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Abstract. A quasi-étale quotient of a product of two curves is the quotient
of a product of two curves by the action of a finite group which acts freely out
of a finite set of points. A quasi-étale surface is the minimal resolution of the
singularities of a quasi-étale quotient. They have been successfully used in the
last years by several authors to produce several interesting new examples of
surfaces.

In this paper we describe the principal results on this class of surfaces, and
report the full list of the minimal quasi-étale surfaces of general type with geo-
metric genus equal to the irregularity ≤ 2.

1. Introduction

Throughout this paper a ”surface” (resp. curve) is a smooth complex algebraic
surface (resp. curve); these are compact complex manifolds of dimension 2 (resp.
1) with an algebraic structure.

We are interested in the birational geometry of surfaces; in other words we look
at surfaces modulo the equivalence relation generated by the blow-up in a point.

For sake of simplicity, we will restrict to projective surfaces, so we assume that
the surface can be algebraically embedded in a projective space. Most of the
statement in this section are classical results in complex algebraic geometry; a
good reference is the classical book [BPV84].

For each surface S, we will denote

• by Ωq
S the sheaf of algebraic q-forms

• by OS the structure sheaf Ω0
S

• by KS a canonical divisor, that is the divisor of the zeroes and of the poles
of a meromorphic algebraic 2-form
• for each divisor D in S, by OS(D) the invertible sheaf associated to it; so
OS(KS) ∼= Ω2

S

• for each sheaf F , by hq(F) the dimension of the q−th Cech cohomology
group Hq(F)

The ”classical” birational invariants are
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- the topological fundamental group π1(S)
- the geometric genus

pg(S) := h2,0(S) := h0(Ω2
S) = h0(OS(KS)) = h2(OS)

- the irregularity

q(S) := h1,0(S) := h0(Ω1
S) = h1(OS)

- the Euler characteristic

χ(OS) := 1− q + pg

- the plurigenera
Pn(S) := h0(OS(nKS))

- the Kodaira dimension κ(S), which is the smallest number κ such that Pn
nκ

is bounded from above, known to be at most 2

Definition 1.1. A surface S is of general type if κ(S) = 2.

The Enriques-Kodaira classification provides a relatively good understanding of
the surfaces of special type, which are those with Kodaira dimension κ(S) 6= 2 (this
includes rational surfaces, K3 surfaces, Enriques surfaces, Abelian surfaces, elliptic
surfaces...). The class of the surfaces of general type may be considered as the class
of the surfaces... we do not understand, and therefore the most interesting, at least
in the opinion of the author. It is worth mentioning that the method we are going
to discuss has been very recently applied also to a different (very interesting) class
of surfaces, the K3 surfaces, see [GP13].

Definition 1.2. A surface S is minimal if KS is nef, that is if the intersection of
KS with every curve is nonnegative.

In the birational class of a surface of general type S there is exactly one minimal
surface, say S̄, which is its minimal model. The self intersection of the canonical
divisor K2

S, which is not a birational invariant, measures in some sense the distance
among S and S̄; more precisely S is obtained by S̄ by a sequence of exactly K2

S̄
−K2

S

blow ups.
If S is of general type, then the Riemann-Roch formula computes all plurigenera

Pn(S) from χ(OS) and K2
S̄
; so knowing pg, q,K

2
S̄

and the topological fundamental
group is enough to have all the birational invariants mentioned above.

This leads us to a famous picture, known as the geography of the surfaces of
general type. By some famous inequality (Noether, Bogomolov-Miyaoka-Yau, ...)
the possible values of the pair (χ,K2

S̄
) are in the green region of the Figure 1.

It is still unknown if all integral points in the green region of the Figure 1 can
be obtained by surfaces of general type, although we know we can fill ”most” of it:
this is an example of geographical question. More generally, one would like to know
all possible values of the 4-tuple of topological invariants (pg(S), q(S), K2

S̄
, π1(S));

we are very far from that, but one can hope to answer this question at least for
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K2
S

χ(OS)

K2 = 9χ K2 = 2χ− 6

χ = 1

K2 = 1

Figure 1. The geography of the surfaces of general type

some portion of the green region in Figure 1. Some of the most interesting surfaces
of general type, for reasons we are not going to explain here (see e.g. [BCP06],
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[BCP12]), lie on the vertical ”boundary” line χ(OS) = 1; we will be back to this
line at the end of the paper.

To answer geographical questions it is obviously very important to have some
tools to construct examples, as the one we are going to explain.

2. Quasi-étale surfaces

The idea starts from the construction of Beauville in [Be83], which gives the
name to the Beauville surfaces which are the center of this book. This is a minimal
surface of general type with pg = q = 0 and K2 = 8, quotient of the product of
two curves of genus 6 by a free action of the Abelian group Z2

/5Z.
This example led to the following definition

Definition 2.1. A surface is isogenous to a product if it is the quotient of a product
of two curves by a free action of a finite group. If both curves have genus at least
2, then it is isogenous to a higher product.

Beauville surfaces are isogenous to a higher product. A surface of general type
isogenous to a product is automatically isogenous to a higher product, so we will
drop the word ’higher’ in the following.

Several authors (e.g. [MP01, Par03, BC04, Pol06, BCG08, Pol08, CP09]) con-
structed then new examples of surfaces of general type as surfaces isogenous to a
product, in particular surfaces with pg = q = 0 as Beauville example. All surfaces
of general type isogenous to a product are minimal with K2 = 8χ, which forces
them in a line of the 2-dimensional Figure 1. This is a strong limitation from
the point of view of the birational geometry of surfaces of general type, since it
shows that the construction of surfaces isogenous to a product can answer only
very particular geographical questions.

This suggested to weaken Definition 2.1, to get something which is as simple to
construct, but not limited by K2 = 8χ. A possibility is the following:

Definition 2.2. A quasi-étale quotient is the quotient of a product of two curves
by the action of a finite group G acting freely out of a finite set of points. A
quasi-étale surface is the minimal resolution of the singularities of a quasi-étale
quotient.

Indeed, a quasi-étale quotient is smooth if and only if the action is free, so
the surface is isogenous to a product. Each point in the product of the two curves
stabilized by a non trivial subgroup of G maps onto a singular point of the quotient.
We will always denote by X the singular quotient, and by S the smooth resolution
of its singularities.

We have in this case the additional problem to study the singularities of X and
their minimal resolution. The advantage is that these surfaces get out of the line
K2 = 8χ. Indeed, it is easy to prove that K2 ≤ 8χ, but apparently no other
constraint applies ( [Pol10]) proves K2

S̄
6= 8χ−1 for a quasi-étale unmixed surface,
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but this does not extend to the mixed case) and we may hope to fill the whole
yellow region in Figure 2.

Quasi-étale surfaces splits naturally in two classes. Indeed (see [Cat00]), if C1

and C2 are two algebraic curves

- either C1 and C2 are not isomorphic, in which case Aut(C1 × C2) ∼=
Aut(C1)× Aut(C2)

- or C1
∼= C2

∼= C: in this case Aut(C×C) = (AutC)2oZ2, where the invo-
lution generating the (non normal) subgroup on the right is the exchange
of the factors.

This leads to distinguish the finite group actions on a product of two curves in two
classes, depending if G is a subgroup of Aut(C1)× Aut(C2) or not.

Definition 2.3. We set G(0) = G∩ (Aut(C1)×Aut(C2)), and say that the action
is

unmixed if G < Aut(C1)× Aut(C2), equivalently if G = G(0).
mixed if G 6= G(0), in which case we have an exact sequence

(1) 1→ G(0) → G→ Z2 → 1

We will say that a quasi-étale quotient, resp. a quasi-étale surface is mixed if the
action defining it is mixed. Similarly, if the action is unmixed, we will say that
the induced quasi-étale quotient/surface is unmixed. Unmixed quasi-étale surfaces
have been also called product-quotient surfaces and standard isotrivial fibrations.

By a remark of Catanese ([Cat00]), every quasi-étale quotient can be constructed
by a minimal action, that means that G(0) acts faithfully on both factors. So
without loss of generality we can and will always assume that both maps G(0) →
AutCi are injective.

In this language, the quasi-étale condition has a completely algebraic surpris-
ingly simple description.

Theorem 2.4 ([Fra11]). Consider a minimal action of a finite group G on a
product of two curves. Then G do not act freely out of a finite set of points if and
only if the action is unmixed and the exact-sequence (1) splits.

In other words G acts freely out of a finite set of points if and only if either the
action is unmixed or the exact sequence (1) does not split.

In other words, the only minimal actions which violate the quasi-étale condition
are the mixed actions in which G \G(0) contains an involution.

Remark 2.5. Indeed, if G \G(0) contains an involution, then one can assume (up
to automorphisms) that the involution is (x, y) 7→ (y, x), which fixes the diagonal,
and therefore the action is not free out of a finite set of points. Theorem 2.4 says
that this is the only case in which the quasi-étale condition fail. In this last case,
(C ×C)/G is dominated by the symmetric product C(2) of the curve C. It would
be interesting to extend to this case all results we have for the quasi-étale case.
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K2
S

χ(OS)

1

1

K2 = 9χ
K2 = 2χ− 6

K2 = 8χ

Figure 2. The region of the geography we expect to be able to fill
with quasi-étale surfaces
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3. Constructing curves with a finite group action

In order to construct a quasi-étale surface, we need curves with several automor-
phisms; indeed the general curve of genus g > 2 has no nontrivial automorphisms
at all. It is worth mentioning here that if g ≥ 2, which is the case we are interested
in, AutC is finite by the classical Schwarz Theorem. Anyway the method we are
going to describe works also for g ≤ 1, assuming the order of the group to be finite.

The method for constructing it, based on the classical Riemann Existence The-
orem, is the following.

Let C be a smooth algebraic curve, and let G(0) be a finite subgroup of AutC.
Then C ′ := C/G is a smooth algebraic curve of smaller genus g′ and the projection
C → C ′ has finitely many critical values, say p1, . . . , pr. Let us fix one of these
pi; each of its preimages is stabilized by a cyclic subgroup of G(0), and all these
subgroups lie in the same conjugacy class; in particular they all have the same
cardinality, say mi.

Removing the pi from C ′ and their preimages from C, we remain with a regular
topological cover C0 → C ′ \ {pi}; these are determined by their monodromy map
π1(C ′ \ {pi}) → G(0). The Riemann Existence Theorem shows that each such
topological cover may be uniquely extended to a map among compact complex
curves C → C ′.

This gives a way to construct all pairs (C,G(0)) where C is a smooth compact
complex curve and G(0) is a finite subgroup of AutC.

Theorem 3.1 (Consequence of the Riemann Existence Theorem). Given

a) a compact complex curve C ′

b) a finite set {pi} ⊂ C ′

c) a surjective homomorphism π1(C ′ \ {pi})→ G(0)

there is, up to automorphisms, a unique curve C, and a unique inclusion of G(0)

in AutC such that C ′ = C/G(0), the critical values of the quotient map C → C ′

belong to the set {pi}, and such that, removing {pi} from C ′ and its preimage from
C, we get the topological cover whose monodromy map is the map in c).

The key point here is the homomorphism c). The more effective way is to con-
struct a generating vector (see, e.g., [Pol10]) of G(0). One chooses in a ”standard”
way a set of generators of π1(C ′ \ {pi}), and then gives the map c) by giving their
images in G(0); we need then a set of generators (to ensure the surjectivity) of G(0)

respecting some relations reflecting the relations among the chosen generators of
π1(C ′ \ {pi}).

These relations are summarized in the definition of generating vector of signature
(g′;m1, . . . ,mr). We do not repeat here this definition, referring the interested
reader, e.g., to [FP13]; just repeat here that g′ is the genus of C ′, r the number of
critical values of the map C → C ′, mi the order of the stabilizer of each preimage
of the critical value pi.
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By Hurwitz formula, the genus of C can be computed by the signature of the
generating formula, namely

(2) 2g(C)− 2 = |G|
(

2g′ − 2 +
∑
i

(
1− 1

mi

))

4. Constructing quasi-étale quotients

In the case of unmixed actions (where, as seen in Theorem 2.4, the quasi-étale
condition is empty), we need to give two curves C1, C2 and inclusions of G(0) in
both Aut(Ci). Following the strategy in Section 3 we need to give two generating
vectors of G(0), look at their signatures, say (g′1;m1, . . . ,mr) and (g′2;n1, . . . , ns),
and then choose two curves C ′1, C ′2 of respective genera g′1, g′2, and two finite
subsets {p1, . . . , pr} ⊂ C ′1, {q1, . . . , qs} ⊂ C ′2.

In the mixed case, the construction is even simpler; one needs only one generat-
ing vector of G(0), look at its signature, say (g′;m1, . . . ,mr), then choose a curve
C ′ of genus g′ and a finite subset {p1, . . . , pr} ⊂ C ′, and finally choose a degree 2
extension G of G(0) as in (1).

These data determine (see [Cat00, Fra11]) a mixed action on the product of two
curves as follows. First of all they give, as in section 3, a curve C and an inclusion
of G(0) in AutC. We choose an element τ ′ ∈ G \ G(0), and notice that for each
element g ∈ G \ G(0) there is a unique g0 ∈ G(0) such that g = τ ′g0. Then we
give the mixed action on C × C as follows: we note that (τ ′)2 ∈ G(0) and set,
∀g0 ∈ G(0), ∀x, y ∈ C {

g0(x, y) = (g0x, τ
′g0τ

′−1y)

τ ′g0(x, y) = (τ ′g0τ
′−1y, τ ′2g0x)

In the mixed case, since we are only interested in the quasi-étale surfaces, we
will assume from now on that the extension (1) is unsplit.

4.1. Singularities. We have a recipe to construct quasi-étale quotient; to obtain
the quasi-étale surfaces, we need to understand their singularities.

Let then X := (C1 × C2)/G be a quasi-étale quotient. Then ([MP10, BP12,
Fra11, FP13]) the singularities of X are the images of all points in C1 ×C2 which
are stabilized by some nontrivial subgroup of G; these can be computed by the
generating vectors, see, e.g., [BP12] for the unmixed case and [FP13] for the mixed
case. We recall here the analytic type of singularities one can find.

Definition 4.1. For each rational number 0 < q
n
< 1 (gcd(q, n) = 1) a singularity

of type Cn,q (also called of type 1
n
(1, q), or of type q

n
) is an isolated singularity

locally isomorphic to the singularity obtained by quotienting C2 by the action of

the diagonal matrix with eigenvalues e
2πi
n and e

2qπi
n .
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The exceptional divisor of the minimal resolution of a singularity of type Cn,q is a
chain of rational curves A1, . . . , Ak, each intersecting only the previous and the next
one transversally in a single point, with respective self intersections −b1, . . . ,−bk
where the bi are given by the continued fraction

n

q
= [b1, . . . , bk] = b1 −

1

b2 − 1
b3−...

.

In other words, the dual graph of the exceptional divisor is

−b1

•
−b2

•
−bk−1

•
−bk
•

In the mixed case, we have an intermediate unmixed quotient Y := C2/G(0)

which has then only cyclic quotient singularities, and a double cover Y → X, so
we can see X as the quotient of Y by an involution.

Since the square of each element of G \G(0) is a nontrivial element of G(0), the
points of C ×C stabilized by a nontrivial subgroup of G(0) are the same stabilized
by a nontrivial subgroup of G; therefore the singular locus of X is the image of the
singular locus of Y and, once we have computed the cyclic quotient singularities
of Y , we only have to describe how the involution acts on them.

There are two possibilities. If the involution exchange two singular points, then
they are isomorphic, and we get one singularity of the same type Cn,q on the
quotient. In the other case

Theorem 4.2 ([FP13]). Let P be a singular point of Y which is fixed by the invo-
lution. Then P is a singular point of type Cn,q with q2 ≡ 1 mod n; in other words
the dual graph of the minimal resolution of the singularity of P is a symmetric
string

−b1

•
−b2

•
−b2

•
−b1

•
Moreover the number of vertices of the graph (which is the number of components
of the exceptional divisor) is odd, say 2h + 1, and the lift of the involution to the
resolution exchanges the extremal curves.

The exceptional divisor of the minimal resolution of the corresponding singular
point of X has h+ 3 component, all rational, and its dual graph is the following

−b1

•
−b2

•
−(1 + bh+1

2
)
•

−2•

−2•
�
�

@
@

Definition 4.3. We will say that such a singular point of X is of type Dn,q.
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4.2. Invariants. Once we have computed all singular points of X, which means
that we know exactly how many singular points of each type has our X, we can
compute some of the characteristic numbers of the constructed quasi-étale surface
S.

We give here the formulas ([MP10, BP12, FP13]) in terms of the construction
data described at the beginning of this section, and of the singularities of X. Recall
that the signatures of the generating vectors determine the genera gi of the induced
covers by the formula (2).

In the following, for each singular point of type Cn,q, we will denote by q′ the
only integer 0 < q′ < n with qq′ ≡ 1 mod n, and by b1, . . . , bk the coefficient of the
continued fraction of n

q
. Then n

q′
= [bk, . . . , b1] and therefore a singularity of type

Cn,q is also of type Cn,q′ .
For each singular point of type Cn,q (e.g. [BP12])

kx := −2 +
2 + q + q′

n
+

k∑
1

(bi − 2) Bx :=
q + q′

n
+

k∑
1

bi

whereas, for singular points of type Dn,q ([FP13])

kx := −1 +
2 + q + q′

2n
+

k∑
1

bi − 2

2
Bx := 6 +

q + q′

2n
+

k∑
1

bi
2

All kx, Bx are nonnegative. Then

K2
S =

8(g1 − 1)(g2 − 1)

|G| −
∑

x∈SingX

kx

χ(OS) =
K2

S

8
+

∑
x∈SingX Bx

24

Finally, for the irregularity ([Ser96]), in the unmixed case

q(S) = g′1 + g′2

whereas in the mixed case

q(S) = g′1 = g′2

The topological fundamental group, finally, can be computed directly by a
method due to Armstrong [Arm65, Arm68]. The computation is rather compli-
cated, but can easily performed by a computer. For example, in [BCGP12] there
is an implementation for that in the MAGMA [BCP97] language.

So, if the surface is minimal (S = S), we know all invariants of the constructed
surfaces. As we will see in the next sections, this happens often, but not always,
and determining K2

S
is sometimes a challenging task.
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5. The minimality problem

In the previous sections we have given a method to construct quasi-étale surfaces
and to compute, from the construction of S, π1(S), K2

S, pg(S) and q(S). If S is
minimal, then K2

S = K2
S̄

and we can compute by Riemann-Roch Theorem all the
plurigenera of S, and locate its position in the ”geography”.

This is often the case. Indeed KX (which is the Weil divisor defined as closure
of the canonical divisor of the open subset of the smooth points of X) pulls back
to KC1×C2 and therefore, if C1 and C2 have genus at least 2, it is big and nef.
Therefore, if the action of G is free, then X = S is minimal. On the other hand, if
the action is not free, the singularities of X induce a discrepancy among KS and
the pull-back of KX which is big and nef; if this discrepancy is big enough, the
surface S may become non minimal or even not of general type. The first examples
of non minimal unmixed quasi-étale surfaces of general type have been produced
in [MP10], two surfaces with pg = q = 1. The first example of an unmixed regular
non minimal quasi-étale surfaces of general type has been produced in [BP12], a
surface with pg = q = 0; some more examples have been constructed in [BP13].

It is unclear if there exists a non minimal mixed quasi-étale surface of general
type. Indeed we have the following

Theorem 5.1 ([FP13]). Every irregular mixed quasi-étale surface of general type
is minimal.

The argument of the proof can’t be extended to the regular case. Indeed [FP13]
shows that, if S is a mixed quasi-étale surface of general type containing a smooth
rational curve E with self intersection (−1), then the image of E on X pulls back
to a curve of C × C whose image in C ′ × C ′ is a rational curve (here as before
C ′ := C/G(0)). Then, since the genus of C ′ equals the irregularity of the surface,
we get a contradiction in the irregular case (C ′×C ′ does not contain any rational
curve), but nothing can be deduced in the regular case.

The unmixed irregular case, as (previously) shown in [MP10], is not much more
complicated. Indeed if both curves C ′1 and C ′2 are irregular, then C ′1 × C ′2 does
not contain any rational curve and one concludes as above (indeed this remark in
[MP10] inspired the proof of Theorem 5.1). Else, up to exchanging C1 and C2, C ′1
is rational, C ′2 has genus q > 0 and all rational curves on S are contracted by the
natural fibration f2 : S → C ′2. On the other hand, the only fibers of f2 which are
not isomorphic to C1 are those whose image on X contains some singular points:
it is not difficult then to compute explicitly their decomposition in irreducible
components, and therefore describe all rational curves on S: in this way [MP10]
could determine the minimal model of all the surfaces with pg = q = 1 they
constructed.

For example: [MP10] constructed one surface withK2
S = 1 whose quotient model

had three singular points of respective type 1
7
, 2

7
, 2

7
all in the image of the same fiber

of f2. That fiber depicted in Figure 3, on the left, contains then all rational curves
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−1

−7

−2

−4

−2

−4

−5

−2

−3

−2

Figure 3. The rational curves in the example by Polizzi and Mistretta

of S. It has six irreducible components, all smooth rational curves, 5 forming
the exceptional divisor of the resolution of the singularities, and the sixth having
self-intersection −1. Contracting the (−1)-curve and the (−2)-curve transversal
to it one gets a surface S̄ with K2

S
= 3 with exactly 4 rational curves, depicted on

the right of Figure 3. The minimality follows since none has self intersection −1.
Determining the minimal model in the regular case may me much more chal-

lenging, since the rational curves are not forced to stay in the fibers of any of
the two fibrations fi : S → Ci/G; indeed we are not able, in the regular case, to
compute all rational curves on S. The surface constructed in [BP12], named ”fake
Godeaux” there, is a surface with K2

S = 1, pg = q = 0 whose quotient model has
exactly the same configuration of singularities, 1

7
, 2

7
, 2

7
, of the previous example.

[BP12] constructed two rational curves on S with self-intersection −1 intersect-
ing the exceptional divisor of the resolution S → X as in Figure 4, on the left.
Contracting both we get a surface S with K2 = 3, pg = q = 0 with the funny
configuration of rational curves on the right of Figure 4.

Still, we know that ([BP12, Section 4] and [FP13, Corollary 4.7])

Proposition 5.2. Let P1 → X be a rational curve on the quotient model of a quasi-
étale surface such that C1 and C2 have both genus at least 2 (that’s a necessary
condition for X to be of general type). Then there are at least three distinct points
of P1 mapped to singular point of X.

This forces every further rational curve in S to intersect in at least three distinct
points the configuration of curves on the right of Figure 4. On the other hand
([FP13, Corollary 4.8])
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−7

−4

−4

−2

−2

−1 −1

−3

−2

−2

−2−3

Figure 4. The rational curves in the fake Godeaux surfaces

Proposition 5.3. Let E be a rational curve with self intersection −1 on a surface
of general type, F be a reduced divisor whose support is made by rational curves
of self-intersection either −2 or −3. Then EF ≤ 2.

We know that S is of general type since by the Enriques-Kodaira classification a
regular surface withK2 > 0 is either of general type or rational, all rational surfaces
are simply connected, and we can compute its fundamental group, which is Z/6Z.
Looking at the configuration of curves on the right of Figure 4, by Propositions
5.2 and 5.3 we conclude that S is minimal.

A similar arguments works for proving the minimality of many of the surfaces
constructed with this method, although one may need to substitute Proposition
5.3 with similar statements involving different configurations of rational curves.
Some examples are in [BP12, Proposition 2.7].

We have not mentioned here how the two (−1)-curves on S are constructed;
that’s a rather complicated construction whose details goes beyond the scopes of
this paper; the interested reader may read [BP12, Section 5]. We have recently
found ([BP13]) few more examples of non minimal unmixed quasi-étale surfaces
of general type with pg = q = 0, and in all cases (up to now) we were able to
determine their minimal model by constructing all the (−1)-curves on them. Still
we have to run a different construction in each case: it would be nice to have a
general method.
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Table 1. Minimal unmixed quasi-étale surfaces of general type
with pg = q = 0

Sing X K2
S Sign. G #fam

8 23, 3 53 〈60, 5〉 1

8 25 26 〈8, 5〉 1

8 25 25 〈16, 14〉 1

8 25 32, 5 〈60, 5〉 1

8 22, 42 22, 42 〈16, 3〉 1

8 34 34 〈9, 2〉 1

8 26 3, 42 〈24, 12〉 1

8 22, 42 23, 4 〈32, 27〉 1

8 2, 52 34 〈60, 5〉 1

8 2, 4, 6 26 〈48, 48〉 1

8 23, 4 26 〈16, 11〉 1

8 53 53 〈25, 2〉 2
1
2

2
6 2, 4, 6 2, 4, 10 〈240, 189〉 1

1
2

2
6 23, 4 24, 4 〈16, 11〉 1

1
2

2
6 2, 4, 6 24, 4 〈48, 48〉 1

1
2

2
6 2, 33 2, 52 〈60, 5〉 1

1
2

2
6 2, 72 32, 4 〈168, 42〉 2

1
2

2
6 2, 52 32, 4 〈360, 118〉 2

1
2

4
4 22, 32 22, 32 〈18, 4〉 1

1
2

4
4 23, 4 23, 4 〈32, 27〉 1

1
2

4
4 22, 42 22, 42 〈8, 2〉 1

1
2

4
4 25 25 〈8, 5〉 1

1
2

4
4 2, 4, 6 25 〈48, 48〉 1

1
2

4
4 2, 52 22, 32 〈60, 5〉 1

1
2

4
4 25 3, 42 〈24, 12〉 1

1
2

4
4 2, 4, 6 22, 42 〈48, 48〉 1

1
2

4
4 23, 4 25 〈16, 11〉 1

1
2

4
4 2, 4, 5 3, 62 〈120, 34〉 1

1
2

4
4 22, 32 3, 62 〈18, 3〉 1

Sing X K2
S Sign. G #fam

1
2

6
2 23, 4 23, 4 〈16, 11〉 1

1
2

6
2 2, 4, 6 23, 4 〈48, 48〉 1

1
2

6
2 2, 4, 5 2, 62 〈120, 34〉 1

1
2

6
2 2, 3, 7 43 〈168, 42〉 2

1
2

6
2 43 43 〈16, 2〉 1

1
2

6
2 2, 52 23, 3 〈60, 5〉 1

1
2

6
2 2, 62 23, 3 〈36, 10〉 1

1
3
, 2
3

5 23, 3 3, 42 〈96, 227〉 1
1
3
, 2
3

5 24, 3 3, 42 〈24, 12〉 1
1
3
, 2
3

5 23, 3 42, 6 〈48, 48〉 1
1
3
, 2
3

5 23, 3 3, 52 〈60, 5〉 2
1
3
, 2
3

5 2, 5, 6 3, 42 〈120, 34〉 1
1
3
, 2
3

5 2, 4, 6 24, 3 〈48, 48〉 1
1
3
, 1
2

2
, 2
3

3 2, 4, 6 22, 3, 4 〈48, 48〉 1
1
3

2
, 2
3

2
2 2, 62 22, 32 〈24, 13〉 1

1
3

2
, 2
3

2
2 32, 5 32, 5 〈75, 2〉 2

1
3

2
, 2
3

2
2 23, 3 32, 5 〈60, 5〉 1

1
3

2
, 2
3

2
2 22, 32 3, 42 〈24, 12〉 1

1
3
, 1
2

4
, 2
3

1 23, 3 3, 42 〈24, 12〉 1
1
3
, 1
2

4
, 2
3

1 2, 4, 6 23, 3 〈48, 48〉 1
1
3
, 1
2

4
, 2
3

1 2, 3, 7 3, 42 〈168, 42〉 1
1
4
, 1
2

2
, 3
4

2 2, 4, 7 32, 4 〈168, 42〉 2
1
4
, 1
2

2
, 3
4

2 2, 4, 5 32, 4 〈360, 118〉 2
1
4
, 1
2

2
, 3
4

2 2, 4, 5 3, 4, 6 〈120, 34〉 2
2
5

2
4 23, 5 32, 5 〈60, 5〉 1

2
5

2
4 2, 4, 5 32, 5 〈360, 118〉 1

2
5

2
4 2, 4, 5 42, 5 〈160, 234〉 3

1
5
, 4
5

3 23, 5 32, 5 〈60, 5〉 1
1
5
, 4
5

3 2, 4, 5 32, 5 〈360, 118〉 1
1
5
, 4
5

3 2, 4, 5 42, 5 〈160, 234〉 3

6. Surfaces of general type with χ(OS) = 1

This strategy has been used in the last year by several authors to construct new
surfaces of general type, mainly for the ”special” region of the geography of the
surfaces with χ = 1 (equivalently pg = q). Thank to the contribution of, among
others, [MP01, Par03, BC04, BCG08, BCGP12, BP12, Fra11, FP13, Pol06, Pol08,
CP09, Pol09, MP10, Pol10, Zuc03, Pen10, Pen12], we have now the complete list
of all the minimal quasi-étale surfaces of general type with χ = 1 and K2

S > 0,
which includes all the minimal surfaces.
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Table 2. Minimal mixed quasi-étale surfaces of general type with
pg = q = 0

SingX K2
S Sign. G(0) G #fam

8 25 〈32, 46〉 〈64, 92〉 1

8 43 〈128, 36〉 〈256, 3678〉 3

8 43 〈128, 36〉 〈256, 3679〉 1
1
2

4
4 25 〈16, 11〉 〈32, 7〉 1

1
2

4
4 25 〈16, 14〉 〈32, 22〉 1

1
2

4
4 43 〈64, 23〉 〈128, 836〉 1

1
2

6
2 25 〈8, 5〉 〈16, 3〉 1

1
2

6
2 43 〈32, 2〉 〈64, 82〉 1

1
3

2
, 2
3

2
2 32, 4 〈384, 4〉 〈768, 1083540〉 1

1
3

2
, 2
3

2
2 32, 4 〈384, 4〉 〈768, 1083541〉 1

1
2

3
, 1
4

2
2 23, 4 〈64, 73〉 〈128, 1535〉 1

3
8
, 5
8

3 23, 8 〈32, 39〉 〈64, 42〉 1
1
2

2
, D2

2,1 1 23, 4 〈16, 11〉 〈32, 6〉 1
1
2

2
, D2

2,1 2 23, 4 〈32, 27〉 〈64, 32〉 1
1
2

2
, D2

2,1 2 22, 32 〈18, 4〉 〈36, 9〉 1

The surfaces of general type with pg = q ≥ 3 are classified (see [BCP06] for
a more precise account), so we only consider here the case q ≤ 2. There are
only three nonminimal surfaces , which we have partially discussed in the previous
section: the interested reader will find them in [MP10, BP12].

The minimal quasi-étale surfaces of general type with pg = q ≤ 2 form few hun-
dreds of families, whose construction is spread among several papers, sometimes
using different notations. We take the opportunity offered by this paper to collect
all of them in the same place with a coherent notation, reporting the full list in
the tables 1, 2, 3, 4, 5 and 6.

A short explanation of the notation:
- the column SingX gives the singularities of the quasi-étale quotient: we use

the notation q
n

for the cyclic quotient singularities, Dn,q for the singularities, in
the mixed case, which are branching points of the double cover Y → X. We use

exponents for multiplicities: for example 1
2

2
, D2

2,1 means that X has 4 singular
points, 2 ordinary nodes and 2 of type D2,1 (in particular Y has 6 nodes, and
the fixed locus of the involution is given by two of them). In the case of surfaces
isogenous of a product, equivalently if X is smooth, we leave this field blank.

- the column K2
S is self-explanatory.

- the columns Sign. give the involved signatures, two in the unmixed case, one in
the mixed case. We use here, for short, exponents for representing the multiplicity,
and omit g′ when equal to zero. So 23, 3 is a shortcut for 0; 2, 2, 2, 3.

- the columns G and G(0) (the latter only in the mixed case) give the corre-
sponding group in the MAGMA/GAP4 notation. So 〈60, 5〉, for example, is the
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Table 3. Minimal unmixed quasi-étale surfaces of general type
with pg = q = 1

Sing X K2
S galb Sign. G #fam

8 3 26 1; 22 〈4, 2〉 1

8 3 25 1; 22 〈8, 5〉 1

8 3 22, 42 1; 22 〈8, 2〉 2

8 3 2, 82 1; 22 〈16, 5〉 1

8 3 22, 42 1; 22 〈8, 3〉 1

8 3 23, 6 1; 22 〈12, 4〉 1

8 3 23, 4 1; 22 〈16, 11〉 1

8 3 2, 4, 12 1; 22 〈24, 5〉 1

8 3 2, 62 1; 22 〈24, 13〉 1

8 3 3, 42 1; 22 〈24, 12〉 1

8 3 2, 4, 8 1; 22 〈32, 9〉 1

8 3 2, 4, 6 1; 22 〈48, 48〉 1

8 4 26 1; 3 〈6, 1〉 1

8 4 25 1; 3 〈12, 4〉 1

8 4 22, 32 1; 3 〈18, 3〉 2

8 4 3, 62 1; 3 〈18, 3〉 1

8 4 23, 4 1; 3 〈24, 12〉 1

8 4 2, 62 1; 3 〈36, 10〉 1

8 4 2, 62 1; 3 〈36, 12〉 1

8 4 2, 42 1; 3 〈36, 9〉 2

8 4 2, 52 1; 3 〈60, 5〉 1

8 4 2, 3, 12 1; 3 〈72, 42〉 1

8 4 2, 4, 5 1; 3 〈120, 34〉 1

8 5 26 1; 2 〈8, 3〉 1

8 5 34 1; 2 〈12, 3〉 2

8 5 22, 42 1; 2 〈16, 3〉 3

8 5 22, 32 1; 2 〈24, 13〉 2

8 5 3, 62 1; 2 〈24, 13〉 1

8 5 2, 82 1; 2 〈32, 5〉 1

8 5 2, 82 1; 2 〈32, 7〉 1

8 5 43 1; 2 〈32, 2〉 1

8 5 43 1; 2 〈32, 6〉 1

8 5 2, 62 1; 2 〈48, 49〉 1

8 5 2, 4, 8 1; 2 〈64, 32〉 2

8 5 2, 52 1; 2 〈80, 49〉 2

Sing X K2
S galb Sign. G

1
2

2
6 3 2, 52 1; 2 〈24, 3〉

1
2

2
6 3 2, 52 1; 2 〈32, 9〉

1
2

2
6 3 2, 52 1; 2 〈32, 11〉

1
2

2
6 3 2, 52 1; 2 〈48, 33〉

1
2

2
6 3 26 1; 22 〈48, 3〉

1
2

2
6 3 25 1; 22 〈168, 42〉

1
2

2
6 4 22, 42 1; 22 〈8, 3〉

1
2

2
6 4 2, 82 1; 22 〈12, 3〉

1
2

2
6 4 22, 42 1; 22 〈24, 10〉

1
2

2
6 4 23, 6 1; 22 〈36, 11〉

1
2

2
6 4 23, 4 1; 22 〈72, 40〉

1
2

2
6 4 2, 4, 12 1; 22 〈120, 34〉

1
3
, 2
3

5 3 2, 62 1; 22 〈6, 1〉
1
3
, 2
3

5 3 3, 42 1; 22 〈12, 1〉
1
3
, 2
3

5 3 2, 4, 8 1; 22 〈12, 4〉
1
3
, 2
3

5 3 2, 4, 6 1; 22 〈24, 5〉
1
3
, 2
3

5 3 26 1; 3 〈24, 12〉
1
3
, 2
3

5 3 25 1; 3 〈48, 48〉
1
3
, 2
3

5 3 22, 32 1; 3 〈96, 64〉
1
3
, 2
3

5 3 3, 62 1; 3 〈168, 42〉
1
2

4
4 2 23, 4 1; 3 〈4, 2〉

1
2

4
4 2 2, 62 1; 3 〈6, 2〉

1
2

4
4 2 2, 62 1; 3 〈6, 1〉

1
2

4
4 2 2, 42 1; 3 〈8, 3〉

1
2

4
4 2 2, 52 1; 3 〈12, 5〉

1
2

4
4 2 2, 3, 12 1; 3 〈12, 4〉

1
2

4
4 2 2, 4, 5 1; 3 〈16, 8〉

1
2

4
4 2 26 1; 2 〈24, 8〉

1
2

4
4 2 34 1; 2 〈48, 29〉

1
2

4
4 3 22, 42 1; 2 〈8, 3〉

1
2

4
4 3 22, 32 1; 2 〈12, 3〉

1
2

4
4 3 3, 62 1; 2 〈16, 6〉

1
2

4
4 3 3, 62 1; 2 〈16, 4〉

1
2

4
4 3 2, 82 1; 2 〈24, 13〉

1
2

2
, 1
3
, 2
3

3 2 2, 82 1; 2 〈24, 8〉
1
2

2
, 1
3
, 2
3

3 2 43 1; 2 〈48, 29〉
1
2

2
, 1
4
, 3
4

2 2 43 1; 2 〈16, 8〉
1
2

2
, 1
4
, 3
4

2 2 43 1; 2 〈24, 3〉
1
3

2
, 2
3

2
2 2 2, 62 1; 2 〈6, 1〉

1
3

2
, 2
3

2
2 2 2, 4, 8 1; 2 〈12, 1〉

1
3

2
, 2
3

2
2 2 2, 52 1; 2 〈12, 4〉

1
2

6
2 2 2, 52 1; 2 〈8, 4〉

1
2

6
2 2 2, 52 1; 2 〈8, 3〉
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Table 4. Minimal mixed quasi-étale surfaces of general type with
pg = q = 1

SingX K2
S galb Sign. G(0) G #fam

8 5 1; 22 〈8, 2〉 〈16, 6〉 1

8 5 1; 22 〈8, 3〉 〈16, 8〉 1

8 5 1; 22 〈8, 5〉 〈16, 3〉 1
1
2

2
6 3 1;2 〈24, 13〉 〈48, 30〉 1

1
2

2
6 7 1;2 〈24, 13〉 〈48, 31〉 1

1
2

4
4 3 1; 22 〈4, 1〉 〈8, 1〉 1

1
2

4
4 3 1; 22 〈4, 2〉 〈8, 2〉 1

1
2

4
4 2 1;2 〈16, 3〉 〈32, 29〉 1

1
2

4
4 3 1;2 〈16, 4〉 〈32, 13〉 1

1
2

4
4 3 1;2 〈16, 4〉 〈32, 14〉 1

1
2

4
4 2 1;2 〈16, 4〉 〈32, 32〉 1

1
2

4
4 2 1;2 〈16, 4〉 〈32, 35〉 1

1
2

4
4 3 1;2 〈16, 5〉 〈32, 15〉 1

1
3
, 2
3

5 3 1;3 〈12, 1〉 〈24, 4〉 1
1
3
, 2
3

5 3 1;3 〈12, 4〉 〈24, 5〉 1
3
5

6 5 1;5 〈10, 1〉 〈20, 3〉 1
1
2
, D2

2,1 2 2 1; 22 〈2, 1〉 〈4, 1〉 1
1
2
, D2

2,1 2 2 1;2 〈8, 3〉 〈16, 8〉 1
1
2
, D2

2,1 2 2 1;2 〈8, 4〉 〈16, 9〉 1

5th group of order 60 in the MAGMA/GAP4 database of finite groups: this is the
alternating group in 5 elements A5.

- galb is the genus of the general fibre of the Albanese map, which is very im-
portant for the classification of the irregular surfaces. The column is missing for
q = 0 since there is no Albanese map in that case. When, for q = 2, we leave it
blank, it means that the Albanese map is not a fibration.

- in few cases there are 2 or 3 different families for which all the previous data
coincide: instead of putting more identical rows, we used only one row for all of
them, and add a last column, #fam, counting the number of families corresponding
to the row. The reader will not find the column #fam in the latter part of table
3; indeed in that cases the number of families corresponding to each row is not
known, at least to the author.

It is worth noticing that all possible values of K2
S̄

in the yellow region of Figure
2 are obtained already by the table 1, so by surfaces with pg = q = 0. In the
irregular case, since an inequality of Debarre shows that for a minimal irregular
surface of general type K2

S̄
≥ 2pg, also the quasi-étale surfaces with pg = q = 1 and

pg = q = 2 reach all values of K2
S̄

attained by minimal surfaces of general type:
this supports our claim that this method could possibly fill the yellow region.
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Table 5. Minimal unmixed quasi-étale surfaces of general type
with pg = q = 2

Sing X K2
S galb Sign. G #fam

8 2 26 2; 〈2, 1〉 1

8 2 34 2; 〈3, 1〉 1

8 2 25 2; 〈4, 2〉 2

8 2 22, 42 2; 〈4, 1〉 1

8 2 53 2; 〈5, 1〉 1

8 2 22, 32 2; 〈6, 2〉 1

8 2 3, 62 2; 〈6, 2〉 1

8 2 2, 82 2; 〈8, 1〉 1

8 2 2, 5, 10 2; 〈10, 2〉 1

8 2 2, 62 2; 〈12, 5〉 2

8 2 22, 32 2; 〈6, 1〉 1

8 2 43 2; 〈8, 4〉 1

8 2 23, 4 2; 〈8, 3〉 2

8 2 23, 3 2; 〈12, 4〉 2

8 2 3, 42 2; 〈12, 1〉 1

8 2 2, 4, 8 2; 〈16, 8〉 1

8 2 2, 4, 6 2; 〈24, 8〉 2

8 2 32, 4 2; 〈24, 3〉 1

8 2 2, 3, 8 2; 〈48, 29〉 1

8 1; 22 1; 22 〈4, 2〉 1

8 1; 3 1; 22 〈6, 1〉 1

8 1; 2 1; 22 〈8, 3〉 1
1
2

2
6 1; 2 1; 2 〈12, 3〉 1

1
2

4
4 1; 22 1; 22 〈2, 1〉 1

1
2

4
4 1; 2 1; 2 〈8, 3〉 1

1
2

4
4 1; 2 1; 2 〈8, 4〉 1

1
3
, 2
3

5 1; 3 1; 3 〈6, 1〉 1

Table 6. Minimal mixed quasi-étale surfaces of general type with
pg = q = 2

SingX K2
S Sign. G(0) G #fam

8 2; 〈2, 1〉 〈4, 1〉 1

It would be nice to have a complete classification of all unmixed quasi-étale
surfaces of general type with χ(OS) = 1; the list is complete only in the mixed
irregular case by Theorem 5.1.

The methods developped in the mentioned papers allow in principle to construct
the whole list of quasi-étale surfaces with a fixed value of the triple (pg, q, K

2
S).

Since when we blow up a point the value of K2
S drops by 1, there is no lower bound
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for the value of K2
S of a surface of general type in terms of birational invariants

as pg and q; in particular these methods can’t give a complete classification unless
one can prove such a lower bound for quasi-étale surfaces; at the moment we do
not have even a reasonable conjecture for that bound.

A different method, which could possibly in the future produce a complete
classification of the quasi-étale surfaces with χ = 1, will be presented in [BP13],
where K2

S is substituted by a different number related to the structure of the
Néron-Severi group of a quasi-étale surface.
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