.5. Group \mathfrak{A}_{5}.
$G: \mathfrak{A}_{5}$;
$t_{i}:\left(3,2^{3}\right)$ and $\left(5^{2}, 3\right)$;
$S_{1}:(152),(14)(23),(23)(45),(14)(25) ;$
$S_{2}:(15423),(13425),(254) ;$
$H_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{10}$;
$\pi_{1}: \mathbb{Z}_{5} \times Q_{8}$, where Q_{8} is the quaternion group $\langle x, y| x^{4}, x^{2} y^{-2}, x y x^{-1} y>$.
A.1.6. Group $\mathbb{Z}_{2}^{4} \rtimes \mathfrak{S}_{3}$: this is the semidirect product obtained by letting (12) and (123) act on \mathbb{Z}_{2}^{4} respectively as $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
$G:<x_{1}, x_{2}, x_{3}, x_{4}, y_{2}, y_{3} \mid x_{i}^{2}, y_{i}^{i},\left[x_{i}, x_{j}\right],\left(y_{2} y_{3}\right)^{2}, y_{2} x_{2 i-1} y_{2} x_{2 i}, y_{3}^{-1} x_{2 i-1} y_{3} x_{2 i}$, $y_{3}^{-1} x_{2 i} y_{3} x_{2 i-1} x_{2 i}>$;
$t_{i}:\left(3,2^{3}\right)$ and $\left(4^{2}, 3\right)$;
$S_{1}: y_{3} x_{1}, y_{2} y_{3}^{2} x_{3}, x_{1} x_{3} x_{4}, y_{2} y_{3} x_{4}$;
$S_{2}: y_{2} x_{1} x_{4}, y_{2} y_{3} x_{1}, y_{3}^{2} x_{1} x_{3}$;
$H_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{8} ;$
π_{1} : the fundamental group of this surface fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow D_{8,4,3} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=D_{8,4,3}$ but the computer could not solve the problem. Recall that $D_{8,4,3}$ is the group $<$ $x, y \mid x^{8}, y^{4}, x y x^{-1} y^{-3}>$.

A.1.7. Group \mathfrak{A}_{5}.

$G: \mathfrak{A}_{5}$;
$t_{i}:\left(3,2^{3}\right)$ and $\left(5^{2}, 3\right)$;
$S_{1}:(152),(14)(23),(23)(45),(14)(25) ;$
$S_{2}:(14235),(15243),(123) ;$
$H_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{10}$;
$\pi_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{10}$.
A.2. $K^{2}=4$, basket $\left\{2 \times \frac{1}{5}(1,2)\right\}$.

A.2.1. Group \mathfrak{A}_{5}.

$G: \mathfrak{A}_{5}$;
$t_{i}:\left(5,2^{3}\right)$ and $\left(5,3^{2}\right)$;
$S_{1}:(13245),(12)(34),(15)(23),(14)(35) ;$
$S_{2}:(13542),(123),(345) ;$
$H_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{6}$;
$\pi_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{6}$.
A.2.2. Group $\mathbb{Z}_{2}^{4} \rtimes D_{5}$: this is the semidirect product obtained by letting a symmetry and a rotation of D_{5} act on \mathbb{Z}_{2}^{4} respectively as $\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ and $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$. G:

$$
<x_{1}, x_{2}, x_{3}, x_{4}, y_{2}, y_{5} \left\lvert\, \begin{gathered}
x_{i}^{2}, y_{i}^{i},\left[x_{i}, x_{j}\right],\left(y_{2} y_{5}\right)^{2}, \\
y_{2} x_{1} y_{2} x_{1} x_{2}, y_{2} x_{2} y_{2} x_{2}, y_{2} x_{3} y_{2} x_{1} x_{2} x_{4}, y_{2} x_{4} y_{2} x_{1} x_{3}, \\
y_{5}^{-1} x_{1} y_{5} x_{1} x_{2}, y_{5}^{-1} x_{2} y_{5} x_{2} x_{3}, y_{5}^{-1} x_{3} y_{5} x_{3} x_{4}, y_{5}^{-1} x_{4} y_{5} x_{1}>
\end{gathered}\right.
$$

$t_{i}:\left(5,4^{2}\right)$ and $(5,4,2)$;
$S_{1}: y_{5}^{2} x_{1}, y_{2} y_{5}^{2} x_{2} x_{4}, y_{2} x_{4}$;
$S_{2}: y_{5} x_{2} x_{3}, y_{2} y_{5} x_{1} x_{2} x_{3} x_{4}, y_{2} x_{1} x_{3} x_{4}$;
$H_{1}: \mathbb{Z}_{8}$;
π_{1} : the fundamental group fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{8} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=\mathbb{Z}_{8}$ but the computer could not solve the problem.

A.2.3. Group $\mathbb{Z}_{2}^{4} \rtimes D_{5}$:

G : as above;
$t_{i}:\left(5,4^{2}\right)$ and $(5,4,2)$;
$S_{1}: y_{5}^{3} x_{1} x_{4}, y_{2} x_{3}, y_{2} y_{5}^{2} x_{2} x_{4}$;
$S_{2}: y_{5}^{4} x_{1} x_{2} x_{3}, y_{2} x_{2} x_{4}, y_{2} y_{5}$;
$H_{1}: \mathbb{Z}_{8}$;
π_{1} : the fundamental group fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{8} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=\mathbb{Z}_{8}$ but the computer could not solve the problem.
A.2.4. Group $\mathbb{Z}_{2}^{4} \rtimes D_{5}$:
G : as above;
$t_{i}:\left(5,4^{2}\right)$ and $(5,4,2)$;
$S_{1}: y_{5}^{3} x_{1} x_{4}, y_{2} x_{3}, y_{2} y_{5}^{2} x_{2} x_{4}$;
$S_{2}: y_{5} x_{2} x_{3}, y_{2} y_{5} x_{1} x_{2} x_{3} x_{4}, y_{2} x_{1} x_{3} x_{4}$;
$H_{1}: \mathbb{Z}_{8}$;
π_{1} : the fundamental group fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{8} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=\mathbb{Z}_{8}$ but the computer could not solve the problem.
A.2.5. Group \mathfrak{A}_{6}.
$G: \mathfrak{A}_{6}$;
$t_{i}:(5,4,2)$ and $\left(5,3^{2}\right)$;
$S_{1}:(14623),(13)(2564),(12)(56) ;$
$S_{2}:(14562),(134)(265),(243) ;$
$H_{1}: \mathbb{Z}_{6}$;
$\pi_{1}: \mathbb{Z}_{6}$.
A.3. $K^{2}=3$, basket $\left\{\frac{1}{5}(1,1)+\frac{1}{5}(1,4)\right\}$.
A.3.1. Group \mathfrak{A}_{5}.
$G: \mathfrak{A}_{5}$;
$t_{i}:\left(5,2^{3}\right)$ and $\left(5,3^{2}\right)$;
$S_{1}:(14235),(23)(45),(13)(45),(14)(35) ;$
$S_{2}:(13542),(123),(345) ;$
$H_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{6}$;
$\pi_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{6}$.
A.3.2. Group $\mathbb{Z}_{2}^{4} \rtimes D_{5}$: this is the semidirect product obtained by letting a symmetry and a rotation of D_{5} act on \mathbb{Z}_{2}^{4} respectively as $\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ and $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$.

G:

$$
<x_{1}, x_{2}, x_{3}, x_{4}, y_{2}, y_{5} \left\lvert\, \begin{gathered}
x_{i}^{2}, y_{i}^{i},\left[x_{i}, x_{j}\right],\left(y_{2} y_{5}\right)^{2}, \\
y_{2} x_{1} y_{2} x_{1} x_{2}, y_{2} x_{2} y_{2} x_{2}, y_{2} x_{3} y_{2} x_{1} x_{2} x_{4}, y_{2} x_{4} y_{2} x_{1} x_{3}, \\
y_{5}^{-1} x_{1} y_{5} x_{1} x_{2}, y_{5}^{-1} x_{2} y_{5} x_{2} x_{3}, y_{5}^{-1} x_{3} y_{5} x_{3} x_{4}, y_{5}^{-1} x_{4} y_{5} x_{1}>;
\end{gathered}\right.
$$

$t_{i}:\left(5,4^{2}\right)$ and (5, 4, 2);
$S_{1}: y_{5}^{2} x_{1}, y_{2} y_{5}^{2} x_{2} x_{4}, y_{2} x_{4}$;
$S_{2}: y_{5}^{3} x_{1} x_{3}, y_{2} y_{5}^{3} x_{4}, y_{2} x_{1} x_{3} x_{4}$;
$H_{1}: \mathbb{Z}_{8}$;
π_{1} : the fundamental group fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{8} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=\mathbb{Z}_{8}$ but the computer could not solve the problem.

A.3.3. Group $\mathbb{Z}_{2}^{4} \rtimes D_{5}$:

G : as above;
$t_{i}:\left(5,4^{2}\right)$ and ($5,4,2$);
$S_{1}: y_{5}^{3} x_{1} x_{4}, y_{2} x_{3}, y_{2} y_{5}^{2} x_{2} x_{4}$;
$S_{2}: y_{5}^{3} x_{2} x_{4}, y_{2} y_{5}^{2} x_{1} x_{4}, y_{2} y_{5}^{4} x_{1} x_{2} x_{4}$;
$H_{1}: \mathbb{Z}_{8}$;
π_{1} : the fundamental group fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{8} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=\mathbb{Z}_{8}$ but the computer could not solve the problem.

A.3.4. Group $\mathbb{Z}_{2}^{4} \rtimes D_{5}$:

G : as above;
$t_{i}:\left(5,4^{2}\right)$ and ($5,4,2$);
$S_{1}: y_{5}^{3} x_{1} x_{4}, y_{2} x_{3}, y_{2} y_{5}^{2} x_{2} x_{4}$;
$S_{2}: y_{5}^{3} x_{1} x_{3}, y_{2} y_{5}^{3} x_{4}, y_{2} x_{1} x_{3} x_{4}$;
$H_{1}: \mathbb{Z}_{8}$;
π_{1} : the fundamental group fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{8} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=\mathbb{Z}_{8}$ but the computer could not solve the problem.

A.3.5. Group \mathfrak{A}_{6}.

$G: \mathfrak{A}_{6} ;$
$t_{i}:(5,4,2)$ and $\left(5,3^{2}\right)$;
$S_{1}:(14623),(13)(2564),(12)(56) ;$
$S_{2}:(15342),(164),(135)(246) ;$
$H_{1}: \mathbb{Z}_{6}$;
$\pi_{1}: \mathbb{Z}_{6}$.
A.4. $K^{2}=3$, basket $\left\{2 \times \frac{1}{2}(1,1)+\frac{1}{3}(1,1)+\frac{1}{3}(1,2)\right\}$.
A.4.1. Group $\mathfrak{S}_{4} \times \mathbb{Z}_{2}$:
$G:\langle(12),(13),(14),(56)\rangle<\mathfrak{S}_{6} ;$
$t_{i}:\left(4,3,2^{2}\right)$ and $(6,4,2)$;
$S_{1}:(1234),(234),(13)(24)(56),(34)(56) ;$
$S_{2}:(234)(56),(4321)(56),(14)$;
$H_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{4}$;
$\pi_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
A.5. $K^{2}=2$, basket $\left\{2 \times \frac{1}{3}(1,1)+2 \times \frac{1}{3}(1,2)\right\}$.
A.5.1. Group $\mathfrak{A}_{4} \times \mathbb{Z}_{2}$:
$G:\langle(123),(12)(34),(56)\rangle<\mathfrak{S}_{6} ;$
$t_{i}:\left(6^{2}, 2\right)$ and $\left(3^{2}, 2^{2}\right)$;
$S_{1}:(132)(56),(142)(56),(13)(24) ;$
$S_{2}:(234),(123),(13)(24)(56),(14)(23)(56) ;$
$H_{1}: \mathbb{Z}_{2}^{2}$;
$\pi_{1}: Q_{8}$.
A.5.2. Group \mathfrak{S}_{4} :
$G: \mathfrak{S}_{4} ;$
$t_{i}:\left(4^{2}, 3\right)$ and $\left(3^{2}, 2^{2}\right)$;
$S_{1}:(123),(134),(12),(24) ;$
$S_{2}:(1234),(1243)$, (124);
$H_{1}: \mathbb{Z}_{8}$;
$\pi_{1}: \mathbb{Z}_{8}$.
A.5.3. Group $\mathbb{Z}_{5}^{2} \rtimes \mathbb{Z}_{3}$: this is the semidirect product obtained by letting a generator of \mathbb{Z}_{3} act on \mathbb{Z}_{5}^{2} as $\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)$.
$G:\left\langle x_{1}, x_{2}, y \mid x_{i}^{5},\left[x_{1}, x_{2}\right], y^{3}, y^{-1} x_{1}^{-1} y x_{1} x_{2}^{2}, y^{-1} x_{2}^{-1} y x_{1} x_{2}^{3}\right\rangle ;$
t_{i} : both $\left(5,3^{2}\right)$;
$S_{1}: x_{1}^{3} x_{2}^{2}, y^{2} x_{1}^{3} x_{2}^{4}, y ;$
$S_{2}: x_{1}^{3}, y x_{1}, y^{2} x_{1}^{4} x_{2}^{2}$;
$H_{1}: \mathbb{Z}_{5}$;
π_{1} : the fundamental group fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{5} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=\mathbb{Z}_{5}$ but the computer could not solve the problem.

A.5.4. Group $\mathbb{Z}_{5}^{2} \rtimes \mathbb{Z}_{3}$:

G : as above
t_{i} : both $\left(5,3^{2}\right)$;
$S_{1}: x_{1}^{3} x_{2}^{2}, y^{2} x_{1}^{3} x_{2}^{4}, y$;
$S_{2}: x_{1}^{4} x_{2}^{3}, y x_{1} x_{2}, y^{2} x_{1}^{4} x_{2}^{3}$;
$H_{1}: \mathbb{Z}_{5}$;
π_{1} : the fundamental group fits in an exact sequences

$$
1 \rightarrow H \rightarrow \pi_{1} \rightarrow \mathbb{Z}_{5} \rightarrow 1
$$

where H is a group with a complicated presentation whose abelian quotient is trivial. We conjecture $H=\{1\}$ and $\pi_{1}=\mathbb{Z}_{5}$ but the computer could not solve the problem.
A.5.5. Group \mathfrak{A}_{5}.
$G: \mathfrak{A}_{5}$;
$t_{i}:\left(5,3^{2}\right)$ and $\left(3,2^{3}\right)$;
$S_{1}:(13542),(123),(345)$;
$S_{2}:(152),(14)(23),(23)(45),(14)(25)$;
$H_{1}: \mathbb{Z}_{2}^{2}$;
$\pi_{1}: \mathbb{Z}_{2}^{2}$.
A.6. $K^{2}=2$, basket $\left\{2 \times \frac{1}{2}(1,1)+\frac{1}{4}(1,1)+\frac{1}{4}(1,3)\right\}$.
A.6.1. Group $P S L(2,7)$:
$G:\langle(34)(56),(123)(457)\rangle<\mathfrak{S}_{7} ;$
$t_{i}:(7,4,2)$ and $\left(4,3^{2}\right)$;
$S_{1}:(1436275),(14)(2357),(36)(45)$;
$S_{2}:(1236)(47),(245)(376),(164)(257)$;
$H_{1}: \mathbb{Z}_{3}$;
$\pi_{1}: \mathbb{Z}_{3}$.
A.6.2. Group PSL(2,7):
$G:\langle(34)(56),(123)(457)\rangle<\mathfrak{S}_{7} ;$
$t_{i}:(7,4,2)$ and $\left(4,3^{2}\right)$;
$S_{1}:(1436275),(14)(2357),(36)(45)$;
$S_{2}:(34)(1675),(164)(257),(134)(265)$;
$H_{1}: \mathbb{Z}_{3}$;
$\pi_{1}: \mathbb{Z}_{3}$.
A.6.3. Group \mathfrak{A}_{6}.
$G: \mathfrak{A}_{6}$;
$t_{i}:(5,4,2)$ and $\left(4,3^{2}\right)$;
$S_{1}:(14623),(13)(2564),(12)(56) ;$
$S_{2}:(16)(2435),(246),(162)(345) ;$
$H_{1}: \mathbb{Z}_{3}$;
$\pi_{1}: \mathbb{Z}_{3}$.
A.6.4. Group \mathfrak{A}_{6}.
$G: \mathfrak{A}_{6}$;
$t_{i}:(5,4,2)$ and $\left(4,3^{2}\right)$;
$S_{1}:(14623),(13)(2564),(12)(56) ;$
$S_{2}:(1365)(24),(124)(356),(125) ;$
$H_{1}: \mathbb{Z}_{3}$;
$\pi_{1}: \mathbb{Z}_{3}$.
A.6.5. Group \mathfrak{S}_{5}.
$G: \mathfrak{S}_{5}$;
$t_{i}:(5,4,2)$ and $(6,4,3)$;
$S_{1}:(15432),(1235),(45) ;$
$S_{2}:(15)(234),(2453),(153)$;
$H_{1}: \mathbb{Z}_{3}$;
$\pi_{1}: \mathbb{Z}_{3}$.
A.6.6. Group \mathfrak{S}_{5}.
$G: \mathfrak{S}_{5}$;
$t_{i}:(5,4,2)$ and $(6,4,3)$;
$S_{1}:(15432),(1235),(45) ;$
$S_{2}:(14)(235),(1254),(432)$;
$H_{1}: \mathbb{Z}_{3}$;
$\pi_{1}: \mathbb{Z}_{3}$.
A.7. $K^{2}=1$, basket $\left\{4 \times \frac{1}{2}(1,1)+\frac{1}{3}(1,1)+\frac{1}{3}(1,2)\right\}$.
A.7.1. Group \mathfrak{S}_{5}.
$G: \mathfrak{S}_{5}$;
$t_{i}:\left(3,2^{3}\right)$ and $\left(4^{2}, 3\right)$;
$S_{1}:(123),(34),(23),(13)(24 ;$
$S_{2}:(1234),(1243),(124) ;$
$H_{1}: \mathbb{Z}_{4}$;
$\pi_{1}: \mathbb{Z}_{4}$.
A.7.2. Group $\operatorname{PSL}(2,7)$:
$G:\langle(34)(56),(123)(457)\rangle<\mathfrak{S}_{7} ;$
$t_{i}:(7,3,2)$ and $\left(4^{2}, 3\right)$;
$S_{1}:(1476532),(164)(235),(26)(47)$;
$S_{2}:(1765)(23),(17)(3645),(236)(475) ;$
$H_{1}: \mathbb{Z}_{2}$;
$\pi_{1}: \mathbb{Z}_{2}$.
A.7.3. Group $\mathfrak{S}_{4} \times \mathbb{Z}_{2}$:
$G:\langle(12),(13),(14),(56)\rangle<\mathfrak{S}_{6} ;$
$t_{i}:\left(3,2^{3}\right)$ and $(6,4,2)$;
$S_{1}:(134),(13)(24)(56),(23),(24)(56)$;
$S_{2}:(143)(56),(1234)(56),(23)$;
$H_{1}: \mathbb{Z}_{2}$;
$\pi_{1}: \mathbb{Z}_{2}$.

