
ON WAHL’S PROOF OF µ(6) = 65

Introduction

In this note we present a short proof of the following theorem of D. Jaffe and D.
Ruberman:

Theorem
JR

[Ja-Ru]. A sextic hypersurface in P
3 has at most 65 nodes.

The bound is sharp by Barth’s construction
Ba
[Ba] of a sextic with 65 nodes.

Following Beauville
Bea
[Be], to a set of n nodes on a surface is associated a linear

subspace of F
n (where F is the field with two elements) whose elements corresponds

to the so-called even subsets of the set of the nodes. Studying this code Beauville
proved that the maximal number of nodes of a quintic surface is 31.

The same idea was used by Jaffe and Ruberman, but their proof is not so short
as the one of Beauville, partly because at that time a complete understanding of
the possible cardinalities of an even set of nodes was missing.

Almost at the same time, J. Wahl
wahl
[Wa] proposed a much shorter proof of the

same result. He proved indeed the following (see the beginning of the next section
for the missing definitions)

Theorem
wahl

[Wa]. Let V ⊂ F
66 be a code, with weights in {24, 32, 40}. Then

dim(V ) ≤ 12.

He claimed that Jaffe-Ruberman’s theorem follows as a corollary since the code
associated to a nodal sextic has dimension at least n− 53 (see section 1 of

CaTo
[Ca-To]

for this computation). In fact, he used an incorrect result stated by Casnati and
Catanese in

CaCa
[Ca-Ca], asserting that the possible cardinalities of an even set of nodes

on a sextic are only 24, 32 and 40. Recently Catanese and Tonoli showed indeed

Theorem
CaTo

[Ca-To]. On a sextic nodal surface in P
3, an even set of nodes has

cardinality in {24, 32, 40, 56}.

Note however that
CaTo
[Ca-To] used a result by Jaffe and Ruberman, namely that there

is no even set of nodes of cardinality 48.
By the above theorem the proof of the theorem of Jaffe and Ruberman reduces

to the following

Theorem A. Let V ⊂ F
66 be a code with weights in {24, 32, 40, 56}. Then

dim(V ) ≤ 12.

This statement is in fact theorem 8.1 of
JR
[Ja-Ru]. Anyway, its proof is much more

complicated than Wahl’s one and moreover requires computers computations. In
this short note we give an elementary proof, using and integrating Wahl’s ideas.

1. Notation and general results from coding theory

A code is (in this note) a vector subspace V ⊂ F
n, where F is the field with

two elements. A word is a vector v = (v1, . . . , vn) ∈ F
n. Its support Supp(v) is

the set {i | vi 6= 0} of coordinates that do not vanish in v, its weight |v| is the
cardinality of its support. The length of a code is the cardinality of the union of
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the supports of all its elements. A code V ⊂ F
n is said to be spanning if it has

length n.
A code is even if all its words have even weight, doubly even if all its weights

are divisible by 4. The number of words of weight i in the code V is denoted by
ai(V ) or simply ai when no confusion arises. The weight enumerator of the code
V is the homogeneous polynomial

WV (x, y) =
∑

aix
n−iyi.

The standard scalar product in F
n associates to each code its dual code , i.e., its

annihilator V ∗ ⊂ F
n, which has complementary dimension. We set a∗

i := ai(V
∗).

cazzatine Remark 1.1. 1) V ⊂ F
n is spanning if and only if a∗

1 = 0.
2) If v∗ ∈ V ∗ has weight 2, the subset of V given by all words v with Supp(v) ∩

Supp(v∗) = ∅ is a subcode of codimension at most 1 (and length at most n − 2).
3) A doubly even code is automatically isotropic, i.e., V ⊂ V ∗.

The MacWilliams identity (cf.
mw
[McW-Sl]) states that the weight enumerator

WV ∗(x, y) of the dual code V ∗ equals WV (x + y, x − y)/2d, i.e.,

MWMW (1.1)
∑

a∗
i x

n−iyi =
1

2d

(

∑

ai(x + y)n−i(x − y)i
)

.

As explained in
wahl
[Wa], comparing the coefficients of xn−iyi for i ≤ 3 in both sides

of (
MW
1.1) gives (since a0 = a∗

0 = 1):

Lemma 1.2.
wahl
[Wa, Lemma 2.4] Let V ⊂ F

n be a spanning code of dimension d.lem2.4
Then:

∑

i>0 ai = 2d − 111 (1.2a)
∑

iai = 2d−1n22 (1.2b)
∑

i2ai = 2d−1(a∗
2 + n(n + 1)/2)33 (1.2c)

∑

i3ai = 2d−2
(

3(a∗
2n − a∗

3) + n2(n + 3)/2
)

44 (1.2d)

The following proposition gives dimension and weights of a projected linear code.

Proposition 1.3.
wahl
[Wa, Prop. 2.8] Let V ⊂ F

n be a code of dimension d. Fix aprop2.8

word w ∈ V and consider the projection π : F
n → F

n−|w| onto the complement of
the support of w. Then

(1) If w is not a sum of two disjoint words in V , then V ′ := π(V ) is a code of
dimension d′ = d − 1.

(2) |π(v)| = 1
2 (|v| + |v + w| − |w|).

Proof. If kerπ|V contains, besides w, another word v, one can write a disjoint sum
w = v + (w − v). Thus, in the hypothesis of (1), dimkerπ|V = 1 and therefore
d′ = d − 1.

For (2), let r be the cardinality of the intersection of the two supports of v and
w. Then |v| = r + |π(v)| and |v| + |w| = |v + w| + 2r. �

2. The proof

Lemma 2.1.
wahl
[Wa, Lemma 2.6] The dimension of a code with weights in {24, 32}lem2.6

is at most 9.
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Proof. Let n be the length of the code and d its dimension. Solving the linear
system given by (

1
1.2a) and (

2
1.2b), a24 = 2d−4(64− n)− 4, a32 = 2d−4(n− 48) + 3.

Substituting in (
3
1.2c)

28
(

2d−6 · 9 · (26 − n) + 2d−2 · (n − 48) + 3
)

= 2d−1(a∗
2 + n(n + 1)/2)

If d > 9, then 2d−1 divides the R.H.S. but not the L.H.S., a contradiction. �

rem1 Remark 2.2. A code V ⊂ F
67 with weights ≥ 24 has necessarily a56 ≤ 1.

Proof. Indeed, if there are two different words of weight 56, their sum has weight
at least 24 and then the cardinality of the intersection of their supports is at least
1/2(56+56−24) = 44. Therefore their span has length ≥ 44+2 ·(56−44) = 68. �

lem2 Lemma 2.3. The dimension of a code V ⊂ F
67 with weights in {24, 32, 56} is at

most 10.

Proof. If a56 = 0 the result follows by Lemma
lem2.6
2.1.

Otherwise, by Remark
rem1
2.2, a56 = 1. The intersection of V with any hyperplane

not containing its unique word of weight 56 is a code V ′ of dimension dim(V ) − 1
with weights in {24, 32} and the result follows again by Lemma

lem2.6
2.1. �

Proof of Theorem A. Suppose that there exists a code V ⊂ F
66 with weights in

{24, 32, 40, 56} of dimension 13. Let n be its length and consider V as a spanning
code in F

n.
By Lemma

lem2
2.3 we have a40 > 0. For each word w ∈ V with weight 40 we consider

the projection πw onto the complement of the support of w. By Proposition
prop2.8
1.3,

V ′ := πw(V ) ⊂ F
n−40 is a doubly even code of dimension 12. So V ′ is an isotropic

subspace, n − 40 ≥ 24 and we obtain n ≥ 64: more precisely n ∈ {64, 65, 66}.

Suppose n = 64. For each word w ∈ V of weight 40, πw(V ) is isotropic of
dimension 12 in F

24, so πw(V ) = (πw(V ))∗. Let I ∈ F
24 be the vector with all

coordinates 1: I ∈ (πw(V ))∗ (since πw(V ) is even) and therefore I ∈ πw(V ).
If v ∈ V is a word such that both the weights |v|, |v + w| are ≤ 40, then by

Proposition
prop2.8
1.3 |πw(v)| ≤ 20; therefore by remark

rem1
2.2 a56(V ) = 1 and I = πw(v)

for the unique word v ∈ V with |v| = 56.
Fix one coordinate not in the support of v and let V ′′ ⊂ V be the subcode

defined by the vanishing of the given coordinate. Since I = πw(v), the support of
w contains the complementary of the support of v: then w 6∈ V ′′. Since this holds
for each w ∈ V with |w| = 40, then V ′′ has no word of weight 40: it is a code of
dimension 12 with weights in {24, 32, 56}, contradicting lemma

lem2
2.3.

Suppose n = 65. Solving the equations (
1
1.2a)-(

4
1.2d), we obtain a56 = 1

2 (a∗
2 −

a∗
3 − 5) and thus a∗

2 > 0. Let then z ∈ V ∗ be a word of length 2.
For each word w ∈ V of weight 40, a∗

2(πw(V )) = 0: in fact, for any word
z′ ∈ (πw(V ))∗ of weight 2, Span(V ′, z′) is an isotropic subspace of dimension 13 in
F

25, absurd. Therefore every word w of weight 40 satisfies Supp(w) ⊃ Supp(z).
By remark

cazzatine
1.1 the subset of V given by all words v with Supp(v) ∩ Supp(z) = ∅

is a subcode of dimension at least 12 with weights in {24, 32, 56}, contradicting
Lemma

lem2
2.3.

Then n = 66. Solving the equations (
1
1.2a)-(

4
1.2d), we obtain a56 = a∗

2−
1
2 (a∗

3+13)
and thus a∗

2 ≥ 7. We choose two words z1 6= z2 in V ∗ of weight 2.
If we show that for each word w ∈ V of weight 40, a∗

2(πw(V )) ≤ 1, then Supp(w)
intersects Z = Supp(z1) ∪ Supp(z2). Therefore, by remark

cazzatine
1.1, the subset of V
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given by all words v with Supp(v) ∩ Z = ∅ is a code of dimension at least 11 and
weights among{24, 32, 56}, contradicting again Lemma

lem2
2.3.

So it remains to show only that for each word w ∈ V of weight 40, a∗
2(πw(V )) ≤ 1.

If z′ ∈ (πw(V ))∗ is a word of weight 2, then V ′′ := Span(πw(V ), z′) ⊂ F
26 is an

isotropic subspace of dimension 13, and thus I ∈ V ′′ = (V ′′)∗. Being πw(V ) doubly
even, I, z′ ∈ V ′′ \πw(V ), and therefore I+ z′ is a word in πw(V ) of weight 24. Thus
a∗
2(πw(V )) ≤ a24(πw(V )).
If v ∈ V is a word such that both the weights |v|, |v+w| are ≤ 40, then by Propo-

sition
prop2.8
1.3 |πw(v)| ≤ 20; therefore a24(πw(V )) ≤ a56(V ) ≤ 1 (the last inequality by

remark
rem1
2.2).

�
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