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Abstract. In this paper the authors give for each dimension d ≥ 2 an infinite
series of rigid compact complex manifolds which are not infinitesimally rigid,
hence giving a complete answer to a problem of Morrow and Kodaira stated in
the famous book Complex manifolds.
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Introduction

In the famous book Complex manifolds by J. Morrow and K. Kodaira the following
problem is posed

Problem. [MK71, p. 45] Find an example of a (compact complex manifold) M
which is rigid, but H1(M,Θ) 6= 0. (Not easy?)
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A compact complex manifold is rigid if it has no nontrivial (small) deformations
(cf. Definition 1.1). Moreover, recall that a complex manifold M is called in-
finitesimally rigid, if H1(M,ΘM) = 0, and that, by Kuranishi theory, infinitesimal
rigidity implies rigidity (cf. [MK71, Theorem 3.2]).

The above Problem asks for examples of compact complex manifolds which are
rigid, but not infinitesimally rigid, showing that the converse of [MK71, Theorem
3.2] does not hold.

To our knowledge this problem is up to now unsolved and the aim of our article
is to give an infinite series of such examples for each dimension d ≥ 2.

In [BC18] several different notions of rigidity (cf. Definition 1.1, where we repeat
the notions which are relevant for our purposes) have been recalled and newly
introduced and their relations have been studied.

It is wellknown that in dimension 1 all concepts of rigidity coincide and that the
only rigid curve is P1.

For complex surfaces, in [BC18] the following was proven (in the slightly more
general context of compact complex surfaces):

Theorem. Let S be a smooth projective surface, which is rigid. Then either

(1) S is a minimal surface of general type, or
(2) S is a Del Pezzo surface of degree d ≥ 5.

Del Pezzo surfaces are infinitesimally rigid, and rigid surfaces of general type are
also globally rigid due to the existence of a moduli space.

The above result seems to suggest that the property of rigidity puts strong re-
strictions on the Kodaira dimension of the manifold X, but if we go to higher
dimensions this is no longer true. In fact, in [BC18] the following is shown:

Theorem. For each n ≥ 3 and for each k = −∞, 0, 2, . . . n there is a rigid
projective variety X of dimension n and Kodaira dimension kod(X) = k.

The above stated result on rigid surfaces shows therefore that the problem of
classifying rigid surfaces reduces to the same question for surfaces of general type,
and the list of known rigid surfaces of general type is rather short. Again we refer
to [BC18] for a detailed account of the status of the art.

Among the several questions raised in [BC18] there is the following [BC18, Ques-
tion 1.5. B], special case of the problem of Morrow and Kodaira:

Question. Does there exist a rigid, but not infinitesimally rigid surface of general
type?

This means that the moduli space of such surfaces consists of a single non reduced
point.

On one hand, the existence of such surfaces is expected in view of Murphy’s
law for moduli spaces (cf. [Vak06]), which says that however bad a singularity
is it appears as singular locus of some moduli space and since there are known
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examples of everywhere non reduced moduli spaces (cf. [Cat89]). Still the proofs
of these results rely on constructions where the moduli spaces have to be positive
dimensional.

On the other hand, showing rigidity can be quite difficult, and usually there are
only techniques which allow to show the rigidity of a surface of general type proving
the vanishing of H1(ΘS). This probably is the reason that the problem of Morrow
and Kodaira remained open for more than 45 years.

In this paper we give an infinite series of rigid regular surfaces of general type with
unbounded invariants (pg, K

2). More precisely, our first main result is:

Theorem. For every even n ≥ 8 such that 3 - n there is a minimal regular surface
Sn of general type with

K2
Sn = 2(n− 3)2, pg(Sn) =

(n
2
− 2
)(n

2
− 1
)
,

such that Sn is rigid, but not infinitesimally rigid.

This gives a positive answer to the question of Morrow and Kodaira in dimension
2.

The surface Sn is constructed as the minimal resolution of singularities of a so-
called product-quotient surface whose singular model Xn has six nodes. More
precisely, Xn is the quotient of a product of two algebraic curves C1 × C2 by
the faithful action of a finite group G, such that G acts on each factor and the
quotient map Ci → Ci/G ∼= P1 is branched in three points (i.e., each of the two
curves C1, C2 is a so-called triangle curve).

The nodes are the key for obtaining an obstructed moduli space, as noticed first,
to our knowledge, by Burns and Wahl ([BW74]). Thanks to their results one
readily constructs examples (e.g., those of Segre) of surfaces of general type with
obstructed deformations by constructing suitable nodal surfaces. Indeed, since Sn
has six nodes, by [BW74, Corollary 1.3] h1(ΘSn)(:= dimH1(ΘSn)) ≥ 6 and it
suffices to show that Sn is in fact rigid.

Once we have a product-quotient surface coming from two triangle curves it is
immediate that the equisingular deformations of the canonical model are trivial.
Then it has to be shown that none of the local deformations of the singularities
lift to deformations of the canonical model. This can be deduced by the linear
independence of certain elements of H2(ΘSn) (see Theorem 1.3, condition 2) that
have a simple explicit description in local coordinates due to Kas (cf. [Kas77]).

In this paper we use only very special product-quotient surfaces: they are regular,
their group G is the Abelian group (Z/nZ)2, where n ≥ 8, even and not divisible by
3, and their singular models have only nodal singularities, but are indeed singular.

Product-quotient surfaces have been extensively studied, especially for low in-
variants (like in the limit case pg = q = 0) and partial classification results are
obtained in a long series of papers. We refer to [BC04], [BCG08], [BCGP12],
[BP12], [BP16] and the literature there quoted.
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For constructing the higher dimensional rigid, but not infinitesimally rigid exam-
ples, we take the product of Sn’s with a rigid manifold.

More precisely, the second main result is:

Theorem. Let n ≥ 8 be an even integer such that 3 - n, and let X be a compact
complex rigid manifold.

Then Sn ×X is rigid, but not infinitesimally rigid.

In particular there are rigid, but not infinitesimally rigid, manifolds of dimension
d and Kodaira dimension κ for all possible pairs (d, κ) with d ≥ 5 and κ 6= 0, 1, 3
and for (d, κ) = (3,−∞), (4,−∞), (4, 4).

The paper is organized as follows.

In the first section we collect some background material on deformation theory
which will be used in the rest of the paper. We recall the notions of rigidity which
are relevant for our purposes and give a criterion for the minimal resolution of the
singularities of a nodal surface to be rigid (cf. Theorem 1.3).

The second section is dedicated to Abelian covers and in particular to the proof
of formulae for the character decomposition of direct images of canonical and
bicanonical sheaves. In the next section we give the construction of the infinite
series of product-quotient surfaces Sn and calculate their invariants.

The fourth section is dedicated to the proof of our first main theorem, whereas
the last section is dedicated to the higher dimensional examples, i.e., the proof of
our second main result.

1. A criterion to prove rigidity

In this section we shall recall the definitions of different concepts of rigidity of
compact complex varieties, which were introduced and discussed in [BC18] and
which are relevant for our paper. Then we briefly review results by Burns-Wahl
([BW74]), Kas ([Kas77]), Pinkham ([Pin81]) and Catanese ([Cat89]) which allow
us to prove a criterion for rigidity (cf. Theorem 1.3).

Recall that two compact complex manifolds X and X ′ are said to be deformation
equivalent if and only if there is a proper smooth holomorphic map

f : X→ B
where B is a connected (possibly not reduced) complex space and there are points
b0, b

′
0 ∈ B such that the fibres Xb0 := f−1(b0), Xb′0

:= f−1(b′0) are respectively
isomorphic to X,X ′ (Xb0

∼= X,Xb′0
∼= X ′).

For the convenience of the reader we recall part of the notions of rigidity given in
[BC18, Definition 2.1]:

Definition 1.1.

(1) A compact complex manifold X is said to be globally rigid if for any com-
pact complex manifold X ′, which is deformation equivalent to X, we have
an isomorphism X ∼= X ′.
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(2) A compact complex manifold X is said to be infinitesimally rigid if

h1(X,ΘX) = 0,

where ΘX is the sheaf of holomorphic vector fields on X.
(3) A compact complex manifold X is said to be (locally) rigid (or just rigid)

if for each deformation of X,

f : (X, X)→ (B, b0)

there is an open neighbourhood U ⊂ B of b0 such that Xt := f−1(t) ∼= X
for all t ∈ U .

Remark 1.2. Observe that a globally/infinitesimally rigid compact complex man-
ifold is (locally) rigid. If X = S is a surface of general type, then S is rigid if and
only if S is globally rigid due to the existence of the Gieseker moduli space for
canonical models of surfaces of general type.

Let X be a nodal surface, i.e., a compact complex variety of dimension 2 with r
singular points, all of type A1.

Let S → X be the minimal resolution of singularities of X and let E = E1+· · ·+Er
be its exceptional locus. By [BW74, Corollary 1.3] the local cohomology group
H1
E(ΘS) = ⊕r1H1

Ei
(ΘS) embeds in H1(ΘS).

By [BW74, Proposition 1.10], for each 1 ≤ i ≤ r, H1
Ei

(ΘS) has dimension 1. Let
now νi ∈ X be the node, image of Ei, and let θi be a generator of H1

Ei
(ΘS) seen

as element in H1(ΘS). The primary obstruction [θi, θi] belongs to H2(ΘS), which
is by Serre duality isomorphic to the dual of H0(Ω1

S ⊗ Ω2
S).

Therefore we can see [θi, θi] as a map ανi : H
0(Ω1

S ⊗ Ω2
S) → C which is explicitly

described in [Kas77] as follows: a small neighbourhood Ui of νi in X is isomorphic
to the quotient of a small disc ∆ ⊂ C2, with coordinates (z1, z2), by the involution
(z1, z2) 7→ (−z1,−z2). This gives an inclusion of H0(Ω1

Ui
⊗Ω2

Ui
) into the invariant

subspace
H0(Ω1

∆ ⊗ Ω2
∆)+ ⊂ H0(Ω1

∆ ⊗ Ω2
∆),

and thus every η ∈ H0 (Ω1
S ⊗ Ω2

S) can be locally written as

η = (f1dz1 + f2dz2)⊗ (dz1 ∧ dz2).

Then

(1.1) ανi(η) =

(
∂f2

∂z1

− ∂f1

∂z2

)
(0, 0).

This allows to prove the following:

Theorem 1.3. Let S → X be the minimal resolution of the singularities of a
nodal surface X. Assume that

(1) h1(ΘX) = 0;
(2) the maps ανi associated to the nodes νi of X locally described in (1.1) are

linearly independent in H0(Ω1
S ⊗ Ω2

S)∨.
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Then S is rigid and h1(ΘS) equals the number of nodes of X.

Proof. By [Pin81, Proof of Corollary [3]] we have H1(ΘS) = H1(ΘX) ⊕H1
E(ΘS).

Therefore, by condition 1, we can identify H1(ΘS) with H1
E(ΘS) ∼= Cr.

Then for every θ ∈ H1(ΘS) there are ti ∈ C such that θ =
∑r

1 tiθi. Because

[θ, θ] =

[
r∑
1

tiθi,

r∑
1

tiθi

]
=

r∑
1

t2i [θi, θi],

the primary obstruction [θ, θ] equals, considered as element of H0(Ω1
S ⊗ Ω2

S)∨,∑r
1 t

2
iανi and then, by condition 2, it vanishes only for θ = 0. Thus S is rigid,

since no infinitesimal deformation of S (corresponding to θ) can be lifted to a local
deformation of S. �

Let S be a minimal surface of general type and let X be its canonical model.
Then Def(S) (respectively Def(X)) denotes the base of the Kuranishi family of
deformations of S (respectively of X).

Let G be a finite group acting faithfully on a smooth algebraic surface Z and let
p : Z → Z/G be the quotient map. If p is unramified in codimension 1, then by
[Cat89, Lemma 4.1] the natural map (p∗ΘZ)G → ΘX is an isomorphism.

We get thus the following special case of the more general [Cat89, Corollary 1.20]

Corollary 1.4. Let Z be a smooth algebraic surface, let G be a finite group acting
on Z in such a way that the quotient map p : Z → X = Z/G is unramified in
codimension 1, and the singular locus of X is a set of r nodes. If h1(ΘZ)G = 0
and condition 2 in Theorem 1.3 holds for X, then S is rigid and h1(ΘS) = r.

In particular, Def(S) is scheme of embedding dimension r supported in a point.

2. Character decomposition of the direct image of the
bicanonical sheaf of an abelian cover

Let G be a finite Abelian group, acting on a normal complex variety X, such that
X/G is smooth, and denote by π : X → X/G =: Y the quotient map.

We assume X to be Gorenstein. Then the dualizing sheaf ωX is invertible.

G acts on π∗OX , π∗ωX , π∗ω
⊗2
X inducing a direct sum decomposition in eigensheaves

according to the characters as follows:

π∗OX = ⊕χ∈G∗L−1
χ ,

π∗ωX = ⊕χ∈G∗(π∗ωX)(χ),

π∗ω
⊗2
X = ⊕χ∈G∗(π∗ω⊗2

X )(χ).

In the following we prefer to use the additive notation for the character group G∗.

We need the following mild generalization of a result of Pardini ([Par91]):

Proposition 2.1. (π∗ωX)(χ) ∼= ωY ⊗ L−χ.
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Proof. In ([Par91, Proposition 4.1]) the claim is proved under the hypothesis that
X be smooth. Since ωX is an invertible sheaf the proof of loc.cit. works without
modifications. �

Let R, respectively D, be the ramification, respectively the branch, locus of π.
Then D is a Cartier divisor and R is a Q-Cartier divisor. The stabilizer of each
irreducible component T of R is a cyclic group H. Moreover, there is a character
ψ ∈ H∗ such that for all smooth points p of X contained in T , there are local
coordinates (z1, . . . , zn) around p with T = {zn = 0} and such that ∀g ∈ H, g∗zi =
zi, for 1 ≤ i ≤ n− 1 and g∗(zn) = ψ(g)zn. This induces a splitting

R =
∑
H,ψ

RH,ψ.

Since two irreducible components of R dominating the same component of D are
contained in the same divisor RH,ψ this induces a splitting

D =
∑
H,ψ

DH,ψ.

For the details we refer to [Par91].

Proposition 2.2.

(
π∗ω

⊗2
X

)(χ) ∼= (π∗ωX)χ ⊗ ωY

 ∑
χ|H 6=ψ

DH,ψ

 ∼= ω⊗2
Y ⊗ L−χ

 ∑
χ|H 6=ψ

DH,ψ

 .

Proof. We show that the cokernel of the injective morphism

(2.1) (π∗ωX)χ ⊗ (π∗ωX)G → (π∗ω
⊗2
X )χ

is supported on the divisor
∑

χ|H 6=ψDH,ψ, and has multiplicity 1 in each of these

irreducible divisors.

For each q ∈ X \ SingX let H be the (possibly trivial) stabilizer of q, m = |H|. If
m ≥ 2, then there is a ψ such that π(q) ∈ DH,ψ. Then there are local coordinates
(z1, . . . , zn) in a neighbourhood of q such that for all g ∈ H, g∗zi = zi, for 1 ≤ i ≤
n− 1 and g∗(zn) = ψ(g)zn. If instead m = 1, we can choose any local coordinates
in a neighbourhood of q.

A local generator of (π∗ωX)G is zm−1
n dz1 ∧ . . . ∧ dzn.

Similarly, local generators of (π∗ω
⊗k
X )χ are

zakn (dz1 ∧ . . . ∧ dzn)⊗k, 0 ≤ ak ≤ m− 1.

Note that ak = 0⇔ χ|H = ψk. If a1 = 0, equiv. if χ|H = ψ, the tensor product of
the given local generators of (π∗ωX)G and (π∗ωX)χ maps to the given local gener-
ator of (π∗ω

⊗2
X )χ, and then the map (2.1) is an isomorphism in a neighbourhood

of q.
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On the other hand, if a1 6= 0, equiv. if χ|H 6= ψ, the same tensor product maps
to zmn times the given local generator of (π∗ω

⊗2
X )χ. Now, zmn is the pull-back of a

local generator of the ideal of DH,ψ at π(q), and this implies the result. �

3. An infinite series of product-quotient surfaces

The aim of this section is to construct for each even n ∈ N, such that 3 - n, a
surface Xn of general type having 6 nodes as singularities. Let be G := (Z/nZ)2.

For n ≥ 2, let p : C(n) → P1 be the G-Galois cover branched on {0, 1,∞} with
local monodromies g0 = (1, 0) at 0, g∞ = (0, 1) at ∞ and therefore g1 = (−1,−1)
at 1.

In other words, using the notation of section 2, there are three branch divisors
DH,ψ of positive degree, all of degree 1. In fact, each branch point p ∈ {0, 1,∞}
is the branch divisor DHp,ψp , where Hp = 〈gp〉 and ψ : Hp → C∗ is the character

mapping gp to η := e
2πi
n .

Remark 3.1.

1) We recall that giving a (Z/nZ)2-Galois cover p : C(n) → P1 branched on {0, 1,∞}
as above is essentially equivalent to give generators g0, g1, g∞ of (Z/nZ)2 such
that g0 + g1 + g∞ = 0. For details (in a much more general setting) we refer to
[BCGP12, page 1002].

2) A finite Galois cover of P1 branched on {0, 1,∞} is called a triangle curve.

3) By Hurwitz’ formula the genus of C(n) is

g(C(n)) = 1 +
n2

2

(
−2 + 3

n− 1

n

)
= 1 +

n(n− 3)

2
.

Notation 3.2. For describing the characters in G∗ we fix a bijection Z/nZ →
{0, 1, . . . , n−1}, in other words if we write a character χ as (α, β) we automatically
assume that 0 ≤ α, β ≤ n− 1.

Then
∀(a, b) ∈ G χ(a, b) = (α, β)(a, b) = ηαa+βb,

whence

χ|H0 = ψα0 , χ|H∞ = ψβ∞, χ|H1 = ψ−α−β1 .

Splitting p∗OC(n) = ⊕χ∈G∗L−1
χ as sum of line bundles according to the action of

G, using [Par91, Theorem 2.1], we get the formula

Ln(α,β)
∼= OP1(αp0 + βp∞ + γp1),

where γ is the unique integer 0 ≤ γ ≤ n− 1 such that α+ β + γ is divisible by n.
It follows that L(α,β)

∼= OP1

(
α+β+γ

n

)
, in particular:

L(0,0) = OP1 ,

L(α,β) = OP1(1) if 1 ≤ α + β ≤ n,

L(α,β) = OP1(2) if α + β ≥ n+ 1.
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Figure 1. The degrees of (p∗ωC(n))(α,β)

Therefore, by Proposition 2.1, and observing that if χ = (α, β), then (if α, β 6= 0)
−χ = (n− α, n− β), we obtain that the summands of p∗ωC(n) are

(p∗ωC(n))(0,0) = OP1(−2),

(p∗ωC(n))(α,β) = OP1 if α, β 6= 0, α + β ≤ n− 1,(3.1)

(p∗ωC(n))(α,β) = OP1(−1) else.

Remark 3.3. This implies in particular

H0(ωC(n)) =
⊕

χ=(α,β)
α+β≤n−1
α,β≥1

ω(χ)C.

where ω(χ) is a global form such that ∀g ∈ G, g∗ω(χ) = χ(g)ω(χ).

Denoting by RH,ψ the reduced preimage of DH,ψ under p, the divisor of ω(χ) is

(ω(χ)) = (α− 1)RH0,ψ0 + (β − 1)RH∞,ψ∞ + (n− α− β − 1)RH1,ψ1 .

Then (p∗ω
⊗2
C(n))

(χ) can be determined by Proposition 2.2.

Proposition 3.4. If n ≥ 4, then

(p∗ω
⊗2
C(n))

(α,β) =OP1(−1), if (α, β) ∈ {0, 1}2 ∪ {(0, n− 1), (n− 1, 0)}
∪ {(1, n− 1), (n− 1, 1)} ∪ {(1, n− 2), (n− 2, 1)},

(p∗ω
⊗2
C(n))

(α,β) =OP1(1), if α, β ≥ 2, α + β ≤ n− 2,

(p∗ω
⊗2
C(n))

(α,β) =OP1 , else.
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Figure 2. The degrees of (p∗ω
2
C(n))

(α,β)

Proof. By Proposition 2.2, (p∗ω
⊗2
C(n))

(α,β) ∼= (p∗ωC(n))(α,β) ⊗ OP1(δ − 2) where δ is
the degree of the divisor D with 0 ≤ D ≤ p0 + p1 + p∞ such that

p0 ≤ D ⇔ α 6= 1, p∞ ≤ D ⇔ β 6= 1, p1 ≤ D ⇔ α + β 6= n− 1.

This leads us to consider the three lines α = 1, β = 1 and α + β = n− 1 and the
triangle they form.

In the three vertices (1, 1), (1, n−2), (n−2, 1) of the triangle δ = 1. By (3.1) they
all have (p∗ωC(n))(α,β) ∼= OP1 and therefore (p∗ω

⊗2
C(n))

(α,β) ∼= OP1(−1).

In the remaining points of these three lines, δ = 2 and then (p∗ωC(n))(α,β) ∼=
(p∗ω

⊗2
C(n))

(α,β).

By (3.1), if χ ∈ {(1, 0), (0, 1), (0, n − 1), (n − 1, 0), (1, n − 1), (n − 1, 1)}, then
(p∗ω

⊗2
C(n))

(α,β) ∼= OP1(−1), else (p∗ω
⊗2
C(n))

(α,β) ∼= OP1 .

Finally, outside the three lines we have δ = 3.

If χ is inside the triangle, then by (3.1) (p∗ωC(n))(α,β) ∼= OP1 and (p∗ω
⊗2
C(n))

(α,β) ∼=
OP1(1).

For (α, β) = (0, 0), then (p∗ωC(n))(0,0) ∼= OP1(−2) whence (p∗ω
⊗2
C(n))

(0,0) ∼= OP1(−1).

In the remaining cases (p∗ωC(n))(α,β) ∼= OP1(−1) and (p∗ω
⊗2
C(n))

(α,β) ∼= OP1 . �

From now on we fix n ≥ 4, even and 3 - n and we denote C(n) simply by C.

Let Z := C ×C and we define the following action of G on C ×C: for (a, b) ∈ G,
for (z1, z2) ∈ C × C

(a, b)(z1, z2) := ((a, b)z1, (a
′, b′)z2) ,
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where

A

(
a′

b′

)
:=

(
a
b

)
, A :=

(
1 −2
2 −1

)
.

Since 3 - n, A ∈ GL (2,Z/nZ).

Remark 3.5. In other words, we take two different G-actions on the same curve
C, differing by an automorphism of G.

The first one is as before p1 : C1
∼= C → C1/G ∼= P1 branched on {0, 1,∞} with

local monodromies g0 = (1, 0) at 0, g∞ = (0, 1) at ∞ and g1 = (−1,−1) at 1,
and the second one is p2 : C2

∼= C → C2/G ∼= P1 branched on {0, 1,∞} with local
monodromies h0 = (1, 2) at 0, h∞ = (−2,−1) at ∞ and h1 = (1,−1) at 1.

The local monodromies of p2 are then the images of the local monodromies of p1

by the matrix A.

Remark 3.6. The line bundles ((p1)∗ω
⊗k
C1

)χ, k ∈ {1, 2}, are exactly the line bundles
(p∗ωC(n))χ computed in (3.1) and Proposition 3.4.

Instead, for the action on the second factor, we observe that

((p2)∗ω
⊗k
C2

)χ ∼= (p∗ωC(n))χ
′

where, if χ = (α, β), then χ′ = (α′, β′) with

tA−1

(
α
β

)
≡
(
α′

β′

)
mod n.

Let be Xn := (C × C)/G and let ρ : Sn → Xn be the minimal resolution of the
singularities of Xn.

Proposition 3.7. For each even n ≥ 4, not divisible by 3, Xn has six nodes as
only singularities. Sn is a minimal regular surface of general type with invariants:

K2
Sn = 2(n− 3)2,

χ(OSn) =
n2 − 6n+ 12

4
,

pg(Sn) =
(n

2
− 2
)(n

2
− 1
)
.

Proof. Note that 〈gp〉∩〈hq〉 = {(0, 0)} for p 6= q whereas 〈gp〉∩〈hp〉 ∼= Z/2Z. More
precisely, 〈gp〉 ∩ 〈hp〉 = 〈sp〉 where s0 =

(
n
2
, 0
)
, s∞ =

(
0, n

2

)
, s1 =

(
n
2
, n

2

)
.

For all p ∈ {0, 1,∞} there are n2 points of C×C lying over (p, p) ∈ P1×P1. Since

〈gp〉 ∩ 〈hp〉 has order 2, they split in n2

n2

2

= 2 orbits, so producing each 2 nodes on

the quotients Xn := (C × C)/G. Hence Xn has exactly 3 · 2 = 6 nodes.

By [BCGP12] Sn is regular and

K2
Sn =

8(g1 − 1)(g2 − 1)

|G|
=

8
(
n(n−3)

2

)2

n2
= 2(n− 3)2,
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χ(OSn) =
K2
Sn

+ 6

8
=

2n2 − 12n+ 24

8
=
n2 − 6n+ 12

4
,

pg(Sn) =
n2 − 6n+ 8

4
=

(n− 4)(n− 2)

4
=
(n

2
− 2
)(n

2
− 1
)
.

�

Remark 3.8. Xn are (singular models of) so-called product-quotient surfaces, in-
troduced in [BP12], [BCGP12].

4. The deformations of Sn and Xn

This section is dedicated to the proof of our main result.

Theorem 4.1. Let n ∈ N be an even number ≥ 8, not divisible by 3. Then Sn is
rigid and h1(ΘSn) = 6.

In particular, Sn is an infinite series of minimal regular surfaces of general type
with unbounded invariants which are rigid, but not infinitesimally rigid.

Proof. Set Z := C × C and let π : Z → Xn = Z/G be the quotient map.

Since C is a triangle curve, h1(ΘC)G = 0 and then h1(ΘZ)G = 2h1(ΘC)G = 0.

Since π is unramified in codimension 1, the result follows by Corollary 1.4 if
condition 2 in Theorem 1.3 holds for Xn.

This will be proven in Proposition 4.3. �

First observe that by [Cat89, Proposition 1.6] we know that

H0(Ω1
Sn ⊗ Ω2

Sn) ∼= H0(Ω1
C×C ⊗ Ω2

C×C)G.

By the Künneth formula (cf. [Kau67]) we have:

(4.1) H0(Ω1
C×C ⊗ Ω2

C×C) =
((
H0(ω⊗2

C )⊗H0(ωC)
)
⊕
(
H0(ωC)⊗H0(ω⊗2

C )
))
.

The group G acts on both sides of equation (4.1) producing a Künneth decom-
position of each eigenspace H0(Ω1

C×C ⊗ Ω2
C×C)(χ). The result for the G-invariant

part is, by Remark 3.6,

(4.2) H0(Ω1
C×C ⊗ Ω2

C×C)G =

=
⊕
χ∈G∗

((
H0(ω⊗2

C )(χ) ⊗H0(ωC)(−χ′)
)
⊕
(
H0(ωC)(χ) ⊗H0(ω⊗2

C )(−χ′)
))

where, if χ = (α, β), then χ′ = (α′, β′) with

(4.3) tA−1

(
α
β

)
≡
(
α′

β′

)
mod n.

Proposition 4.2. Set k0 = k1 = (1, 0), k∞ = (0, 1) ∈ G.

Assume that there is a set of six characters C := {χ0, χ
′
0, χ1, χ

′
1, χ∞, χ

′
∞} ⊂ G∗,

such that
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(1) χ0 ≡ χ′0 ≡ (0, 1), χ1 ≡ χ′1 ≡ (1, 1), χ∞ ≡ χ′∞ ≡ (1, 0) mod 2;
(2) ∀p ∈ {0, 1,∞}, χp(kp) 6= χ′p(kp);

(3) if χ ∈ C, then H0(ωC)(χ) 6= {0},
(4) if χ ∈ C, then H0(ω⊗2

C )(−χ′) 6= {0}, where χ and χ′ are related as in (4.3).

Then condition 2 in Theorem 1.3 holds for Xn.

Proof. For each p ∈ {0, 1,∞} choose a point qp ∈ C × C whose image in P1 × P1

is (p, p). Then the image of {qp : p ∈ {0, 1,∞}} in Xn, say {νp : p ∈ {0, 1,∞}},
consists of three nodes.

For every χ = (α, β) ∈ C the summand

H0(ωC)(χ) ⊗H0(ω⊗2
C )(−χ′)

in (4.2) has by assumption (3) and (4) a nontrivial section ξχ.

The stabilizer of qp is, in the notation of Remark 3.5, 〈gp〉∩〈hp〉 ∼= Z/2Z, generated
by sp, where s0 =

(
n
2
, 0
)
, s∞ =

(
0, n

2

)
, s1 =

(
n
2
, n

2

)
.

We choose local coordinates (xqp , yqp) at qp such that xqp is a local parameter for
the first factor C, yqp is a local parameter for the second copy of C,

s∗pxqp = −xqp , s∗pyqp = −yqp ,
and

ξχ = xλpqp dxqp ⊗ y
µp
qp (dyqp)

2

Since a complete linear system on P1 has no base points, λp, µp ∈ {0, 1}.
Moreover s∗px

λp
qp dxqp = (−1)λp+1x

λp
qp dxqp = χ(sp)x

λp
qp dxqp implies

sp ∈ kerχ⇔ λp = 1.

Similarly s∗py
µp
qp (dyqp)

2 = (−1)µpy
µp
qp (dyqp)

2 = χ(sp)y
µp
qp (dyqp)

2 implies

sp ∈ kerχ⇔ µp = 0.

Next we look for three more points q′p ∈ C×C, which lie over the remaining three

nodes {ν ′p : p ∈ {0, 1,∞}}, such that ν ′p maps to (p, p) ∈ P1 × P1.

Note that G × G acts on C × C and that one half of the points in the orbit
of qp under this action maps to νp and the other half to ν ′p. More precisely, if
(g, g′) = ((a, b)(a′, b′)), then (g, g′)q0 maps to the node ν0 if and only if a + a′ is
even. Similarly (g, g′)q1 resp. (g, g′)q∞ maps on the node ν1 resp. ν∞ if and only
if b+ b′ resp a+ a′ + b+ b′ is even.

Choosing q′p such that (kp, (0, 0))q′p = qp, we get by our choice of kp that q′p maps
to ν ′p for p ∈ {0, 1,∞}.
We pull back the local coordinates around qp to local coordinates around q′p:

xq′p = k∗pxqp , yq′p = yqp .

Then

x
λp
q′p
dxq′p ⊗ y

µp
q′p

(dy′qp)
2 = (kp, (0, 0))∗ξχ = χ(kp)ξχ,
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hence
ξχ = χ(kp)

−1x
λp
q′p
dxq′p ⊗ y

µp
q′p

(dy′qp)
2.

By (1.1), if ξχ has local expression f(x, y)dx⊗(dy)2 in the chosen local coordinates

near one of our points qp (resp. q′p), then ανp(ξχ) (resp. αν′p(ξχ)) equals ∂f
∂x

(0, 0).

We observe now that ∀p 6= p′ ∈ {0, 1,∞}, sp ∈ kerχp, kerχ′p and sp′ 6∈ kerχp, kerχ′p.
So the local expression of ξχp , ξχ′p at qp has f = x whereas its local expression at
qp′ has f = y. Then

(αν0 , αν′0 , αν1 , αν′1 , αν∞ , αν′∞)(ξχ0) =(1, χ0(h0)−1, 0, 0, 0, 0)

(αν0 , αν′0 , αν1 , αν′1 , αν∞ , αν′∞)(ξχ′0) =(1, χ′0(h0)−1, 0, 0, 0, 0)

(αν0 , αν′0 , αν1 , αν′1 , αν∞ , αν′∞)(ξχ1) =(0, 0, 1, χ1(h1)−1, 0, 0)

(αν0 , αν′0 , αν1 , αν′1 , αν∞ , αν′∞)(ξχ′1) =(0, 0, 1, χ′1(h1)−1, 0, 0)

(αν0 , αν′0 , αν1 , αν′1 , αν∞ , αν′∞)(ξχ∞) =(0, 0, 0, 0, 1, χ∞(h∞)−1)

(αν0 , αν′0 , αν1 , αν′1 , αν∞ , αν′∞)(ξχ′∞) =(0, 0, 0, 0, 1, χ′∞(h∞)−1)

Since by condition 2 the six vectors on the right are linearly independent, then
αν0 , αν′0 , αν1 , αν′1 , αν∞ , αν′∞ are linearly independent too. �

Finally we can prove

Proposition 4.3. For all n ≥ 8 even and not divisible by 3 condition 2 in Theorem
1.3 holds for Xn.

Proof. It suffices to find a set C of characters of G as in Proposition 4.2.

We take the characters

χ0 = (2, 1) χ1 = (1, 3) χ∞ = (1, 2)

χ′0 = (4, 1) χ′1 = (3, 1) χ′∞ = (1, 4)

Conditions (1) and (2) are obvious. Condition (3) follows by (3.1).

Finally, condition (4) follows by Proposition 3.4 if ∀χ = (α, β) ∈ C and ∀(α′, β′) ∈
{0, 1}2 ∪ {(0, n− 1), (n− 1, 0)} ∪ {(1, n− 1), (n− 1, 1)} ∪ {(1, n− 2), (n− 2, 1)}

tA−1

(
−α
−β

)
6≡
(
α′

β′

)
mod n

We need then to distinguish the two cases n = 3m ± 1. Note that in both cases
n ≥ 8 gives m ≥ 3.

If n = 3m− 1, tA−1 =

(
−m −2m
2m m

)
, hence

tA−1

(
−2
−1

)
≡
(
m+ 1
m− 2

)
, tA−1

(
−1
−3

)
≡
(
m+ 2
m− 2

)
, tA−1

(
−1
−2

)
≡
(

2m+ 1
2m− 2

)
,

tA−1

(
−4
−1

)
≡
(

2
n− 3

)
, tA−1

(
−3
−1

)
≡
(

2m+ 1
2m− 3

)
, tA−1

(
−1
−4

)
≡
(

3
n− 2

)
.
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If n = 3m+ 1, tA−1 =

(
m 2m
−2m −m

)
and

tA−1

(
−2
−1

)
≡
(

2m+ 2
2m− 1

)
, tA−1

(
−1
−3

)
≡
(

2m+ 3
2m− 1

)
, tA−1

(
−1
−2

)
≡
(
m+ 2
m− 1

)
,

tA−1

(
−4
−1

)
≡
(

2
n− 3

)
, tA−1

(
−3
−1

)
≡
(
m+ 2
m− 2

)
, tA−1

(
−1
−4

)
≡
(

3
n− 2

)
.

�

5. Higher dimensional examples

The aim of this section is to give examples of rigid compact complex manifolds
which are not infinitesimally rigid in all dimensions d ≥ 3.

The main result is the following

Theorem 5.1. Let n ≥ 8 be an even integer such that 3 - n, and let X be a
compact complex rigid manifold.

Then Sn ×X is rigid, but not infinitesimally rigid.

In particular there are rigid, but not infinitesimally rigid, manifolds of dimension
d and Kodaira dimension κ for all possible pairs (d, κ) with d ≥ 5 and κ 6= 0, 1, 3
and for (d, κ) = (3,−∞), (4,−∞), (4, 4).

Let X and Y be compact complex manifolds. Then by the Künneth formula (cf.
[Kau67]) we have:

(5.1) H1(ΘX×Y ) = H1(ΘX)⊕ (H0(ΘX)⊗H1(OY ))⊕
⊕ (H1(OX)⊗H0(ΘY ))⊕H1(ΘY ).

Before proving the Theorem we need the following result, which is probably well-
known. For lack of a suitable reference we will give a sketch of proof.

Lemma 5.2. Let X, Y be compact complex manifolds, such that

H1(ΘX×Y ) = H1(ΘX)⊕H1(ΘY ).

Then Def(X × Y ) = Def(X)×Def(Y ).

Here Def(X) denotes as usual the base of the Kuranishi family of the compact
complex manifold X.

Proof. We choose a Hermitian metric onX respectively on Y (i.e. on the respective
holomorphic tangent bundles T 1,0

X resp. T 1,0
Y ). This induces (identifying T 1,0

X×Y with

the direct sum of the pullbacks of T 1,0
X resp. T 1,0

Y ) a Hermitian metric on X × Y .

With respect to these Hermitian metrics we have the adjoint operators on differ-
entiable (0, p) forms on each of these spaces, i.e.,

∂̄∗• : E (0,p+1)(T 1,0
• )→ E (0,p)(T 1,0

• ),
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such that for (ηX , ηY ) ∈ E (0,p+1)(T 1,0
X )⊕ E (0,p+1)(T 1,0

Y ) we have

∂̄∗X×Y (ηX + ηY ) = ∂̄∗X(ηX) + ∂̄∗Y (ηY ).

Then we may (by a slight abuse of the notation) consider ∂̄∗X , resp. ∂̄∗Y as the
restrictions of ∂̄∗ := ∂̄∗X×Y . The same holds then for the induced Laplace operator,
Green operator G and the harmonic projector H.

Going through the construction of the Kuranishi family (for the details we refer to
[Cat88]), identifying H1(ΘX×Y ) = H1(ΘX)⊕H1(ΘY ) with Cm × Cl with coordi-
nates t = (t1, . . . , tm), and s = (s1, . . . , sl) (corresponding to two bases η1, . . . , ηm
and η′1, . . . , η

′
l of the harmonic 1-forms with values in T 1,0

• ), and using that then

Def(X × Y ) = {(t, s) ∈ Cm × Cl : H[ϕ(t, s), ϕ(t, s)] = 0},

where ϕ(t, s) is the unique solution of the equation

ϕ(t, s) =
∑

tiηi +
∑

sjη
′
j +

1

2
∂̄∗G[ϕ(t, s), ϕ(t, s)].

It is then easy to see that ϕ(t, s) = ϕ1(t) + ϕ2(s), where ϕi are the solutions of
the respective equations for each of the factors. This concludes the proof. �

Proof of Theorem 5.1. Observe that H1(OSn) = H0(ΘSn) = 0. Therefore apply-
ing the Künneth formula we obtain:

H1(ΘSn×X) = H1(ΘSn)⊕H1(ΘX) 6= {0}.

Then Sn×X is not infinitesimally rigid. Moreover, by the above Lemma, we have
that

Def(Sn ×X) = Def(Sn)×Def(X).

Therefore, since Sn and X are rigid, also Sn ×X is rigid.

Choosing X = (P1)d−2 we get examples for all dimension d ≥ 3 with κ = −∞.

Choosing X = Sm (m ≥ 8 even with 3 - m) we get examples with (d, κ) = (4, 4).

Choosing a rigid manifold X of Kodaira dimension κ ∈ {0, 2, . . . , dimX} (cf.
[BC18, Theorems 3.4, 3.5]), we get rigid and not infinitesimally rigid examples for
all dimensions d ≥ 5 and all possible Kodaira dimensions except 0, 1, 3. �

Remark 5.3. Observe that, since rigid manifolds of general type are globally rigid,
we found globally rigid manifolds which are not infinitesimally rigid of every di-
mension d ≥ 2, d 6= 3.
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Dipartimento di Matematica, Università di Trento, via Sommarive 14, I-38123
Trento, Italy.

E-mail address: Roberto.Pignatelli@unitn.it


	Introduction
	1. A criterion to prove rigidity
	2. Character decomposition of the direct image of the bicanonical sheaf of an abelian cover
	3. An infinite series of product-quotient surfaces
	4. The deformations of Sn and Xn
	5. Higher dimensional examples
	References

