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Abstract

In this paper the authors study generic cover&éfbranched ovefx + y™} =0 s.t. the total
space is a normal analytic surface.

They found a complete description of the monodromy of the cover in terms of the monodromy
graphs and an almost complete description of the local fundamental groups i cage= 1.

For the general case, they give explicit descriptions of base changes in terms of monodromy
graphs; they describe completely the embedded resolution graphs in the|@asdéa these base
changes every cover is a quotient of such a cav&000 Elsevier Science B.V. All rights reserved.

Keywords:Normal surface singularities; Branched covering spaces; Monodromy

AMS classification32S25; 32505

0. Introduction

In this paper we study normal singularities of complex analytic surfaces. Recall that
(see, e.g., [11]) the singularities of a normal analytic variety form an analytic subvariety
of codimension at least 2. So, a normal curve is automatically smooth, and a normal
surface is automatically a surface with isolated singularities. The converse holds only for
hypersurfaces (see [5]).

Then, in case of dimension 2, in order to study germs of normal analytic surfaces we
can consider analytic surfaces with just one singular point.

Recall that, by Weierstrass preparation theorem, in a suitable neighborhood of every
point of an analytic surface there exists a holomorphic function to a disc which is an
analytic cover branched over a curve (see [6]). Moreover, a generic function like this one is
a “generic” cover, i.e., a branched cover of degfeseich that the fiber over a smooth point
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of the branching curve hak— 1 points (see [12]). Every element in the fundamental group
of the set of regular values of this map, induces a permutation af fh@nts of the fiber
over the base point, thus a homomorphism from this groufytaalled “the monodromy

of the cover”. The “generic” condition means that for each geometric loop (i.e., a loop
around a smooth point of the curve) its monodromy is a transposition.

This property can be usefully applied to study singularities; in fact, given a curve
C contained in a disaA (or in C2), and a homomorphism : 71(A — C) (respectively
11(C2 — C)) — Sy, s.t. the images of the geometric loops are transpositions, there exists
a unique normal surfac§ and a generic cover fron§ to A (respectivelyC?) with
C as branch locus ang as monodromy (for an explicit construction see, e.g., [12];
unfortunately, this construction is quite involved, so it does not give directly a satisfying
description of normal singularities).

So, in order to classify generic covers S — C? of degreed, with S normal, branched
over some curve, we need to classify only the generic monodromiesr1(C? — C) —

Sa.

In this paper we restrict to the case where the branching curve has (up to analytic
equivalence) the equatiofi” = y™}. This is a very particular case, but, by the
classification of singularities of plane curves given by Puiseux (see [4]), it seems to be
the natural starting point.

In Section 1 we state some well known expressions of the fundamental group of the disc
minus our curves, via generators and relations, and we give a combinatorial bound for the
degree of the cover.

In Section 2 we prove that our family of covers is stable under base change with maps
of type fu.»(x, y) = (x%, y*); we represent the monodromy of a generic cover of degree
branched on the curvea” = y™} by a graph withd vertices and: labeled edges and we
describe the action of a base change as above over these graphs.

In Section 3, we restrict ourselves to the casem) = 1, and we give a complete
classification of the graphs associated to these covers. In particular, we prove the
following

Theorem 0.1. The monodromy graphs for generic coversS — C? of degreed > 3
branched over the curvie” = y™}, with (n, m) = 1, are the following
(1) “Polygons” with d vertices, valence/d (or m/d) and incremenyj, with (j,d) =
1, j <d/2, j(d — j)|m (respectivelyj(d — j)|n). Moreover,d must dividen
(respectivelyn).
(2) “Double stars” of type(j,d — j) and valence:/j(d — j) (or m/j(d — j)), with
(j,d)y=1,j<d/2, j(d— j)|n (respectivelyj (d — j)|m). Moreoverd must divide
m (respectivelyr).
The base change induced by the mégx, y) = (y, x) in C2 takes graphs of typé in
graphs of type, and vice versa.

For the definition of “polygons” and “double stars” see Definitions 3.2 and 3.3.
So, in order to classify generic covers, we get the following
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Corollary 0.2. If (n, m) = 1 then the generic covers : S — C? of degree greater tha@
branched ovefx” = y™}, § normal surface, are classified by the disjoint union of the sets

{j.d)ld >3, din, (j.d)=1, j <3d., j(d— j)m}
and
{G.d)ld >3, dim, (j.d)=1, j<3d. jd—jn}.

In both cases is the degree of the cover.

All these graphs correspond to some cover als@jfn) > 1, but they do not give a
complete classification. We found also explicit equations for the singulariti§siothe
casej =1.

In Section 4 we compute the local fundamental group of the surfaces associated to some
of the graphs constructed in Section 3. This gives partial answer to the smoothness problem
(is S smooth?); moreover it provides an useful tool in the proof of Theorem 0.3.

In Section 5 we describe completely the embedded resolution graphs of all the possible
singularities in case: = bn for someb, using, to simplify the calculations, the equation
{x" + ybP" = 0} for the branching locus; we prove the following

Theorem 0.3. Let 7 : S — C? be ad-sheeted generic cover branched over the curve
{x" + yP" =0}, S normal.

S has a resolution which is the plumbing variety of the following normal crossing
configuration of smooth curves

where the verteX, has genugn —d — v + 2)/2 and self-intersection-v.

Moreover, S is smooth<- the monodromy graph is a tre¢his can occur only ifd
dividesb.

Remark that by the results about base change of Section 2, all the possible surfaces under
consideration are the quotient of one of these singularities by the action of a finite group.

1. Fundamental groups and maps

Let C,.» be the curve irC? defined by the equatiori’ = y™.
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The aim of this section is to compute some useful presentations for the fundamental
group ofC?\ C,.,, and derive the first necessary conditions for the existence of generic
covers of given degree branched 0@, .

LetB, ji; bethe pathg(r) = (1, re +(1—1)(1—e)), i (t) = (1, e€#/™) for t € [0, 1]
and ifz € C* andi = (A1, A2) is a path inC2 let z(1) = (A1, zA2).

Let u1, ..., um be the geometric basis af ({x = 1} \ Cy») With (1,1 —¢) O < ¢ <
1/2) as base point given by

M1= (1’ Sei<2m+n) + 1)te[0 1)

wi=B-pj-o - B) -t

for j=2,...,m, wherew = 71/m,

12 | 1o
@(Lw“) (1,w)
H1
(1,1)
(1,0) (1,1-¢)

Proposition 1.1. The fundamental group of? \ C,,, admits the three equivalent
presentations
(1) 7 (C?2\ Cpom) = (1s s | i = MuisnM=t, i =1,....m), where M =
u1---u, and the indices are taken to be cycligatodm);
J— _71 . J—
(2) 7(CP\ Com) =10V | Vi =TvigmI i=1,....n), wherel' = y1-- -y,
and all indices are taken to be cyclicahodn);
(3) m(C?\ Com) = Y10 o ¥ | T =V VYmsi_1,i =2,...,n), where all indices
are taken to be cyclicalmodn).

Proof. Applying Zariski-Van Kampen theorem (see [14,13,9]) to the projeatiarC? —
{y =1}, (x, y) —~ (x, 1), we get the first presentation.

Let M; = p1---u; (with cyclical indices(mod m) and Mp = 1) and definey; =
Mi—ip M fori=1,....n.

Sinceu; = Fi_lyl._ll“i:ll fori =1,...,m, wherel;, = y1-- -y, (with cyclical indices
(modn) andlp=1), 1, ..., v, are a new set of generators and rewriting the relations of
the first presentation in terms of thes we get the second one.

The third presentation is easily obtained from the second ore.

Call ug, ..., un, the standard generators:@i((c2 \ Cp.m) andys, ..., y, the minimal
standard generators of (C2 \ Chom)-
From these presentations it is immediate to verify that, seffingys-- -y,

r=m-"1 and r™/®m —T"" isinthe center
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Observe that if we apply Zariski-Van Kampen theorem to the projedt}omjz - {x=
1}, ¢y(x,y) = (1,y), and proceed as in Proposition 1.1, we may take as generators of
m1(C?\ C,.n) @ geometric basigy, ..., fi, of m1({y = 1} \ C,.») With relations

fui = i1 i (1 o)
fori =1,...,n and cyclical indices (mod).

Note also that this is the same as calculating the fundamental group of the complement
of Cpy p = {x™ = y"} via ¢.

Proposition 1.2. With the above notations
i = Yi.
Proof. Let f,,n:C2, — (‘cg,7 be the mag, n) = fm(x, y) = (x", y™).

Famlea (qey=ojuc,m :C\ ({xy =0} U Cym) — C2\ {£7(& — 1) =0}

is a covering.

Take (1,1 — ¢) as base point ifC2 \ ({xy = 0} U Cn.m) and take as generators of
m1(C?\ ({xy = 0} U C,,.»)) the standard generators of (C? \ Cp.m) A1, .-+ tm, thx =
fim = (1, (1 — £)€?™") (loop around thec-axes) ande, = (€27, 1 — ¢) (loop around the
y-axes) forr € [0, 1].

Observe that if we quotient;(C? \ ({xy = 0} U Cn.m)) by the subgroup normally
generated by, andpu, we obtainz1(C2 \ Cn.m) and that we can do the same thing
with the ii's as generators.

Inthe plang +n = 1+ (1—¢)™ = 2—¢’ take as generators of (C2\ {£n(€ —n) = 0})
¥, Ye, vy as shown in the figure below where the lipg- n = 2 — ¢’ is identified withC
via then coordinate angp = (1,1 — ¢’).

Ve Y Tn

O— —0O
(2-¢,0) (1-5,1-5) (0,2-¢")
Y, ve, yn are related by the equatiopsy,y =y veyy = vy v ve.

Since(fu.m)« IS injective, we can identifyry(C2 \ ({xy =0} U Cn.m)) With its image
obtaining:

-1 —j+1 .
wi=vi vy forj=1...m,
e = Vi,
/JL)’ZV,?,
fj=yy Ty Ty T forj=1.n,
/:LXZng,

Ry = V{n~
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Note now that

-1, -1 -1 -1_-1 -1 -1
Yo ¥ TYa=YYeY Ve VT =My M
thus

fij =y, Py Tyt

=y v e
=p1-- ‘,U#jflM;l(/il T

)*j+l

as we wanted. O

Now we look for whichd > 3 there exists a surjective homomorphigmfrom
the fundamental group of2 \ {x" = y"} in S; sending the geometric generators in
transpositions, i.e., a normal surfaSeand ad-sheeted generic covering: S — C?
branched ovefx” = y™}.

For everyo € S; call v(o) the number of orbits of, v the value of this function for
p(I). v is the number of cycles of a permutation constructed multiplyiiganspositions
in Sy, son +d + v is even.

Call a1, ..., a, the length of thev cycles of the monodromy of". Being I"™/("-m
central and? > 3, the order ofo (I") dividesm/(m, n); then every; does.

LetD,,, C N, be the set of (positive) divisors of/(m, n), and consider all the possible
ways to writed as sum of elements of this set.

Let K¢ be the set of all the possible “lengths” of this sums, where the “length” of a
sum, is the number of integers we are adding.

Now define the function

A(m,n,d) =inf{ve K%, |n+d+vis ever.

A gives a lower bound for the number of orbits@fl"); in fact it is the minimal number
of orbits for permutations with order that divides (m, n) (v € K¢,) and with the same
parity of p(I") (product ofn transpositions).

Now define

xm,n,d)y=n+2—d— A(m,n,d).

We have the following

Proposition 1.3. Let (S, ¢) be a generic cover branched ¢n” = y™} of degreed > 2.
Theny (m,n,d) > 0.
Moreover, ifn dividesm, the converse holds.

Proof. For the first part of the proposition we prove, by inductiomothat for the product
of a transitive set of transpositions ir5,, the number of orbits must bev <n+2—d.
In fact, if n = 1 thend = 2 andv = 1, and there is nothing to prove.

If n > 1, consider the first — 1 transposition® (y;), and letv’ be the number of orbits
of their producty’ =v+21orv =v —1.
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If thesen — 1 transpositions generafg thenv <V +1<n—-1+2—d+1=n+2-d.

Otherwise they generatg;_; x S, and the last transposition “connects” two diffe-
rent orbits of their product. Suppose thatSp there are exactlg among the firsk — 1
transpositions, then their product has by inductir< g + 2 — k orbits and the product
of the othem — 1 — g transpositions has — v’ <n—1— g+ 2— (d — k) orbits.

Sov=V —-1<g+2—k+n—-1—-g+2—(d—-k)—1=n+2—-d.

By definition A(m, n, d) < v and we get the result.

For the converse, remark that in this case the fundamental group is generated by
Y1, ..., ¥y, With the only relation that” is central. So it is sufficient to exhibit a set of
n transpositions, . .., 0, S.t. their product is the identity &.

Now assume((m,n,d) >0, i.e.,A(m,n,d) <n—d + 2.

Then there existy, . .., dagm.n.q) € N such that:

(1) X ai=d,

(2) Vi a; dividesm/(m, n),

(3) n+d+ A(m,n,d) is an even number.

Choose the following transpositions:

i—d+1
o = <1,d+1— Zak>, d<i<d+A-2,
1

1,2), d+A-1<i<n.

Of course this choice verifies our condition, then it describéssheeted generic cover
branched on the curne” = y™}. 0O

In general these functions are not so simple to compute. The following holds:

Remark 1.4.

x(m,n,d+1) > x(m,n,d)—2

Proof. Let A = A(m,n,d). If A = +oo there is nothing to prove. Otherwise, let
ai,...,as € Dy, realizing the minimum as in the definition df.
Thenay,...,aa,ass1="1€ Dy, Withn +d +1+ A+ Levenand {a; =d +1
which impliesA(m,n,d + 1) < A(m,n,d) + 1.
But then

xm,n,d+1)=n+2—d—-1—Am,n,d+1)
>n—d—Am,n,d)=x@m,n,d)—2. 0O

Remark that ifn = n, m even,A(m,m,d) = d, i.e., there exist generic covers if and
onlyifm+2—-2d>0,i.e.,d <m/2+ 1 (if m =n, m odd, there are no generic covers for
d > 2;infact this is true for every, m s.t.mn is odd, see next section for details).



8 S. Manfredini, R. Pignatelli / Topology and its Applications 103 (2000) 1-31
2. Fiber products, monodromies and graphs

Let 7:S — C2 be ad-sheeted generic cover branched oyef = y”} with §
an irreducible surface with an isolated singularity tn= 7 ~1(0,0) and letp be its
monodromy.

Consider the mag, , : C?> — C? and letS = § x 2 C? be the fiber product.

We get the following commutative diagram:

(CZ Jab (CZ

Proposition 2.1. S as above is an analytic surface with an isolated singularityPir=
——1
7~ ~(0,0).

7 is ad-sheeted generic cover branched oyet” = y?”} and its monodromy is the
compositiono o (fa.p)x-

Proof. By definition of fiber product we get immediately th&tis analytic, andr a d-
sheeted generic cover branched ot =y},

The two mapsr and f, , are coverings of? whose branching loci intersect just in the
origin. This easily implies thaf is smooth outside®.

Now consider the homomorphis(\)‘a,;,)*:711((02 \ {x@ = yPm)y 5 7(C2\ {x" =
y™}. Of course

(fap)«(Vi)=vi1 O<i<an,

where[i] is the remainder class éfmodn, and if we choose the correct enumeration
for the points in the fibers over the two base points, we haveMBat i < an, y; and
(fa.p)«(yi) act in the same way and this holds for apye 71(C? \ {x*" = y?™}). This
proves the second part of the theorenm

Theorem 2.2. In the above hypotheses, if moreoges a normal surface, thefiis normal
too.

Proof. First note that we can assurhe= 1. Define
C /a E) LRI RN /3 vy > C E) E) PRI IS /3
'y, 22 Z}’ A=C(S) = {x,y,z1 Zn}
I vl
and denote the quotient fields by
Q = Quot(A), 0 = Quot(A).

Y* injectsA in A andQ in Q (v*(x') = x%); so, we can considet andQ as extensions
of A andQ, respectively.

A=C(S) =
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Recall that, by definition§ normal means that is integrally closed inQ, i.e., for any
f € 0 such tha# p € A[¢] monic with p(f) =0= f € A. We must check that the same
property holds forA in Q.

Let f € Q, p=1"+a,_1t" 14 --- +ap € A[t] monic such thap(f) = 0.

w = €%"1/4 acts onA (respectivelyQ) via the natural map

w(.f(-xvyvzlv""zl’l))=.f(a)x7yvzla"-azn)

and we have that Fix{)= A (respectivelyQ).
For everyl such that 6</ < a define

fi= ) o (o'
0<i<a
Remark that
w(fl)=w< > wi(f)w”) =3 wi+l(f)wil:ill.
0<i<a 0<i<a w

In particular, ifg; = fix!, g1 € Q.
VO<il<a definepf — +wi (an_l)wiltn—l + o4 wi(ao)a)l’lil; Pf (iui(f)a)il) =0.
Let ¢ = [1pi, K, ..., hL, its roots in some suitable extension of and letr; =

[Ticiy<o<ip<an® — hﬁl — = hﬁa). By the fundamental theorem of symmetric functions
r; € Alt] andr(fi) = 0.

Ifrp=tN +by_1tVN 1+ by, letsy =tV + xlby_1tN 1+ + x!Npy: we have
s1(g)) =0, ands; € A[t]; up to multiplyings; by some suitable polynomial, we can assume
s; € Alt],sog; € A.

But f; is a weakly holomorphic function o, so f; is holomorphic in the smooth points
of S.If1=0, fo=goandfoc ACA.If1>0,gis0inSN{x =0}, i.e., is 0 as function
in SN {x"=0}. Thus,g/x" is a holomorphic function or§ \ Sing(S), theng;/x’" is a
holomorphic function or§ (see [11, Chapter 6, Proposition 4]), i.g./x¢ € A.

So

fi= g—i: 8Lyl .
b x4
We conclude the proof noting that
1
f==> fi O
0<l<a

Corollary 2.3. If 7 : § — C? is ad-sheeted generic cover branched oyet = y”} with

S a normal surface singular i = 7 ~1(0, 0), p is its monodromy, ang;, ; : C> — C? is
the map defined above then S = § x 2 C? — C?is the normali-sheeted generic cover
associated to the monodroy= p o (fa.p)-

Remark that base change via, induces a partial ordering among generic covers; call
a generic cover minimal if it cannot be induced by other covers via one of these base
changes.
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Proposition 2.4. (fap)«:m1(C?\ {x = y}) — m1(C?\ {x" = y™}) and v 2 2(S \
{P}) — m1(S \ {P}) are surjective.

Proof. (f4.»)« is surjective sincé f, 5)«(yi) = yi1 for 0 < i < an, so it sends the minimal
standard generators onto the minimal standard generators.

Call R=7"YCpm), R=7"1(Cun.om); m1(S \ R) is the subgroup af1(C?\ C,_,) of
thosey such thato(y)(1) = 1, and the same holds fan (S \ R) in 71(C?\ Cyn.pm) and
p. Since( f,.5)« is surjective ang = p o (fu.p)x, ¥« :71(S \ R) — m1(S \ R) is surjective
too.

Considering the following commutative diagram

7S\ B) —L=m1(S\ R)

213\ (PY) —L>m1(S\ {P)

we obtain thaty, :71(S \ {P}) — m1(S \ {P}) is surjective. O

Our aim is to classify all homomorphisms: 71(C2 \ Cnhm) = Sq (up to inner
automorphisms) whose image is transitive and suchdhato (y;) is a transposition (i.e.,
homomorphisms representing normal surfaces, see Section 0). Observe that if the second
condition holds, the image ¢f is transitive if and only ifp is surjective.

The casel = 2 is trivial sincep is unique and gives the double cover@? branched
overC, ,, obtained projecting oft = 0} the surface irC3

Z2 = x" — ym
(note that a hypersurface with isolated singularities is normal (see [5])), so suppo3e
Since

—-=—n

vi=T"yT
for all i (actually 7"/ ™"™), it follows that p(T"") must be in the center o, which is
trivial if >3, so it mustbe (I"") = 1.
Now, if n andm are both oddp (T™") is an odd permutation and thus it cannot be equal
to 1, sonm must be even.
A surjective homomorphism': 7. — S, from a free groupF, with r generatorgs,

.., & such that the image of each generator is a transposition, can be represented by a
connected graph withl labeled vertices and labeled edges in the following way: take a
vertex forevery =1,...,d andif p’(gn) = (i, j) connect the vertekto the vertexj with
the edge labeletl. Note that the same graph with the numeration of the vertices suppressed
represent®’ up to inner automorphisms &;.

A permutationo € S; acts on the set of graphs withlabeled vertices and labeled
edges in the following way: iV is such a graph then if the edge labeldd N connects
the verticesh andk then the edge labelddn o (N) connects the vertices(h) ando (k).
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Since our presentations have the peculiar forms

vi=TVigmI i =MpinM ™t
we can interpret our monodromwyas a map’ : F, (respectivelyF,,) — S; such that
ti = p'(D)titmp' (1) (respectivelyr; = p'(M) iy’ (M) ™),
i.e., by a connected graph with d vertices and: (respectivelyn) labeled edges such that
if we act onN by p’(I") (respectivelyp’ (M)) for a (fixed) numeration of the vertices, then
the edge labeled by is transformed into the edge labeled py m with cyclical indices
(modn) (respectivelyj + n with cyclical indices (modn)).
By sake of simplicity, from now on we consider only the presentatiomdt? \ C,,.)
in terms of minimal standard generators and so graphsméttiges.
Observe that in order to have a connected graph it mugtde + 1.
So, a generic cover branched oyef = y™} is defined by a graph withl vertices and
n labeled edges, and an integer
Remark that we have proved tht, 5). acts on the graphs substituting the edge labeled
j with a edges labeled + sn for 0 < s < a, and multiplyingm by b. So we restrict
ourselves to “minimal” monodromy graphs, i.e., graphs associated to minimal covers.
Note that we are interested in graphs with labeled edges up to a cyclical permutation of
the edges as we can see from the third presentation in Proposition 1.1.

3. Generic covers branched ovefx” = y™} with n, m relatively prime

The aim of this section is to classify all edge labeled graphs corresponding to generic
monodromies : 71(C2\ Cn.m) = Sq in the caser andm are relatively prime and > 3.

Definition 3.1. Given a graphV, p a vertex ofN andL an edge ofV, let the valence of
p be the number of edges of having p as an end point, and let the valencelobe the
number of edges a¥ with the same end points ds

Definition 3.2 (Polygon3. Let a polygon withd vertices, valence and incremenj, with
j andd relatively prime, be a graph with = ad labeled edges of valeneg d vertices of
valence 2 and such tha¥s, ¢ the edges labeledandr have

(1) two vertices in common if and only if — r = Ad,

(2) one vertexin commonifand onlyif—¢t =Ad + jors —t =Ad — j,

(3) no vertices in common otherwise.

Definition 3.3 (Double star¥. Let a double star of typé¢j, k), with j andk relatively
prime, and valence be a graph witm = ajk labeled edges of valeneg d = j + k
vertices of which;j of valencenk andk of valencezj and such tha¥s, ¢ the edges labeled
s andr have

(1) two vertices in common if and only if— r = Ajk,

(2) one vertexin common if and only§f— ¢ = Ajk + uj ors —t = Ajk + uk,

(3) no vertices in common otherwise.
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Fig. 1. A polygon with 5 vertices, valence 3 and increment 2.

Fig. 2. A double star of typ€3, 4) and valence 1.

Observe that between each vertex of valemt@and each vertex of valeneg there are
exactlya edges and that there are no edges between vertices of the same valence.

Recall that, in both cases, the labeling of the edges is cyclical ¢fhod
The main result of this section is the following

Theorem 3.4. The graphs which correspond to generic monodromies; (C?\ C,,. ) —
Sy for d > 3 with (n, m) = 1, are the following

(1) Polygons withd vertices, valence/d (or valencem/d) and increment;j, with
(j,d)y=1,j<d/2, j(d— j)m (respectivelyj (d — j)|n). Moreoverd must divide
n (respectivelyn).

(2) Double stars of typ&j,d — j) and valence:/j(d — j) (or valencem/j(d — j)),
with (j,d) =1, j <d/2, j(d — j)|n (respectivelyj (d — j)|m). Moreover,d must
dividem (respectively:).

The base change induced by the mégx, y) = (y, x) in C2 takes graphs of typé in
graphs of type, and vice versa.

Let N be the graph representing the monodrgmw hasn edges and vertices.
Sincen andm are relatively prime, the inner action of the subgroup generated by
they; is transitive, and so is the action ptI") (and its powers) on the edges®f
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Thus all edges have the same valen@ndv|n.

Call a petal the set of all edges between two fixed vertices.}2 then choose two
edges, say andi + &, in the same petal. With a suitable powerofou can send the edge
i inthe edge + &, but if so, since then the set of the vertices of the petal is fixed, the petal
remain fixed (as a set), so the edgeis 2k (image of the edgé+ #),i + 34, ..., arein
the petal.

If another edge, say + k, is in the same petal but/k, then all edges + (4, k),
i +2(h,k),..., areinthe petal.

Thus, in general, the edges in a petal are labelédi +n/v, i + 2n/v,...,i + (v —
Dn/v.

Observe that you can retrieve the numeration of the whole graph once you know a
suitable numeration for the case of edges of valence 1, so asswe(This corresponds
to studying minimal covers in the sense of Section 2.)

Sincep’(I') acts by conjugation, it transforms relations betweerntlig )’s in relations
of the same form between the/(T") o’ (y;)p'(I')~Y's, thus intersecting edges go to
intersecting edges and non intersecting edges go to non intersecting edges. Moreover, the
valence of a vertex is maintained, thus there are only two possible valences for the vertices
(possibly equal) and each edge has vertices of both valences.

Call an end a vertex of valence 1, and a leaf an edge with an end as vertex.

Lemma 3.5. If N has a leaf thenV is a double star of typél,d — 1) and valencel;
moreoverd|m.

Proof. If N has a leaf then every other edge is a leaf. In this ¢asen + 1, there is a
vertex of valence: and there is only one possible numeration of the edgesN.és, a
double star of typ€l, n) and valence 1.

In order to calculaten we must construcl”. Let Iy = (y1---yu) y1---ys for r >0,
0 < s <n and act on the vertices of the edge labeled 1 firstflgy = y1, then by
Io2=y1y2,....,T10=y1"¥Yn, [1.1 = y1---yay1 and so on until forl;; the two
vertices coincide with the vertices of another edge, say the edgé.1Then check if
k=5 and if p’(I7.5) sends the edgein the edge + 5. If this is the case thel = I}"fE
andm = a(nr +5).

It is easy to see that in this cage=1,5 =1, s0I" = (y1- - - y»y1)%, d|m, andN gives a
homomorphismp : 71(C?\ Cg_1.4q) = Sq. O
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Cc

Fig. 4.

So you get al-sheeted covering d? ramified onx*“—1 = yb¢ and it can be realized
as the projection oft = 0} of the normal surface ifi®

2 —dy’z+(d - 1x*=0.

Note that this surface is smoo#y a = 1.

We may now assume that has no ends (no leaves) and edges of valence 1.

Consider two edges df, sayi andi + j, with a (single) vertex in common and label
their vertices as in Fig. 3.

Suppose that the power of (I") that takes the edgeto the edge + j acts on the
vertices sending > b > c.

Lemma 3.6. In the above cas@’ is a polygon withd vertices, valenc& and increment
Jj; moreoverj(d — j)|m.

Proof. With the same power gf' (I") that takes the edgeto the edgé + j, the edgé + j
is sent to the edge+ 2 and this must contain the vertexXFig. 4).
Proceeding in this way we obtain a sequence of edges labelég such that two edges
have in common (only) one vertex if and only if they are labeledhrj andi + (h + 1)
for someh. Eventually one of these edges must have a vertex in common with the edge
i and this must be the vertex thus closing the circle (if not there would be an edge of
valence at least 2, see Fig. 5). This last edge must have the labgl
Observe that every edge must belong to a circle like this one with the game
Suppose now that there is another edge, say with the 1apé] containing the vertices
b andd (Fig. 6).
Again a suitable power gf’ (I') takes the edgéto the edge + I and supposé — d.
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Fig. 6.

Fig. 7.

Then the power op’(I") which sends the edgeto the edge + j + ! must send the
vertexa in both the vertices andd, a contradiction.

Otherwise, supposk fixed for the power of’(I") which sends the edgein the edge
i +1; then the edge+ j is sent to the edge+ j + [ which must contain the vertextoo.
Moreover the edgé+ j + I must contain the vertexas one can see acting with the power
of p’(I') that takes the edgeto the edgé + j (and so the edge+ [ to the edgé + 1 + ).
This contradicts our assumption that all edges have valence 1 (Fig. 7).
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So the only possibility is that there is only one circle with= d edges labeled
consecutively 11+ j,...,1+hj,...,14+d — jwith 1< j <d/2 and(j,d) =1, i.e,,
a polygon withd vertices, valence 1 and increment

To calculaten, observe that one of the vertices of the edge 1 moves once g&teps,
i.e., moves once applying, twice applyingy: - - - y14+; and so on, while the other vertex
moves once every — j steps in the opposite direction. Under this condition they will be
again consecutive vertices evérgteps with

[E} + [i] +2=0(modd),
J d—j

and they are the vertices of the edge labeled

(e (2] e

We require this edge to be the edge labdledl, so

([

with k£ > 0, thus
[-1). .
kd=1+{—.}]—]<l
J

and it must be = 0.
Thus, j|I and the same argument shows tiat- j)|/.
The minimall verifies

I—1 -1
(T[] 2
J d—j

thusl = j(d — j).
Now j(d — j)|m.
In fact, since the graph does not change if we cyclically permute the edges, we have that
acting on the edge labeled 2 by- - - ;41 we obtain the edge labeledi2].
If j #1 we get the same result if we act bpy- - -y, (the edge labeled 1 (respectively
[ + 1) does not intersect the edge labeled 2 (respectively)?, thus the edge labeleds
sent to the edge labeléd-i.
If j =1 itis immediate to verify tha¥i, acting on the edge labelédoy y1---y; we
obtain the edge labeled- 1. O

So, as before, we get (allowing edges of valemga d-sheeted cover branched over

xad — ybj(dfj)

with (j,d) = 1.
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Fig. 8.

We may now assume that for any couple of intersecting edges, aadi + j, the
suitable power op’(I") that sends the edgdeo the edge + j leaves the common vertex
b fixed.

Lemma 3.7. Under this assumptiony is a double star af typéj, d — j) and valencd,;
moreoverd|m.

Proof. In this case, all edges labeled- /j pass through the vertéx(or, they generate a
star with incremenj and vertex).

As in the case of petals, if the edge- k contains the vertek and j 'k then all edges
in the formi + h(j, k) are in the star, so if a star contaihsdges, then they are numbered
i +h(n/1) and every edge of the graph is in such a star with the ame

Observe that all edges that have a veléx common generate a star with an increment
that divides: and vertex (see Fig. 8).

Since we assume that the graph has no leavesjtieh and there must be another edge
containing the vertex.

This edge is labeled, saly+ k with (k, j) = 1, and, since we assume edges of valence
1, it does not contain the vertéx

Its other vertexA cannot be in common with the edge- #j otherwise the power of
p'(I") that sends to i + j would send the edge+ k to the edgé + hj + k not fixing the
common vertex (Fig. 9).

Thus, also the edges containing the vedegenerate a star and we may suppose that it
has increment, i.e., that its edges are labeled- »'k with ' =0,1,...,n/k — 1.

The same happens at the vertices of the edgek; other tharh, while in the vertexA
there is a star with incremetjit(edges labeled+ k + hj with =0, 1,...,n/j — 1).

The free vertices of this star coincide with the free vertices of the star with vierféxe
same happens with all the other edges of the star with ver{€ig. 10).

Comparing the edges we come itp edges and + j vertices forming; stars with
incrementj andk edges, and stars with increment and j edges. Since there is only
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B
i+hj+k
b i+hj A a— A— B
i i+k
a
Fig. 9.

Fig. 10.

one way to number a star when the label of a single edge is known (as for petals), there

is only one possible numeration of the edges, i.e., we get a double star afjtypeand
valence 1.

We can immediately see that+ k|m. O

Allowing petals of valence: and choosingi < k, we get ad-sheeted cover branched
over

xaj(dfj)zybd
with 2 < j <d/2 and(j,d)=1.

Proof of Theorem 3.4. The three lemmas give the complete classification of the graphs
as in the statement; so we have only to understand the actign @ — C2 defined by
f(x,y)=(y,x)onthese graphs.

This map sends the minimal standard generatg)d@r 71(C2\ C,_,,) into the standard
generatorsy;) for 71(C?\ C,..,), and vice versa.
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Being (see the proof of the Propositions 1.1 and 42)= Ii_1y;, ‘173, this
isomorphism can be seen on the graphs in this way: act on theidoge (y;,—1---y1)
(the edge 1 remains fixed).

If you do this onm = aj (d — j) consecutive edges of a polygon witlvertices, valence
a and incremenj you get a double star of tygg, d — j) and valence and if you do this
onn = ad consecutive edges of a double star of typad — j) and valence: you get a
polygon withd vertices, valence and incremenj. O

By the bijection between monodromy graphs and generic covers, we get Corollary 0.2.

4. Local fundamental groups

Letr : S — C2 be the cover branched OVE}, ,, constructed in the previous section from
the polygon withn vertices, valence 1 and incrementn order to see if§ is singular (note
that away fromP = 7 ~1((0, 0)) S is smooth) we must check whethei(S \ { P}) is trivial
or not (see [10]), so we must calculatg(S \ {P}).

Let =n —«, b =af/m. Recall that(o, 8) = 1, b is an integer and we may assume
o< B.

Let

Ri =Vivit1 - Vitm—-1,
where all indices are taken cyclical (mojl
Then the relations definingy (C2 \ {x" = y™}) may be written as
Ri =Ri41

fori=1,...,n—1.

In order to computeri(S \ {P}) considerz|s\g:S\ R — C2\ Cn.m, WhereR =
n*l(Cn,m). This is an unramified cover, and we can identify(S \ R) with the subgroup
of 71(C?\ C,..») given by those elemenjs such thato (y)(1) = 1.

We apply the Reidemeister—Shreier method (see [8]) to the Shreier set of left cosets

Lj=y1Y1+aY1420 " VI+(j-Da
forj=0,....,n—1(Lg=¢).
A set of generators fat1(S \ R) is given by the following elements
2 -1 -1 -1
Ai =V1V1ta " Vi+(i-2)aV14+(i-aV14+(i-2)a " Y1+aV1
fori=1,...,n—1;
Bji= LleHozL;l
fori#j—1,j,andj=0,...,n—1.

C =Y1Y1ta " Vi+(—-2aY1l+@n-Da>

“1 11
D= Yi+t(—DaV14(n-2)a " V1i+a¥1
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while a set of defining relators is given by rewriting in terms of the above generators the
following
-1,-1
LjR; Ri+le

for all choices of and;.
Observe thatr1(S \ { P}) is obtained fromr1(S \ R) by adding the relations

Ai=B;j=CD=e

for all choices of and; (they represent loops around all the componeni®)of
Thusm1(S \ {P}) is generated by and to determine its order we have to go through
the rewriting process for the relations.

Theorem 4.1. With the above notationsdf > 1, 71(S \ {P}) = Z/bZ.

Proof. First observe that > 1=« + 8 < af.
ConsiderL ;R; and WriteR; = y; - Viqm—1=A1-- - An le whereix; = yi41-1.
Leth, k be integers such thay, = y14 (- 1as Ak = V14 ja-
Sinceifi #1+ 8
Bj,iLj ifi;él—i-(j—l)a,l—i-ja,
Liyi={A;jLj—1 fi=1+( —Da,

Lj+]_ |fl=1+_]0[,

while
Bj1+pL; if j#0,n—1,
Ljyiyp=1CLo if j=n-1,
DL, 1 if j =0,
thenifh > k
LR = HLji1hks1- A Rp 0f j#n =1,
HCLorkt1-- MR, if j=n—1
while if & < k;
LiRi= HLj 1Apt1--- MR, if j#0,
HDLy_1hps1--- AR, if j=0

with H a word in theA’s andB’s.
Observe that in the first case we pass first fibpto L ;1 and then tad. j,», L ;43 and
so on (cyclic indices (mod)) everya steps, i.e.,
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L;R; = Kle+1)\éL . )»;
=K1KaLj12M

= K1K2K3Lj+3)\3_+2a A

S

where K}, is a word in theA’s, B's andC and K, containsC if and only if j + h =0
(modn). If this happens we say that rewritirdg R; the coset index increases.
Analogously, in the second case we pass first fionto L;_; and thental;_», L;_3
and so on everg steps and the correspondikg is a word in theA’s, B's and D and K,
containsD < j —h=n — 1 (modn). In this case we say that the coset index decreases.
Note that for a fixed there are only indices; for which the coset index increases,
namely those indices such that-lje =i,i +1,...,i + o« — 1.
Suppose that rewriting ; R; the coset index increases and writ¢ Jo =i +c¢ — 1 with
0 < ¢ < a. Then deleting all the words in th&'s andB’s

LiRi =Ljt1Yitc " Vitm-1

=Ljy2Vitcta  Vitm—1

=CLOYitc+(n—j—Da *** Vitm—1
= CzLOVi+c+(2n—j—l)a “ Yiem—1
=C'LiYitetm—o - Yitm-1=C'L;
(if c = @ there are ng'’s in the last line) for a suitableand where
. |:m—oc—(n—j—1)oc:|+1= |:bﬂ—(oc+,3)+j:|+1= |:b;8+j:|.
on oa+p oa+p

On the other hand, suppose that rewritihgR; the coset index decreases and write
1+ ja=i+c —1witha < <n.Thenagain

LiRi=L; 1YVitc'—a " Yitm-1
= Lj—ZVi—&-c’—a—&-ﬂ o Vidm—1

=DLoYitc'—a+jp " Vitm-1
= DPLoVite'—atiip Vitm-1
= D[,L[’Vi+c’+m7afﬂ - Yitm-1=D"Ly
(if ¢ =n there are ng’’s in the last line) for a suitablg and where

, [m-p—jp] . [ba—j—1
[_[ fn }H_[ ath ]H

Observe that if the coset index increases rewriting liotR; andL ;R; 1 then 1< c <«
and
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LiRiy1=Ljt1Vitc " Vitm

=Lj{2Vitcta " Vitm

=CLOYVitct+(n—j—Dya " * Vitm

= C?LoVite+@r—j—Da ** Vitm

= CtLlVi+c+m—a o Vidbm = CtLla
that is rewriting a relatioll ; R; R;llL]Tl for which the coset index increases for bathR;
andL; R;1 yields the trivial relatiorC’ = C'.

The same thing happens if the coset index decreases rewritind.b&hand L ; R; 1,
i.e.ifa <c¢ <nandwegetD’ =D,

In the caser = 1, (respectively’ = o + 1) rewriting L ; R; the coset index increases
(respectively decreases) and rewritifigR; 1 the coset index decreases (respectively
increases) so we gét = D' i.e.,C'*" =1.

Observe that + ¢ = b, in fact write

bp=r(a+p)+s,
ba=r(a+B)+5,

with 0 < s, 8" < o + 8. Adding the above equations we get
ba+B)=+rYa+p)+s+s,

i.e., («+ B)|(s + ) which impliess +s'=0o0rs +s' = o + 8.

In the first case we hawe= s’ = 0 (this is true if and only ifl« + 8)|b) andbB + j =
rl@+pB)+j,ba—j—1=r'(a+pB)—j—1lwhichimpliest=r,t=r'—1+1Vj so
thatr +¢ =r +r' =b.

In the other cases(s’ # 0) we have

bB+j=r@+p)+s+j, ba—j—l=r'(@a+p)+s—j-1

ands+j>a+B8<s'—j—1l=a+pB—s5s—j—1<0sowe have only two possibilities
t+t=r+r+1lort+t'=r+1+r —1+1thatisr+1t =b.
Summing upri(S\ {P}) =(C | Ct =1)=7Z/bZ. O

Consider now then = « + g-sheeted generic covef:S — C? branched over
Ca+p),bap COrresponding to the polygon with+ 8 vertices, valence and increment.
This surface is obtained frofvia fiber product withf, 1 (see Section 2).

Corollary 4.2. If a=b =1 S is smooth. I # 1 S is singular.

Proof. If «f <« + B, i.e.,a = 1 the result follows observing that in this ca$e C3 has
equation

Zn+l —(n+ 1)va + I’lyb =0,

SO suppose + 8 < af.
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If a = 1 then, by the above propositiam (S \ {P}) is trivial if and only if b = 1.
If « > 1 thenmy(S\ {P}) # 0, so, by Proposition 2.471(S \ {P}) # 0, and§ is
singular. O

5. Generic covers branched ofx” + y? = 0}

In this sectionsS is a normal surfacey : S — C2 a d-sheetedd > 3) generic cover
branched over the cun@ = {x" + y?" = 0}. In particular andn cannot be both odd, so
bn is even.

Let S be a resolution of the (isolated) singularity$bbtained fromr using the standard
algorithm (see, e.g., [7]).

We get the following diagram:

ke \LU
!’

T$C2

with 7’ a sequence of ordinary blow-up’s, proper,z” a resolution ofS. S is the
plumbing variety of a normal crossing configuration of smooth curves, i.e., of the compact
components of =#~1(x'71(C)). We look for the dual graph of this configuration (see,
e.g., [7]).

Recall that, as in the previous sections,

TUCP\C) =yt oo sy | TP ™0 y7Y),

wherel” = y1 - - - ¥, With y; geometric loops around supported on the lingy = 1} such
thatI" is a loop around all the points @f on this line.

Consider the monodromy: 71(C? \ C) — Sz, and letv be the number of orbits of
o=p(l),k1,...,k, the cardinalities of these orbits.

Remark that every labeled graph wittvertices and: edges represents the monodromy
of a cover branched ovex” + y?" = 0} for a suitableb; more precisely for every
multiple of the order of the permutation corresponding to the ordered product of the edges.

Definition 5.1 (Stringy. Call a string the dual graph of a normal crossing configuration
of curves which is a tree and such that no vertex is contained in more than two edges, i.e.,
a graph like the following:

Call a string of typeA; a string withk vertices such that every vertex corresponds to a
smooth rational curve with self-intersectiet2.

In this section we prove the following result:
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Theorem 5.2. In the above hypothesis and notatio§dyas a(minimal) resolution which
is the plumbing variety of the following normal crossing configuration of smooth curves

where the verteX, has genugn — d — v + 2)/2 and self-intersectior-v. Moreover,S
is smooth«> the monodromy graph is a trethis can occur only it is a d-cycle, sod
dividesb.

First, we need the embedded resolution graphCof: C?, i.e., the dual graph of
C' = n”l(C), and the geometric loops around the irreducible components of this curve.

Lemma 5.3. The embedded resolution graph{af + y”* = 0} in C? is the following

where the vertices correspond to exceptional divisors, the number over each vertex is
its self-intersection and the numbegg:) are the multiplicities of zero of the function
f'=a""f, f =x"+ y?; the arrowhead vertices are exactlythe number of irreducible
components of .

Let E; be the irreducible curve irf" corresponding to the vertex of multiplicity: in
our graph. Letp; = E; N Ej11, P = (1,1) e C2.

v j there exists a neighborhoadd; of p; in T, and local coordinatesé, ») in Uj,
such thatC’ N U; = (E; NU;) U (Ej41NU;) = {En =0}, and P’ = '~ *(P) € U; with
coordinateg1, 1). ChoosingP’ as base point forr1 (7 \ C’), the natural geometric loops
inU; \ C"aroundE; ({(€%,1)}) and andE ;11 ({(1, €%)}) are respectively™ and IM+?
under the isomorphism’,. : 71(T \ C’) — m1(C?\ C).

Proof. We are looking forC’ and the monodromy around one of its irreducible
components. Choose as base point the psiat (1, 1) which is not contained irC for
all b andn.

Consider the following lines ifC2:

m'={y=1},
IT={x =y}, 1)
n"={x=1}.

Remark that the intersection of these lines is exactly the pint
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<2
=2
-2

Fig. 11.

Lety’ = I' (respectivelyy, ") be aloop infT’ (respectivelyiT, IT") around all points
of C and lety be a loop infT around(0, 0) as in Fig. 11.

C N IT is given by the equationg: = y, x*(1+ x®~b) =0}, i.e., the origin (with
multiplicity n) and (b — 1)n distinct points on the unitary circle.

The pencil of linedT), = {x = 1— A+ Ay}, for 0< A < 1 defines an homotopy ifi?\ C
betweeny” € IT" andy € I1 (observe tha¥ A C cuts on/T, n points (with multiplicity)
andP € IT,).

Now consider the linesl, = {y = A}, fore <1 < 1, with 0< e < 1.

CNTT, = {(WPe@Dim/n 3) 0<r <n-—1}.

Thus, considering the patbs= {(1—1,1—1)};e[0.1—¢], B1 = {(&, e + (I — 1)&1)}se0,1 @and
T ={(¢€",0)}1e10,27], YO < & < 1, " is homotopic inC? \ C to aforfy Tt

B (€', he€") ei0,201B;  for 0 < & < 1 defines an homotopy i\ C betweergorfy*
and(e€", £€');¢[0.271, SOy’ =y in 11 (C?\ C).

C’ is obtained by blowing up recursively? in points of our curves (and his complete
transform). So, the complementary of the complete transform does not change after every
blow-up. With a slight abuse of notation, we do not change name to paths after every blow-
up.

The first step is to blow uC? in the origin. Recall that we get a complex manifold
obtained pasting two charts biholomorphia8, respectively/; andUs, with projections
onC? given (in coordinates) respectively by:

(V1) (x,y) = (xy,y),
(U1) (x,y) = (x,xy).

The complete transform @ in these two charts is, iVy), y" (x" 4+ y@=D") =0, and in
(U1), {x"(1+ x=Drybny — 0} Remark that the last one is smooth (after reduction). Then
the singularities of the complete transform of our curve arg/in).

V1 = C?, so we can compute the lings;, IT1, IT] (i.e., the lines in(V1) given by the
Eqg. (1)). Note that the inverse image Bfin (V1) has coordinategl, 1).

We claim that in(V1) we have the following situation (see Fig. 12).

In fact, from the explicit equation of the projectiofi; is exactly IT’, while IT} is
exactlylT. Rewriting the homotopies we find that the loop around the points cGibthe
strict transform ofC, on [Ty is y. We have to find the homotopy class of the loop around
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-2

IT,

Fig. 12.

the origin inIT1, that is ofn = a(ee!, se”)te[o,z,,]a—l whereq is a real positive path (i.e.,
o = (a1, a2) With «; (1) € RT) from (1, 1) to (e, €), as a loop inC2 \ (C1 U {y = 0}).
Since|y| < 1= |x| <1 and|x| < |y| then, by the homotopys€”, €');c(0.2:1, With
1< A <2,n~n =pB(2:6€", c€"),ci0.2:18~ 1 With B a real positive path fronil, 1) to
(2¢, ¢).
Now

(zgei(l+k)t, ge(l—x)t)t U (zgei(znwr(l—x)t)’ 8ei((2:—2n)x+(1—x)t))

€[0,7]

for 0 < A < 1 defines a homotopy ~ 8(2s€", £);¢[0.271(2¢, €€")sc[0.2:18
Moreover

telm, 2]

(2e+21—e))e e+ 1(1~e)), 0y fOro<as<i

givesB(2e€", £)rc0.2018 L ~ B/ (1 + £)€", 1),cj0.2.18 "+ with B’ a real positive path in
{y=1}from (1,1 to(1+¢,1) and

(A + (1 — )2, e€) for0<a<1

t€[0,27]

gives B(2¢, e€'),ci0.271B~ L ~ B (L, €')ci0.2:18” L with B” a real positive path in
{x=1}from(1,1) to (1, &).

Thus the loop around the origin i is justy?2.

Now we conclude the proof by induction.

The inductive hypothesis is that afterblow-up’s in the origin (of theV-charts), the
complete transform of has equationg;*” (x” 4+ y®=%m) = 0 in V;, andx*" yk—Dn(1 4
x(b=Rny(b=k+Dmy — 0 in Uy; moreover the complete transform 6fin U has as dual
graph a string of typed;_1. One extremal component of this configuration intersects
(transversally in the origin ot/;) the new exceptional divisor, and drn our lines are
as in Fig. 13.

Call E; the exceptional curve of thih blow-up, or, with abuse of notation, its strict
transform in every other blow-up.

Remark that we have proven the inductive hypothesek fofl.

Blow up the origin of V. IT; , andIT/ , are the same aF,; and I, and the paths
in IT, can be computed as in the previous step. The new equatiofs,in and in
Ur+1 are obtained simply from the old equationsWp (and the equations of the blow-
up). MoreoverEy is contained inVy ,; we are blowing up a poing; € Ex so the
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-2

m;

Fig. 13.

self-intersection ofE;, pass from—1 to —2, and it intersects transversalB_1, since
qr ¢ U’j‘.j E;. U’;Zl E; is anormal crossing configuration of tydg andEy1 intersects
transverselEy.

Remark thatU; (with the given coordinates) is the chart we are looking for around
pk=ExNEgt1. O

The dual graph of the standard resolution of the singularity afiepends only orb,
n, d and the conjugacy class of = p(I") in S, (this follows easily from the explicit
construction of§ from C andp, see, e.g., [7,12]).

From now on, we call multiplicity of a curve i the multiplicity of f’ o 7; Vi,
E; =7 NE)).

Lemma 5.4. E, is an irreducible compact connected curve of multipli¢ityand genus
nm—d—-v+2)/2. Moreover,ﬁ|fb has degreel.

Proof. {o;} = {p(y;)} is a family of transpositions generatisy, and ifd > 3, 0? =1.

We have remarked before thalt is the monodromy of a geometric loop aroufig] then
for a small neighborhood of a generic point of},, 7 ~1(V) hasd connected components,
ands|;-1(y, is a cover of degreé.

Tlg, is a branched cover of degr@e(a priori non connected), and the multiplicity
of f' o on E, is exactly the multiplicity of f on E,, i.e., bn. The branching points
are the intersection points @, with the other branches of the configuration, i.e., every
branch ofC', the strict transform ofC by 7/, and Ep—1, SO we must considet + 1
points.

A geometric loop in E;, around such a point, acts on thesheets in the same way as
a small perturbation’ of » (A’ aloop inT \ C’ = C?\ C).

The geometric loops around the points of intersectiof pfvith C are they;’s, which
act transitively on the fiber, sB,, is irreducible.

Sinceo; is a transposition, the branching indexﬁqub in these pointsis 1.

On the other hand, a geometric loop aroupgd 1 = E;, N Ep—1, has monodromy
p(I'"~1y = o~1, which is in the same conjugacy classsa Sy, so the branching index
in this point is exactlyl — v.

Thus, by Hurwitz formulay (Ep) =dx(Ey) —n— (d —v)=d +v—n. O
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Lemma 5.5. E,_; has v connected components, irreducible of germsf;;_l, of
multiplicity (b — 1)nk;. 7 ~1(py_1) is a set ofv distinct points. MoreovetE})? = —d.

Proof. A geometric loop around,_; is I"?~1.
Thus,7|z, , is a branched cover of degreeNow, we have just two branching points;

but a small perturbation of a geometric loop aroynd; in E,_; acts as the identity,
and a small perturbation of a geometric loop aroynd, in E,_1 acts asp(I"’~2) =
o2 = (6712, and they both do not connect the orbitsoof*. Thus7|g, | is a cover
(unramified) of degree with v connected components, i.&_1 is the disjoint union of
v curvesEﬁ,_l, biholomorphic toE,_1 (and thus of genus 0). Moreovgris ramified of

indexk; — 1 overE, 4, and this gives us the multiplicities.

Let U be a neighborhood op,_1 with local coordinategé, n) such that the curve
(Ep U Ep—1) N U has equatiogn = 0. Then the fundamental group of the complement
of this curve inU is Z?, generated by™> and "1

The connected analytic covers@f\ (E, U E,_1), are then classified by the subgroups
of Z2. #~1(U) hasv connected components, each associated to an orbit of o, and
7|y, is a cover of degree exactly the cardinaltiyof A; associated to the lattice g
generated by0, k;) and(Z1, 0).

Thus, locally the cover i, ) — (§%, 1), and (see [7])7 ~(E, N E,—1) is formed by
v points,E,_; N Ep.

In order to comput&E},)? we need only to note that the intersection prodiigt (1’ o
) =0.Then

— 2 dn+>Y (b — Dnk; dbn
(E)* =~ ==

=—d. 0O
bn bn

Lemma 5.6. The resolution graph af is:

where the?}(’i are strings which depend only énandk;.

Proof. Vi < b — 1, considerE;. As in the previous lemmas, the connected components
of E; are in canonical bijection with the orbits of the subgroup&f generated by
ol,0'71 o't But these are the orbits af, then E; hasv components, and each
component of; intersects only the componentsBf_;1 andE; 1 associated to the same
orbit (or an extremal vertex of a string dominatipgor p;_1, see [7]). In particular th§,’jl_

are strings, and by construction they depend only andk;. O
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Call now7; a tubular neighborhood cﬁ,ﬁ’l inS, S,fi the string obtained bﬁ,ﬁ’i recursively

contracting all the possible exceptional curves of the first kind (smooth rational curves with
self-intersection-1), 12 = (E,)%,, — (E,)g,, (i.e., how many times in this contraction we
! k; k;

1
contract a vertex nedt,), Sl}c),- the number of vertices cﬂ‘,{’i.

Lemma5.7.
(1) 8¢ are strings of typelp ;
2 =k—1
(3) 2 = b/ki)(sg +1) — 1
4) st=b-1

Proof. First we prove (4). In this case =1 andf'j — E;is1:1Vj,so :ﬁ’ is a string
isomorphic to the string it dominates, i.e., a string of type 1 andSll’ = 371’.

Observe that; dividesb V i, sinces? = 1, and that fok; fixed, we must only prove the
parts (1) and (2) fob = k;; in fact we can compute thie-string for anyb starting from the
string forb = k;, by the following argument.

First we conside .

A geometric loop around,;, acts as the identity oﬂ~r,~, soF;ki dominatesEyy, as a
ki-sheeted cover totally ramified over two branching points, namely, the intersections of
Ej; With Ej. 11 andEj g, —1.

So, Ey,, is rational by Hurwitz formula and the multiplicities &, , E;; 1, Eyz 1
are respectivelyrk;, nik; (k; + 1), nik; (k; — 1).

In a neighborhood o, N Ex,;+1, the cover restricted t0; is associated to the lattice
(0, k), (1,0, so (see [7]) the fibers over these points are made up of a finite number of
points, and the part of the string that dominafgg, is only a vertex, corresponding to a
rational curve. Its self-intersection (ﬁfi) can be computed using multiplicities, and we
obtain

niki(ki +1) + nik; (ki — 1)
nik;

— _2k;.

The other part of the string, i.e., the parts that dominate the substrings befygen
andE (1)1, are exactly th@,’j: .

In fact, the irreducible componentsf)f’l(c’) which dominate thé, s, + ; andE; 4+, N
Ejk+j+1 (and the normal bundles i8) in this substrings are constructed in the same way
as the components that domindite, E; N E ;1 for b = k;, except forE,, 1. In this case
the construction is different from the one fék (Ep is not defined), but a generic loop
aroundEy,, acts as the identity, and the result follows.

Thus we geb/k; strings connected b/ k; — 1 rational vertices with self-intersection
—2k;. All the substringsS;’ contract tas’ .
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Remark that, by construction, the strinﬁé are symmetric (because e o1 are

conjugate). Then after the contractions the self-intersectirﬁmfbeeomes—2k1+21',;‘,' =
—2k; + 2(k; — 1) = —2, I}, does not depends @nand
b b
s,f = k—s,’f + [ 1
(in particular, ifb > k;, Sk,- > 0).

Thus we prove (1) and (2) in the cake- k; by induction onb.

Forb =1 thenk; = 1 and the result follows by (4).

Now assume (1) and (2) trueif< b. We know thatv b there exists a smooth cover of
degreeb generically branched on the curye’~1 + y?®=D — 0}, i.e., on a curve of the
class under consideration £ b — 1).

In this case we can easily check thais anb-cycle, i.e.,v = 1. In fact, otherwise by the
inductive hypothesis we would have a tree with at least two non empty branches without
exceptional curves, and then the graph cannot be contracted (i.e., the surface cannot be
smooth).

Now, using the previous considerations, we find that the resolution graph of this surface
has the form:

—k; + lki

where all the vertices without decoration (if they exist) are non contractible.

We know a priori that this graph must be contractible. In particular the last vertex must
have self-intersectior-1 (no other vertex can), i.ey, =k; — 1, and it must be rational.
Moreover the string must have only smooth rational curves with self-interseefflon O

Proof of Theorem 5.2.By Lemmas 5.7 and 5.6, we must only check thab, i k; then
sk =0,i.e. Sk is empty.

Recall that by Theorem 4.1 we know (S \ {p}) for some special monodromy graphs
In that theorem, the branching curves wergt? = y!(@#)} for fixeda, B, with (a, B) =
inthat case we havé =o + 8, v=2,k1 =, ko = B, m1(S\ {p}) = Z/IZ.

Assume nowxr =n — 1,8 =1, =n. We get one of our curves with= n -1

By the previous lemmas, the configuration is a string ef s, ~; 1y 51 141 rational
curves with self-intersectionr2. SoS has a singularity of typd; (see [1]).

The local fundamental group of such a singularity is a cyclic group of order equal to the
number of the vertices plus 1. We know that this ordér:ii% then we have — 1 vertices
and by Lemma 5.7} ' =n—2,s0s" 1 =1 s} 1 -2=0.

Moreover, ife hasy > 1 orblts then the graph has rd curves and cannot be smooth.

So, if S is smoothg is ad-cycle ands” = 1 = d|b. Moreover, ifS is smooth, the genus
of E, mustbeO,ien —d+v=0,n=d —v=d—1.

Conversely, ifn = d — 1 the genus oF;, is 0 and the monodromy graph hasertices
andn =d — 1 edges, i.e., it is a tree. Thusis transitive,v = 1, and the resolution graph
is a string of rational curves with self-intersectiet2 except for the last one which has
self-intersection-1. SoS is smooth. O
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