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Abstract. In this paper we provide a first step towards the classification of the numerical
Godeaux surfaces in the still unknown open cases where Tors(S) = 0, or Tors(S) =
Z /2.

Our method works in both cases, but in this paper, after some results which we
establish in a greater generality, we mostly restrict ourselves to the case where the Torsion
group is zero.

The bicanonical system yields, on a suitable blow up S of the minimal model S, a
fibration f : S — P! in curves of genus 2 < g < 4, and the invariants of this fibration
determine the equations of the image of S under a map which, in the general case, is the
product of the tricanonical and of the bicanonical map.

This allows us to subdivide our surfaces into four classes, according to the behaviour
of the bicanonical system. For each of these classes we have a complete description but
the existence questions are not yet solved.

1991 Mathematics Subject Classification: 14J25, 14J10, 14J29, 14D99, 14B12, 14Q10.

Introduction

Algebraic surfaces with p,(S) = ¢(S) = 0 were interesting ever since in the theory
of algebraic surfaces, when it was first asked whether a surface with such invariants
would be rational.

The first counterexample was given by Enriques, who constructed what are by
now called the Enriques surfaces (cf. [E1], [E2], and [BPV] for further details and
references); these have fundamental group Z/2Z, and are not of general type.

*The research of the author was performed in the realm of the Project AGE HCM, Contract
ERBCHRXT 940557.
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In the 30’s examples of surfaces of general type with p,(S) = ¢(S) = 0 were
constructed by Campedelli ([Cam], these have K? = 2), and by Godeaux ([G1],
[G2], these have K2 = 1).

Later on, Severi asked whether a simply connected surface with p,(S) = 0
would be rational, and again this question had a negative answer by [Dol2], who
constructed some simply connected elliptic surfaces, which are nowadays called
Dolgachev surfaces.

The interest for surfaces of general type with p,(S) = ¢(S) = 0, which are con-
sidered in Chapter VIII of Enriques’ book [E2], with special regard to the question
of the good properties of pluricanonical systems, was revived by Bombieri’s article
[Bo] which left some open problems about their pluricanonical systems.

After that, surfaces of general type with p,(S) = ¢(S) = 0 and K? =1 (for
the minimal model) were called numerical Godeaux surfaces, while those with
pa(S) = q(S) = 0, K? = 2 were called numerical Campedelli surfaces.

In the 70’s there were several papers devoted to these two classes of surfaces,
especially to their tri-and quadri-canonical maps. Reid ([R2]) completely described
the geometry of the numerical Godeaux surfaces with Torsion group of order > 3,
inverting the method of Godeaux who was constructing these surfaces as quotients
by the free action of a cyclic group.

Finally, in the early 80’s Barlow constructed ([R3], [Ba2]) a simply connected
numerical Godeaux surface. The method here was a clever variant of Godeaux’s
method , in that the author used a non free action of a non cyclic group.

The Barlow surface was an interesting object both for applications to the dif-
ferential topology of 4-manifolds ([Kot1], [OVdV]), and recently for problems on
Einstein metrics ([CL]).

In fact, a classification of simply connected numerical Godeaux surfaces could
produce new simply connected differentiable 4-manifolds with b+ = 1. In this
respect, we should point out that another beautiful example of such a surface
was produced by Craighero and Gattazzo ([CG]), somehow in the line of thought
introduced by Campedelli, i.e. as the minimal resolution of a normal singular
surface (that the resulting surface is indeed simply connected, and has Kg ample
was recently proved in [DW]). It is yet unclear whether the Barlow surface and
the Craighero Gattazzo surface are diffeomorphic.

To conclude our historical motivation, we should point out that another source
of interest for the numerical Godeaux surfaces stems from the conjecture of Bloch
(cf. [Mu3], [BKL], [Blo]) that for a surface with ¢ = p, = 0 the Chow group of
degree zero 0-cycles is trivial (this has been settled only in few very special cases,
cf. [IM], [Ba3], [V]).

After all this, the reader might ask why the numerical Godeaux surfaces have
not yet been classified. One reason is that the easy lines of the surfaces geography
are the lines K% = 2p, — 4 + m with m = 0,1, while here m = 5.

In fact, using unramified coverings which make m smaller, Reid was able to
show that the numerical Godeaux surfaces with |T'ors(S)| > 3 form three irre-
ducible families, with fundamental group Z /nZ,n = 3,4, 5.
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The main purpose of the present paper is therefore to attack the classification
of the numerical Godeaux surfaces with Tors(S) = 0, or Z/2Z (also in the latter
case special examples have been constructed, cf. e.g. [Bal], [Werl], [Wer2]).

Our method works in both cases, but in this paper, after some results which
we establish in a greater generality, we restrict ourselves to the case where the
Torsion group (i.e., the Abelianization of the fundamental group) of our surface is
zero. We shall consider more amply also the latter case in a sequel to this article.

We would like now to explain what is the new method we are employing in
order to classify the numerical Godeaux surfaces.

The first crucial property is that the bicanonical system yields, on a suitable
blow up S of the minimal model S, a fibration f : S — P! whose fibres are curves
of genus g, where g can only be = 2, 3,4.

To explain further our strategy, we have to subdivide our surfaces into several
classes, according to the behaviour of the bicanonical system (cf. 1.1, 1.2).

Writing the bicanonical pencil |2Kg| as F' + | M|, where F' is the fixed part, we
see that KF =0, KM = 2.

We have then four possibilities:

ia) M?=4 F=0 M has genus 4 |M| has 4 base points

ib) M?=4 F=0 M has genus 3 |M| has 1 double base point
ii) M?=2 MF=2 F?=-2 M has genus 3

iii) M?=0 MF=4 F?=-4 M has genus 2.

The second ingredient is to consider a product rational mapping ¢ = 1 X @2 :
S — P x P1, where ¢, is the bicanonical map sk and ¢y is

e Case ia): r=3 and ¢, is the tricanonical morphism @3

e Caseib): r =2 and ¢; is given by the system |3K g — P|, P being the (double)
base point of |2K |

e Case ii): r=2 and ¢ is given by the system [3Kg — F|
e Case iii): r=1 and ¢; is given by the system |3Kgs — F|.

The key idea is simple: namely, that ¢; induces the complete canonical system on
the fibres M of @2, and we use the fact that, in all the cases except the last, the
general curve M is not hyperelliptic. B

Therefore, in these cases ¢ yields a birational map, and indeed, on a blow up S
of S, we get a product morphism ; X f, which fails to be an embedding exactly
when we have a hyperelliptic fibre M of f.

In case iii), which will be treated in the sequel to this paper, we have that the
blow up S of S in 5 points is a double covering of P' x P! branched on a curve A
of bidegree (6,12). The fibration f given by the second projection has precisely 5
non 2-connected fibres and, of these, a are originated by a point of type (3,3) on
A with horizontal tangency, whereas 5 — a are originated by a horizontal fibre in
P! x P! contained in A, such that A has two ordinary quadruple points on it.

We have mentioned this last case because the case where a = 0 was already
treated in [R4], where Reid showed the existence of such a curve giving rise to a
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surface with T'ors(S) = Z/5Z. Note however that we believe this case does not
occur under the assumption Tors (S) = 0.

In the remaining cases, denoting by Y the image surface, our analysis shows
that the blown up canonical model X is precisely the normalization of Y, and the
only singular curves of Y correspond to the hyperelliptic fibres of f.

The important conclusion is that the conductor ideal pulls back on S to a divisor
which is a sum of the hyperelliptic fibres, counted with a certan multiplicity.

In the cases ib) and ii) Y is a hypersurface, and, after we establish its divisor
class, the main question about the existence and geometry of these classes in
the moduli space is related to the problem of finding hypersurfaces with certain
singularities yielding the right (sub)adjunction conditions.

Case 1a) is more interesting (in this case Y is a subvariety of codimension 2)
because then the key idea comes into play.

The bicanonical curves in case 1a) (the most general case) are canonical curves
of genus 4, whence the non hyperelliptic ones are proven to be complete intersection
curves of type (2,3).

The situation globalizes, in the sense that Y is proven to be a divisor on a
hypersurface Q of bidegree (2,7-2h) in P? x P! (where 0 < h < 3 is the number of
hyperelliptic fibres in the bicanonical pencil, counted with multiplicity). Clearly,
@ is swept out fibrewise by the quadrics containing the canonical curves, and the
cubics also patch together fibrewise to yield a divisor Y.

To calculate the class of this divisor, we introduce a new technique, which is
valid more generally for any genus 4 fibration whose fibres have ample canoni-
cal system and are 2-connected. The technique consists in defining a notion of
multiplicity for the hyperelliptic fibres, and then in showing how this multiplicity
determines the divisor classes of the relative quadric and of the relative cubic.

We can partly summarize here our main results as follows:

Theorem 0.1. Assume that S is a numerical Godeauz surface with torsion {0}
and of type ia), i.e., s.t. the bicanonical pencil yields a genus 4 fibration f.

Let h =3 ¢ nyperettiptic Mult(C): then a priori 0 < h < 3.

Moreover 3Q € |Opsyp1(2,7—2h)|, s.t. Y := ¢(S) is a divisor in |Og(3,3h—6)|
whose singular curves are exactly the twisted cubic curves image of the (hon-
estly) hyperelliptic bicanonical divisors. Moreover, if C is the conductor ideal,
ho(COy(2,h —3)) > 0.

Viceversa, assume that 0 < h < 3 and that Q € |Opsyp1(2,7 — 2h)| is an irre-
ducible divisor, and that in turnY € |Og(3,3h—6)| is an irreducible divisor whose
normalization is a surface X with rational double points as the only singularities.
Suppose moreover that the conductor ideal C defines a divisor on X equal to h
fibres (counted with multiplicity). Assume moreover that the singular curves of Y
are (irreducible) twisted cubics, and that h°(COy(2,h — 3)) > 0. Then Y is the
tri-bicanonical model of a numerical Godeauz surface with torsion {0} and of type
ia).

A posteriori, the case with three distinct hyperelliptic fibres does not occur.
Whereas, for the Barlow surface h = 2, while the Craighero Gattazzo surface has
exactly two hyperelliptic fibres occurring with multiplicity 1.
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The local moduli space of the Barlow and of the Craighero Gattazzo surface is
smooth of the expected dimension = 8.
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Notation

For the reader’s convenience, we enclose here a list of the notation more often
used, and of our abbreviations.

In this paper we denote by S the minimal model of a numerical Godeaux surface
and (except in section 6) by X its canonical model.

We let moreover T'ors(S) be the torsion subgroup of the first homology group
H,(S,7) (equivalently, of H%(S,Z)).

For a Gorenstein algebraic variety Z (e.g. S, X) we denote by Kz a Cartier
divisor associated to its dualizing sheaf w;. The rational map associated to a
divisor D is denoted by ¢p or ¢ p|; similarly the rational map associated to a line
bundle £ is denoted by ¢.

S (resp. X) is a blow up of S (resp. X): except in case iii) (which is hardly
treated here) it is the blow up in the base points of the movable part | M| of |2Kg|
(resp. in the smooth base points of |2K x|, we shall prove in lemma 1.1 that [2K x|
has no fixed part). The induced morphism is denoted by 8 (resp. 3).

We have already defined ¢ : S --+ P x P! in the introduction; let us denote by
@ : X --» P” x P! the induced map on the canonical model, and set Y := ¢(S),
Y= 3k (9).

Moreover, we denote by m; : PT x P! — P", my : P” x P! — P! the natural
projections. .

This allows us to define the morphisms g := po: 5 - Y, j:=pof: X Y

Last, we denote by f := mpopof : S — P! the fibration associated to the
bicanonical pencil, and by f := my 0@ o : X — P! the analogous fibration on the
canonical model X.

Quite often, given a Cartier divisor D on a scheme Z, by slight abuse of notation
we denote also by D the associated invertible sheaf Oz (D); and we often write,
as shorthand notation, H°(D) instead of H°(Oz(D)).
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Moreover, Opryp1(a,b) is also a quite understandable notation for 7} Opr(a) ®
7['; O]pl(b)

1. The canonical ring

Let S be a numerical Godeaux surface, i.e. a minimal surface of general type with
K% =1, p,(S) =q(S) =0.
Recall that the canonical ring of S (cf. [Mul]) is defined as the graded ring

R(S) := ®nenH®(nKs).

In our case of numerical Godeaux surfaces we have

hO(Ks) = 0; ¥n>2 hO(nKs) = (’;) +1.

Let us look for a minimal system of generators of this ring (as a C-algebra).

As usual we denote by 1 the identity of R(S), given by the constant function
equal to 1, moreover we fix a basis {z¢, 7, } of H*(2K), and a basis {yo,y1,y2,y3}
of HO(3K).

We remark that 3, 7oz, are independent in H°(4Kg), since R(S) is an inte-
gral domain; whence, we can complete these elements to a basis {3, zox1, 7%, vo, V1,
va,v3} of HO(4Kg).

Let X := Proj(R(S)) be the canonical model of S, and let # : S — X be the
natural map; X has an invertible dualizing sheaf and, as customary, we denote
by Kx an associated Cartier divisor. Since 7*(Kx) = Kg, one has a natural
isomorphism between the canonical rings R(S) and R(X).

Lemma 1.1. The fized part F of the bicanonical pencil |2Kg| is supported on the
fundamental cycles of S (normal crossing configurations of smooth rational curves
with self-intersection —2).

In particular |2K x| has no fized part.

Proof.

We can write [2Ks| = |M| + F where M is a linear pencil without fixed
components; since Kg is nef and the only curves with KgC = 0 are the finitely
many smooth rational (—2) curves, building the so called fundamental cycles (cf.
[Bo], [BPV]), we know that KsM > 0, KgF > 0.

Since KsM + KgF = 2K% =2 we get 0 < KgM < 2, and clearly our purpose
is to show that KgF = 0, equivalently KgM = 2.

Assume by contradiction that KgM = 1. M being a pencil without fixed part,
we have M2 > 0, but M2 + KsM = 0 (mod 2). It follows then that M2 = 1,
whence equality holds in the inequality given by algebraic index theorem.

Our conclusion is thus that M is numerically equivalent to Kg, and since
h'(Os) = 0 but h°(Ks) =0 # h°(M) =2, M — Ks = p yields a non zero torsion
element p in Pic S.
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An easy calculation x(M) = x(Ks) =1, h°(M) =2 = 1< h'(M) = h*(Ks +

w) = ht(—p) shows that the covering of S induced by p, yields an irregular covering

of S. This is a contradiction, because the equality K% = x(S) holds for S, hence

for all its unramified coverings , whereas for minimal irregular surfaces Y we have
the inequality K3 > 2x(Y) (cf. [Bo]).

O

Remark 1.2. We have seen that KF =0 KM = 2. So, we have three possibilities
for F and M, namely
i) M?=4 F=0
ii) M?=2 MF=2 F?=-2
iti) M?=0 MF=4 F?=-4
In the second case F' is precisely a fundamental cycle, i.e., on the canonical
model X, we get in the base point scheme a reduced singular point.

Lemma 1.3. H°(2K) ® H°(3K) — H°(5K) is injective.

Proof.

Otherwise we would have a relation xoy = x1y' for suitable elements y,y' in
H°(3K). By lemma 1.1, on X Min(div(xo),div(z1)) = 0; whence, div(zg) <
div(y') and therefore the rational section y'/z¢ of 3Kx — 2K x = Kxis a regular
section, contradicting p,(X) = 0.

O

Corollary 1.4. We can fiz a basis of H°(5K) of the form
{ziyj, w1, w2, w3}

Let us now consider the polynomial ring A := Clyo,y1, Yy, y3], and let us look
for a set of generators of R(S) as A—module, (R(S) is an A—algebra via the
natural homomorphism A — R(S5)).

Define

R(O) = @nonO(?)nKs),
RY = @0 H"((3n + DKs),

R® = @50 H"((3n + 2)Ks),
Of course, there is a splitting (as A—modules) R(S) = R©® + R® + R®),
Theorem 1.5. There are three resolutions
0 A(-3)"3 A0 A(-2)° 5> R® 50

0= A(—4) ® A(=2)° & A(-1)7 = RV 55 0

0 A(=3)2® A(—2)* 5 A2 A(-1)°* 5 R® 50



8 Fabrizio Catanese and Roberto Pignatelli

where B = Bt.

Proof.
It is an easy exercise following the same argument of [Cat3].

Corollary 1.6. R(S) = R(X) is generated in degree < 6 as an A—module.

Remark 1.7. In [Ci] is shown the weaker result that R(S) = R(X) is generated
in degree < 6 as a ring.

From now on, let us assume Tors(S) = 0 or Z/2Z. In this last case, denote by
4 the nonzero torsion element in Pic (S).
Under this assumption, we can prove

Proposition 1.8. R(S) = R(X) is generated as a ring in degree < 5.

Proof.

By corollary 1.6, we must only prove that every section of H°(6K x) can be
written as sum of products of sections of degree < 5.

Take an effective divisor C' € |2K x|, and let C' = div(c); then

H°(6Kx) D We := cH°(4Kx) + S*(H°(3Kx)).

We will prove that there exists some C' s.t. this inclusion is an equality.
Since H'(4K) = 0 we get the following exact sequence

0— H(Ox(4K)) 5 H°(Ox(6K)) & H(w2) — 0.

By definition W¢ contains Ker 7r; whence, it suffices to show that there exists C'
st. m: S2(H°(3Kx)) — H(w?) is surjective; this is equivalent to the surjectivity
of mlc : S3(H%(we)) — HO(w?), that is verified for every C irreducible and non
hyperelliptic by Noether’s theorem.

It is clear that the general C' is irreducible (since we have no fixed part, and | M|
is a linear pencil with h°(Os(M)) = 2). That the general C is non-hyperelliptic
follows from the forthcoming lemma 1.10.

O

Lemma 1.9. Let C be a 3—connected genus 4 Gorenstein curve, let w be the
dualizing sheaf of C. Assume that ¢, embeds C. Then ¢,(C) is a complete
intersection of type (2,3).

Proof.

C has genus 4, so h°(C,w) = 4, h°(C,w?) =9, h°(C,w?®) = 15. So the natural
map S2(H°(C,w)) — H°(C,w?) has a non-trivial kernel.

Assume, by contradiction, that this kernel has dimension greater than 1.

Thus, there exist two distinct quadrics 1, Q2 containing the degree 6 curve
vu(C). I Q1,Q2 have no common components, their intersection is a curve of
degree 4, a contradiction.



On simply connected Godeaux surfaces 9

Therefore there do exist linear forms Lo, L1, Ly such that Q1 = LoLi,Q2 =
LoL>, and QOU(C) C Loy N LoLy = Lo U (Ll n Lg)

But ¢, (C) is non degenerate, so we can write C = C; + Cs, with ¢, (C1) C Lo
of degree 5, ¢, (C2) = L1 N Ly a line.

Now, recalling that C' is assumed to be 3—connected, we can compute (note
that C1C5 is defined as: degc, (we) - dege, (we, ), cf. [CFHR])

4=g(C)=g(C) +g(Cs) =1+ C1Cy >6+1—-14+3=09,

hence we derive a contradiction.

Therefore there is only one quadric containing ¢, (C), let us denote it by Q.

Now, by a dimension count, the map S*(H°(C,w)) — H°(C,w?) has a kernel
of dimension at least 5. In particular we get at least one cubic surface G containing
¢, (C) and not having @) as a component.

If G and @) have no common components, their intersection is a degree 6 curve
containing ¢, (C), so ¢,(C) = Q@ NG and we are done.

Otherwise, there must exist linear forms Lg, L, and a quadratic form @', such
that Q = LoL, G = LoQ', and ¢, (C) C Lo U (LN Q'"). Again, we can decompose
C as C + Cy, with ¢, (Cy) C Lo, 9,(C2) C LNQ". If p,(C2) # LNQ', we
have decomposed ¢, (C) as the union of a plane quintic and of a line, and we have
already excluded this case. Else, ¢, (C1) is a plane quartic, ¢,,(C3) a plane conic,
and again we get

4=9(C)=9g(C1)+9(C2) —1+C1C> >3+1—-1+3 =6,

a contradiction.
O

Let us recall (cf. [Cat2]) that a honestly hyperelliptic curve is a finite covering
of degree 2 of P!.

Lemma 1.10. Let C € |2Kx|; one of the following holds:

a) C is embedded by wc, p3k|(C) = @uc (C) is the complete intersection of a
quadric and a cubic; moreover, if ¢, (C) is reducible, it decomposes as the union
of two plane cubics intersecting (with multiplicity) in three points;

b) C is honestly hyperelliptic, p|3x|(C) = @uc(C) is a double twisted cubic
curve;

¢) C =2D; in this case Tors(S)=L[2Z, D € |K + p|, and ¢|3x|(C) = ¢u.(C)
s a sextuple line.

Case a) is the general one.

Proof.

Let us consider first the case where C' is not 3-connected. Then, by [CFHR],
lemma, 4.2 and its proof, 7*C' is not 3—connected, and we have a decomposition
7*(C) = Dy + Dy with D1 Dy < 2 and with KgD; = 1.

We get then D? + D? = (2Kg)? — 2D D5 > 0, so we can assume D? non
negative, whence positive because it must be odd; by the algebraic index theorem
D?=1,and Dy = Ks +¢, Dy = Ks —¢, € € Tors(9).



10 Fabrizio Catanese and Roberto Pignatelli

Since H°(Ks) = 0, by our hypothesis on the torsion group follows that Tors(.S)
=Z/27Z, and that £ = p = —p.

Remark that h®(K + u) = 1, whence D; = D5 € |Kgs + p.

Since h’(3K — (K + p)) = h°(2K — p) = h®(2K + p) = 2, then |3k ((D1) is a
curve of degree (Ks + u)3Ks = 3 contained in a line, thus it is a triple line. This
gives case c).

If C is 3—connected, by [CFHR], theorem 3.6, either wc = 3K|¢ is very am-
ple or C is honestly hyperelliptic. Note that if C is honestly hyperelliptic and
reducible, then C' consists of two smooth rational curves intersecting (with mul-
tiplicity) in 5 points. In this case ¢, (C) is an irreducible non degenerate curve
of degree 3 in P3| so its schematic image is a double structure on a twisted cubic
curve.

Assume now that C' is canonically embedded: by lemma 1.9 ¢, (C) is a com-
plete intersection of type (2,3).

Finally, if C is reducible, C = C;+C5, where C1, Cs are irreducible and C; # Cs
by the hypothesis of 3-connectedness (else, C1Cy = 1). Since Kgn*(C;) = 1,
Puns (e, (Ci) is a plane curve of degree 3K sm*(C;) = 3, and we get thus two distinct
irreducible plane cubics intersecting in three points.

Remark that case a) is the general one because (under our assumption about
the torsion of S), |3k is a birational morphism, as proved in [Cat1].

O

2. The tri-bicanonical map

As we recalled in the proof of lemma 1.10, by [Cat1], for a numerical Godeaux sur-
face with torsion 0 or Z/2Z the tricanonical system defines a birational morphism
onto a surface ¥ C P? of degree 9.

We consider the rational map ® : § — P? x P! whose components are the
tricanonical and the bicanonical maps. This is not a morphism in the base points
of the movable part of the bicanonical system; its image Y is a birational model
of our S that dominates X.

We know that the general bicanonical curve is a complete intersection of a
quadric and a cubic; then, as mentioned in the introduction, our aim would be to
construct two hypersurfaces in P2 x P! of bidegree respectively (2,m) and (3, m')
such that their complete intersection is Y.

Let 8 : S — S be a minimal sequence of ordinary blow ups such that ¢ o § is
a morphism. Denote by 71,2 the two respective projections of ¥ on P3 and P!,
set f:=ma0pofB:S — PL

Lemma 2.1. Let B be a smooth curve and f : S — B be a genus 4 fibration
whose generic fibre is non hyperelliptic. Let F' be a fibre of f, setw =F + Kg.

Suppose moreover that the nonhyperelliptic fibres are 3-connected (equivalently,
such that their canonical image is a complete intersection of type (2,3)).
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Consider the homomorphisms of sheaves
S™(fo(w)) = fulw™),

and set L,, = kero,, and T, = coker o,,. Then

i) Tn is a torsion sheaf supported on the image of the hyperelliptic fibers.

i) Let p € P! be the image of a honestly hyperelliptic fibre (whose canonical
image is a twisted cubic); then there is a positive integer s such that

Vk > 2 length (Ty,p) = s(3k —4).

Proof.
Let M, be the maximal ideal sheaf of the point p in Op.
By Grauert’s base change theorem (cf. e.g. [BPV]) Vp € B, % =
pf
HO(F,,w*); mod M, the morphism o, acts on the stalks as S¥(H°(F,,w)) —
HOY(F,,w*), whence it is surjective when F,, is non hyperelliptic.

By Nakayama’s lemma, if p corresponds to a non hyperelliptic fibre, then (o,),
is surjective, and the first part of the teorem is proved.

Let us now assume that Fj, is a honestly hyperelliptic fibre, so that F}, is a
double cover of P! branched, by Hurwitz formula, on a divisor of degree 10 . We can
embed F, in P(5,1,1) as the hypersurface defined by the equation w? = P(to,t1),
where P is the homogeneus polynomial of degree 10 whose divisor is the branch
divisor of the canonical map.

Following the same line of [ML] it is easy to prove that the canonical ring of
F, is generated in degree 2; this ring can be described as a subring of the ring
A= (C[to,tl,w]/ <w?= P(to,tl) >.

In fact, generators for H(w) are yo = 3, y1 = tgt1, y2 = tot], ys = t3; the ker-
nel of the map S*(H°(F,,w)) - H°(F,,w?) has dimension 3 (three independent
quadrics through a twisted cubic), so the cokernel has dimension 9 — 10 + 3 = 2,
and we can see that it is generated by vy = tow, v1 = t1w.

It follows that, if we choose 3 degree 4 polynomials Poo(y;), Po1(v:), Pi1(v:),
s.t. in the ring A is Pyo = t3P, Py1 = tot1 P, Pi; = t2P, we get the following 9
relations:

rL=YT — Yoy T2i=Y3 —YiyYs T3 = Yoys — Y1y
T4 :=VoY1 — V1Yo T5:=VoY2 —V1Y1 Te ‘= VY3 — V1Y2
ry = 1)(2) - P()() rg 1= VgV1 — P01 Trg := ’U% - P11.

So we can describe the canonical ring R of F}, as a quotient of the graded
ring Clyo, y1,¥Y2,Y3,%0,v1]/ < T1,...,T9 >, where deg y; = 1, deg v; = 2. We
have HO(F,,w) = 4, and Vk > 2 H°(F,,w*) = 6k — 3 but on the other hand an
easy calculation yields that the homogeneus part of degree k of our ring has at
most the same dimension. Therefore follows that R = Clyo,y1, Y2, Y3, v0,v1]/ <
T1,...,T9 >.

Let us denote by Ry the homogeneus part of R of degree k. Remark that

(f*wk)p ®op C = Rk,
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so, by flatness, @k (f«w®), = Oplyo, v1,¥2,y3,v0,v1]/ < T1,...,T9 >, where the
ri’s are lifts to O, of the r;’s.
Moreover, every syzygy of R lifts to a syzygy of the O,-module &y, (fiwk),.
Let ¢ be a local parameter for O,, and write

T1 a1 (y;,t) aii(t)  ana(t) v
r | = (@00 | + (om0 an®) (),
T3 43(y;,1) azi(t)  asa(t) !

where §;(y;,0) = 74, and &;,;(0) = 0. Let s be the minimum of the orders of
vanishing of the d;;(t)’s; we can then find a new basis for the respective vectors
spaces generated by vg and v;, and by 71,72, 73, and a new local parameter ¢, so
that we can write our relations in the following simpler form:

™1 q1(y;,t) t? " g (t) v
Ty | = [ @;,t) | + [ 7T aan(t)  tPans(t) (v1>
T3 q3(yj, 1) tHlag (t)  tPass(t)

Clearly then the linear space of conics generated by the g;(y;,0)’s coincides
with the space generated by the r;’s (¢ = 1,2, 3).

Lifting the syzygy ysr1 + Y172 + y2r3, by degree reasons we get a syzygy of the
form Ls (yj, t)Fl + L (yj, t)Fz + Lo (yj, t)Fg + fa (t)74 + f5 (t)FE, + fe (t)FG, where the
L;(y;,0)’s are three independent linear forms, and 74, 75, T¢ are lifts of r4,75,76.

Working modulo the ideal generated by ¢t*+! and by the monomials of degree
3 in the (y;)’s we get

t°(L3(yj,0)vo + (@22(0) L1 (y;,0) + 23(0)L2(y;,0))v1) € (T4,75,T6)

But in fact, there are no constant coefficients syzygies among ry4, r5, 76, thus we
conclude that

L3(yj,0)vo + (@22(0)L1(y;,0) + a23(0)La(y;,0))v1 € (r4,75,76)

which excludes the possibility that as2(0) = as3(0) = 0.

Therefore, choosing new bases for the respective Op-modules generated by v
and vy, and by T1,72,T3, we can write our relations in the following even simpler
form:

T1 q1 (yj ’ t) t* 0 v
ol = | g2 (yj, t) + (0 ¢ (’U(l]) .
T3 qs3 (y]) t) 0 0

This allows us to compute, using the lifts of r7,rg,r9 to eliminate the multi-
ples of v3,vov1,v?, and the lifts of r4, 75,76 to eliminate the multiples of vy as
much as possible, that there exists a nonzero linear form Lo(y;) such that the set
{tuo L2 (y;), thviqi(y;)|i < s} is a basis for (T%),, when {g;} is a basis for the ho-
mogeneus degree k—2 part of Clyo, y1,y2,y3]/ < r1,72,r3 >. But this is the projec-
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tive coordinate ring of a twisted cubic, whose homogeneus part of degree d has di-
mension 3d+1; whence the dimension of (T%), equals s(1+3(k—2)+1) = 5(3k—4).
O

The integer s arising in lemma 2.1 can in fact be defined as follows:

Definition 2.2. Let C be a honestly hyperelliptic curve of genus g , occurring as a
fibre of a genus g fibration f : S — B where S is smooth. Define the multiplicity
of C (or mult(C)), as the multiplicity of C in the conductor ideal of f (recall that
the conductor is a divisorial ideal).

Proposition 2.3. The integer s associated to a honestly hyperelliptic fibre C' as
in lemma 2.1 equals the multiplicity.

Proof:

Let p € B be a point such that C is the fibre of p and U a sufficiently small
affine open neighbourhood of p. Let Y C P? x U be the image of the relative
canonical map ¢ of f.

By abuse of notation let us still denote by S = f~1(U). The sheaf of double
points A, supported on the image I' of C is defined via the exact sequence

0= 0y = .05 —>A=0.

Twisting the exact sequence by Ops,p1(n, 0), and observing that ¢* Opsyp1(1,0)
w, from the definition of T,, we get that

(Tn)p = HO(T, A(n)).

From lemma 2.1 we conclude that the length of A at the generic point of T’
equals s. Since (as we shall also see in lemma 2.6) at the general point of ' we
have a singularity consisting of two smooth branches, we conclude immediately
that s equals the multiplicity of C' in the conductor divisor.

0O

The geometric meaning of the definition and proposition above is that s should
be interpreted as the intersection multiplicity of the curve B with the hyperelliptic
locus inside the moduli space of the curves of genus 4.

Remark 2.4. The fibration f we had already defined is a genus 4 fibration if and
only if (see remark 1.2) F =0 and the map B is a sequence of blow-ups in smooth
points, possibly infinitely near, of the generic bicanonical divisor; i.e., if and only
if F' =0 and the base locus of |2Ks| is not consisting of a single point where every
bicanonical divisor has multiplicity 2.

The above condition is of course an open condition; in fact we shall prove later
that the Craighero Gattazzo surface enjoys such a property.

Theorem 2.5. Assume that S is a numerical Godeauz surfaces with torsion {0},
s.t. f is a genus 4 fibration. Let h =3 5 1 creniptic MU(C).
Then 3Q € |Opsypi(2,7 — 2h)|, s.t. Y := ¢(S) is a divisor in |Og(3,3h — 6)].
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Proof.

By remark 2.4, the map  we had already defined at the beginning of this
section, is a sequence of blow-ups of smooth points of the generic bicanonical
divisor.

Let E;, i =1,... ,4 be the corresponding exceptional divisors of the first kind,
andset E = ) E;. Then Kg = *(Kg)+FE, and if F is a generic fibre of f (F is the
strict transform of a generic bicanonical divisor on S by 8), F = *(2Ks) — E =
2Kz — 3E is a genus 4 curve.

The pull-back of the tricanonical system is given by w := *(3Kgs) = 3Kg —
3E = Kg + F. In view of lemma 1.10 the hypotheses of lemma 2.1 are satisfied.

Consider now the exact sequences

0= Ly = 82 (fuw) 2 fuw? = Ty = 0; (1)
0 L3 = 8(fiw) = fuiw® = T3 > 0. (2)

VF, the map H°(S,w) — H(F,w) is an isomorphism, therefore f.w = Of,.

In particular L5 is a subsheaf of 82(f.w) = O'°, while L3 is a subsheaf of
83 (fuw) = 020,

Moreover, since J}, is a torsion sheaf, the rank of £y equals the difference dim
Sk(H(F,w)) — hO(F,w*). Therefore rank L5 = 1, rank L3 = 5 and we can write
Lg = Opl(—m).

Since L5 is a subsheaf of O°, m > 0, and the injection Ly — O defines a
hypersurface Q € |Opsxp1(2,m)| that contains Y (in particular, then, m > 1).

Let us now compute the Euler characteristic of the exact sequence (1).

We get

x(L2) =1—m;
xX(S*(faw)) = x(0'%) = 10;
R'fuw® = 0= x(fuw?) = x(w?) = 16;

x(T2) = length (J2) = 2A;

sol—m+16 =10+ 2h, i.e. m =7 — 2h.

The splitting surjective homomorphism S%(f.w) ® fiw — S*(fiw), induces
a homomorphism L3 — L3; it is easy to see that this is injective and that its
cokernel is a subsheaf of the locally free sheaf (f.w?)?.

So, L3 being a locally free sheaf of rank 20 — 15 = 5, we can write the following
exact sequence

0= O02h=7) = L3 = O(—m') =0, (3)
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But then
x(L3) = 8h —m' — 23;

X(S°(faw)) = x(0*) = 20;
R'fuw?® = 0 = x(fuw?) = x(w*) = 37;

x(J3) = length (T3) = 5h;

so by the exact sequence (2) we get 8h —m' — 23 + 37 = 20+ 5h, i.e. m' = 3h —6.
Remark now that the injection Op1(6 —3h) = L3/L24 — S3(fiw)/La- HO(fiw)
defines a divisor D € |Og(3,3h — 6)| containing ¥. D and Y have the same
dimension; VHs € |Opsxp1(0,1)|, H2 NY has degree 6. But if Ho N D is a curve,
it has the same degree and contains Hy NY, so they coincide. So, if D #Y, 3H>
s.t. Hy ND is a component of H, N Q; if @ N Hy = DN Hy we get some torsion
element in coker L3 — S®(f,w), that is a subsheaf of the locally free sheaf f,w?,
a contradiction. Otherwise Q N Hy is the union of two planes, and D N H, is
exactly one of the two planes; but we have already excluded this case in the proof

of lemma 1.9.
O

Now, let us understand the local behaviour of ¥ near the image of every hon-
estly hyperelliptic curve occuring as fibre of f : § — PL.

Proposition 2.6. Let C' be a honestly hyperelliptic genus 4 fibre of f, T = ¢(C).
Assume that the multiplicity of C equals s: then, in the neighbourhood of a general
point p € T there exist local coordinates (y1,y2,ys,t), such thatY is defined by the
equations y2 = y1(y1 — %) = 0, T by y1 = yo =t = 0, and the projection wy is
(still) given by the coordinate t.

Proof.

For the general p € T there exists a neighbourhood U of p in P3 x P! such that
¢ 1(U) has two smooth connected components, and ¢ identifies the two smooth
holomorphic curves corresponding to C.

So, for a first suitable choice of local coordinates in the source and in the
target we can assume that I' = {y; = y» = ¢t = 0}, the projection 73 is given by
the coordinate ¢, and the two branches of Y are parametrized as follows

(ul,tl) — (0,0,U1,t1)
(UQ,tz) — (t2¢1(U2,tz),tz¢2(ﬂ2,t2),ﬂ2,t2).

So, for a suitable local analytic coordinate change that fixes t, we get the
simpler form

(ul,tl) — (0,0,U1,t1)
(u2,t2) = (t5,0,u2,t2).
And Y is described by the equations y» = y1(y1 — t*) = 0.
Finally, remarking that the conductor ideal is generated by yi,t%, we get a = s.
O
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Corollary 2.7. Assume that o fibre F = {t = 0} appears in the conductor di-
visor with multiplicity s. Thus, if Q(yi,t) represents a divisor in P x P! s.t.
(P*d“)(Q(yl;t)) > 25F7 then tle(yut) (mOd jY)

Proof.

By our assumption div Q(y;,t) pulls back to a divisor > 2sF.

Since we are interested in @ mod Jy, this means, using the local coordinates
introduced above, that we can look at () modulo y», and writing Q'(y1,ys3,t) =
Q(y1,0,ys3,t) we get as a first condition that

1) Q€ (y1,t°) & Q' = yig' +1*°g

and it suffices therefore to prove that ¢°|q’.
The condition imposed by the second branch is that t2°|t*¢'(t°,v,t) <& ¢ €
(y1,t*). Thus, mod Jy, Q' = y?a + y,1t°b + t**g.
But Jy 3 y1(y1 — t°) and thus Q' = t*(y1(a + b) + t°g).
O

Consider now the case where F' = 0, but f is not a genus 4 fibration. In this
case we can consider the blow up f' : §' — S of S in the single base point P of
|2Kg|. If E is the exceptional divisor of ', the strict transform of the bicanonical
system is given by 3'"2Kg — 2FE.

Let g’ : $' = P2 x P! be the morphism obtained from |5"*3Ks— E| x |3 *2Ks—
2E)|, let 7} : P? x P! — P? be the second projection, set f' = w5 og'.

Recall, to understand the statement of the following lemma, that a curve C is
said to be hyperelliptic if the canonical map is not birational.

Lemma 2.8. Let f' : S — P! be a genus 3 fibration whose fibres are 2-connected
and whose generic fibre is non hyperelliptic. Let F be the fibre of f', set w =
F+ Kg.
Consider the homomorphisms of sheaves
S™(fiw) =5 fi(w™),
and denote by L, = kero, and T, = coker o,,. Then
i) T is a torsion sheaf supported on the image of the hyperelliptic fibres.

ii) Let p € P! be the image of some hyperelliptic fibre; then 3s > 0,s € N, such
that

Vk > 2 length (Tx,p) = s(2k — 3).

Proof.

i) This point follows since if C is not hyperelliptic the canonical image of C is a
plane quartic (in fact, the hypothesis of 2-connectedness ensures that the canonical
system has no base points, see [CFHR], lemma 3.3.b).

ii) Recall that, by [ML], the canonical ring of a hyperelliptic fibre has the form

R =Clzy,z2,23,y])/ <m1:= Q(xi),r2 := y* — F(z;) >,
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where deg z; = 1, deg y = 2, deg =2, deg F' = 4.
Acting as in lemma 2.1, if we choose a suitable local parameter ¢ in Op, we can
write a lift of r; as

1= @(Z'j,t) + tsy

for some s > 0, Q(x;,0) = Q(z;).

This allows us to compute, using the lift of 7, to eliminate the multiples of y2,
that the set {t'gjyli < s} is a basis for T, when the set {g;} is a basis for the
homogeneus part of degree k — 2 of the quotient ring Cl[z1, 22, z3]/Q.

O

Theorem 2.9. For a numerical Godeauz surface with torsion {0}, and of type ib)
(bicanonical system without fized part possessing a double base point) f' is a genus
3 fibration, and g' yields fibrewise the canonical map of the fibres. Moreover, f'
has exactly 7 hyperelliptic fibres (counted with multiplicity according to 2.8) and
the image of ¢' is a divisor in |Opzyxp1(4, 8)].

We need the following

Lemma 2.10. Under the above assumption, all the fibers are 2-connected and the
generic fibre F' is non hyperelliptic.

Proof.
Let F be a fibre of f'. Since EF = 2 and E is irreducible, it follows that if we
have a decomposition F' = A + B, then AE > 0, and similarly BE > 0, whence

AE=0,BE=2 or
AE = BE = 1.

Assume that AB = r: then in the first case we get A(B + 2E) = r, in the
second we get (A + E)(B + E) =r + 1. In both cases we obtain a decomposition
(A" + B') € |2Kg| where A’B’ < (r +1). We conclude that r > 2 because under
our assumptions (see [Bo|, lemma 2, page 181) A'B’' > 2 and is equal to 2 only
if, say, A'Ks = 0, what excludes AE = 1 (since otherwise there would be a fixed
part of the bicanonical system).

Assume by contradiction that every F' is hyperelliptic. We observe that the
first component of g’ restricts to every fibre F' to the complete canonical system
of F'. Therefore we obtain that ¢’ is 2 : 1 so it defines a (birational) involution o
on S that is the hyperelliptic involution on every fiber. Since ¢ acts biregularly
on the minimal model S and clearly fixes P, ¢ also acts biregularly on S leaving
FE invariant.

In particular on every F' the hyperelliptic involution induces a involution on
the corresponding bicanonical divisor in S, so every bicanonical divisor on S is
hyperelliptic. This is a contradiction because the rational map induced by |3K|
is birational.

O
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Proof of theorem 2.9.
Consider the exact sequences

0= Ly = 82(flw) B flw? = Ty = 0; (4)
0— L3 = 83 (flw) = flwd = T3 = 0; (5)
0 L4 — 8 (flw) & flwt = Ty = 0. (6)

Argueing as in theorem 2.5, we get that Lo, L3, L4 are locally free sheaves
of respective ranks 0, 0, 1, and that the J; are torsion sheaves supported on the
points corresponding to hyperelliptic fibers. By lemma 2.8 for every such point
p € P! there is a multiplicity s, s.t.

length (TZap) = Sp;
length (J3,p) = 3s,,

length (T4, p) = 5sp.

Computing the Euler characteristics in the sequences (4), (5) and (6), we get
s=3 8,="T7and Ly = Op:(-8).

So we can conclude that g(S) € |Opayp1(4,8)].
O

Remark that, in the case of torsion Z /27, everything works almost identically,
except that we have to calculate the hyperelliptic multiplicity corresponding to
the non 1-connected (double) fibre: this will be done in the sequel to the present
paper.

3. The genus 4 fibration cannot have three
distinct hyperelliptic fibres.

The goal of this section is to prove the following

Proposition 3.1. Let S a numerical Godeauz surface with torsion {0} such that
|2Ks| has 4 base points possibly infinitely near (equivalently, s.t. f is a genus
4 fibration). Then the bicanonical pencil cannot contain three distinct honestly
hyperelliptic fibres.

We shall argue by contradiction and assume by theorem 2.5 that h = 3 and
that Y is a divisor in |Og(3,3)|, with Q € |Ops,p1(2,1)|.
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Remark 3.2. Y is the complete intersection of Q with a hypersurface G, where
G e |O]p3x]p1(3,3)|.

In fact, exact sequence 3 splits because Ext! (O(=3), 0(=1)*) = H*(O(2)*) =
0; so exact sequence 2 induces a divisor G in |Opsyp1(3,3)| that cuts out Y on Q.

Lemma 3.3. If the torsion group is {0} and h = 3, then there ezists a quadric
Q" in P? containing each twisted cubic, image of a honestly hyperelliptic fibre.
Moreover, the pull back of Q" to S yields an effective divisor which is greater than
the adjoint (conductor) divisor.

Proof.

Let X be the canonical model of S, and let B : X = X be the blow up in the
base points of |[2K x| (they are smooth points of X by our hypothesis).

Let 7 be given by the relative canonical map of f : X = PL

We have the following diagram

X Y c P3
B \Ag; T
X 5 Y c P3xP!
dma
]Pal

and recall that § = ¢ o BAis a birational morphism factoring through a possi-
ble contraction € : X — X of strings of (=2) curves (to rational double point
singularities), and a finite birational map §: X — Y.

By [H], ex. IIL6.10 and IIL.7.2, §.(K3) = Homoy (3+O0%,Ky). Moreover
wy =0y (2+3—-4,14+3-2) = Oy(1,2), whence (K ) = C®Oy(1,2), C being
the conductor ideal of g.

The pull back to X of the conductor ideal C is an invertible sheaf 0Oz (—=D),
D is here the adjunction divisor. We have K3 + D = §*(0Oy(1,2)), so D = 3F
(as we already know). More generally, since C = §.O¢(—D), the n'" adjoint ideal
9xO%(—nD) equals C".

Whence

h0(S,nKs) = h(X,nKg) = h°(Y, §.(nK )) = B°(Y,C" Oy (n, 2n)).

In particular, a global section of g.(Kg) is a global section of Oy (1,2), whose
divisor pulls back to an effective divisor containing the honestly hyperelliptic fibres
with their multiplicity; in particular its divisor contains the special twisted cubics.
Since no plane contains a twisted cubic curve, we recover the basic assumption
h°(Ks) = 0.

Moreover, letting E be the sum of the four (—1) divisors of the blow-up, since
lp*(Oy (0,1))| = |2Ks— E| = |2Kg—3E| = |¢*(Oy(2,4)) —2D — 3E|, there exists
Q' € |Oy(2,3)| whose pull-back on S is a divisor consisting of 3F plus the sum
of the honestly hyperelliptic fibres counted each 2s times (s being their respective
multiplicity).
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By corollary 2.7 Q' belongs to the sheaf of ideals (Q, G, P), where P is a poly-
nomial of degree 3 on P! such that its divisor pulls back to the adjunction divisor
on S. Since (Q,G, P) form a regular sequence, it follows easily that there exists a
quadratic polynomial Q" (y;) such that Q' = Q" P.

Since the pull-back of @' contains the adjunction divisor D doubly, while P
pulls-back to D, follows that the pull back of div Q" is at least D. O

Let us devote our analysis to the case of torsion {0} and let us write down
explicitly the equations of the two divisors whose complete intersection gives our
image surface Y.

Let Qx = AoQo + A1Q1; Ga = A3Gooo + A3A1 G100 + AoAiGor1 + A3G11.

We can assume that for A = (1,0), (0,1) or g = (o, p1) (fixed), @x NG, is a
double twisted cubic.

Lemma 3.4. (o, Q1,Q, are quadric cones of rank 3.

Proof.

If one of these quadrics, say (o, were smooth then Q)9 would be isomorphic to
(P! x P!). Then the cubic Gooo would cut on Qo a divisor in the linear system
(3,3), while we know that this intersection must be twice an irreducible twisted
cubic curve (t.c.c. for short), a contradiction (observe that a t.c.c. lies in a linear
system of type (2,1) or (1,2)). Moreover, since the t.c.c. is irreducible and non
degenerate, rank ()9 = rank ); = rank @, = 3.

O

By lemma 3.4, we know that Qo, @1, @, are quadric cones. Let V4, V;,V), be
their respective vertices, I'g,I'1,I",, the corresponding twisted cubic curves. The
tricanonical image ¥ of S is the hypersurface of P? defined by ¥ = {Q3Gooo —
Q31Q0G100 + Q1Q3Go11 — QG111 = 0}.

Lemma 3.5. If V) = Vi = Qo,Q1,Q" have a common line L.

Proof.

Let us consider the lines Iy, l1, 1, residual to the twisted cubics in the respective
intersections of the three quadratic cones with the ”adjoint” quadric Q”. IL.e., we
have Qo NQR" =T Uly, Q1 N Q" =T1 Uly, QNQQ” =T, Ul,.

Observe that, since Vo = V4 =V, then clearly Vo € o N1 N1i,.

Q" DTy = rank Q" > 3.

If Q" is smooth, then Q" = P! x P! and every line in Q" is contained in one
of the two rulings. So, at least two of the above lines are in the same ruling, and
since they intersect, they do coincide.

This line is in the base locus of the pencil ), hence our assertion follows.

If Q" is a quadric cone, denote by V" its vertex. Every t.c.c. in a quadric cone
passes trough the vertex, so Vi V" € T'; C Q;; let V =V, = V4, and observe that
V # V" (else the two quadric cones would intersect in 4 lines), whence the line
VV" is contained in all these quadrics.

O
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Lemma 3.6. Vo #1;

Proof.

Observe preliminarly that the previous lemma implies that the three twisted
cubics [y, 'y, ', are distinct (otherwise there would be a twisted cubic I' contained
in each @,: but then Qo = @1, since they have the same vertex V and they are
the join of V with I').

Observe now that ¥ must be singular in our three twisted cubics: in fact ¥ is
the image of Y under the birational morphism given by the first projection, and
Y is singular along the three twisted cubics.

ThUS, Q” ny 2 QFO =+ 2F1 + QFH

Both Q" and ¥ are irreducible, so their intersection must be a curve of degree
18 and equality must hold.

But, by lemma, 3.5, we have a line in Q" N Qo N Q1, which is a fortiori also in
Q" N X, whence a contradiction.

O

So, we can assume Vg # V1.

Lemma 3.7. VA € P!, Q\ is a quadric cone and the line VoV, is contained in

Q-

Proof.

Recall that Qo NGooo = 2. But Qg is singular in Vg, so Gggo must be smooth
in Vy, thus also in a general point of I'y.

Observe that V5 € I'y C Sing ¥, so, by inspecting the equation of ¥, we infer
that Vp € Q1. Similarly, V; € Qq, and the line Vo5 C @, V.

Let us now fix coordinates s.t. Vo = (0,0,0,1), Vi = (0,0,1,0); VoVi = {z¢ =
It 220}.

Thus the matrix of the quadric @ has the following form:

x *  Aox Ak

_ % *  Aox Ak
=1 xox dx 0 0 |

Al* Al* 0 0

whence the determinant of the matrix of |@Q,| equals the square p3, of a homo-
geneous polynomial ps of degree 2 in the )\;’s; since we know that it has at least
three distinct roots, we conclude that p, = 0, therefore () is a pencil of quadric
cones.

O
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So, after a suitable change of coordinates in P! and in P3, we may assume that

0 0 -y -y
0 X+M 0 0
@ = — 0 o 0 |’
-2 0 0 0

ie., Qo = 22 — mox2, Q1 = 77 — TT3.

Remark that this choice imposes that it cannot be ug = —pu1, because otherwise
we get a t.c.c. ', contained in a reducible quadric @,,.

End of the proof.

The vertices Vy, Vi and V), of the quadric cones Qo, @1 and @, must be
respectively contained in the twisted cubics I'g, I'y and T, therefore also in Q".
However, these three points lie on the same line V4 V;; in particular, we get a line
intersecting a quadric in three distinct points. The conclusion is that VoV, C Q”.

Recall that ¥ must be singular in our three twisted cubics, and that by in-
specting its equation, it follows easily that ¥ is triple on the complete intersection
of the two quadrics g, Q1, which contains the line VyV;.

Let us write the complete intersection Qo N Q1 as VoVy + T, where T is thus a
1-cycle of degree 3.

Only two cases can occur:

e Iy, I'y and T',, are distinct
L] F(): Fl = FH =T

In the first case, the schematic intersection ¥ N " has degree 18, however it
contains T, Ty and T, with multiplicity two and VoV; with multiplicity three:
this is clearly a contradiction, since 18 + 3 = 21 > 18.

In the second case, the irreducible twisted cubic T' would intersect the line Vo Vi
in the three distinct points Vg, V1, V), which is well known not to be possible.

O

4. The Barlow surface

Up to now there are only two known explicit constructions of numerical Godeaux
surfaces with torsion {0} (and indeed simply connected), respectively due to Bar-
low ([Ba2]), and Craighero and Gattazzo ([CG]): let us consider first Barlow’s
example .

For the Barlow surface, we can study the bicanonical and tricanonical system
according to the manuscript [R3], where Reid describes the canonical ring of the
Barlow surface as follows.
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Let A the symmetric matrix

—21’4 o —Tog — T4 X9 — L1 — T4 T3 —To2 — T4 1 —T3 — T4

—2x T3 —T] — Ty X1 —Tg —Tg T4— T3 — Tg
A= —2x; Ty — Ty —T1 Ty — T3 — I
—2.’132 g — T3 — T2

—2.’133

Let A;; the ij-th entry of A, B;; the ij-th entry of the adjoint matrix B of A.

Let us consider the authomorphism 3 of Clzo,... ,2Z4,%0,-.. ,ys] that acts as
B(x;) = i1, B(¥i) = Yir1, and the automorphism a that acts as a(r;) = z,;)
(@ = (25)(34) in Ss), a(y;) = —ya—i, where all indices are to be taken in Z/5Z.
They generate a subgroup G of the group of automorphisms of C[zg, . .. , z4,y0,- - - ,
ya]. One can indeed check that G = Djy.

Let R = Clzo,... ,Z4,Y0,--- ,Yya]/I, where the ideal I is generated by

Z.CL‘Z' =0,

5
VI<i<5, Y Aijyi1=0,
1

V1 S Zaj S 57 Yi—1Yj—1 — Bij =0.

We consider the ring R as a graded ring via the following grading which makes
I a homogeneus ideal: deg x;=1, deg y;=2.

One can check that the ideal I is G-invariant, whence G acts on R. Since the
action acts only with isolated fixed points, it follows (cf. [R3]) that the canonical
ring of the Barlow surface can be described as the ring of the invariants of R for
the action of G.

In order to simplify the computations, one can choose as generators for G,
and o' = Ba; o' (x;) = 24(;), with @’ = (12)(35), and o' (y;) = —y_;.

So we can easily compute that there are no nontrivial invariants in Ry, while
the subspace of invariants in R is generated by

o = 2122 + 23 + T3T4 + T4To + ToT1,
& = 2173 + Toxy + T3Tg + T4T1 + ToT2,

& =$f +$§ +$§ +$Z +$g.
Moreover, the relation Y z; = 0 induces the relation
280 + 26 + & =0.

So we can take &, & as generators of the bicanonical system.

The tricanonical system needs more computations.

We know that R3 is generated by z;xz;xr and z;y;; the invariants must have
the same decomposition.
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The subspace of invariants in the span of the monomials z;x;x is generated
by the invariants:

Mo = T1X2T3 + T2T3T4 + T3XL4To + T4ToZ1 + ToT1T2,
M = T1T2T4 + T2T3To + T3T4T1 + T4ToT2 + ToT1T3,
no = 23 (x2 + 20) + 25(w3 + 21) + x%(m + ) + 23 (20 + x3) + x%(xl + x4),
13 = 1 + a5 + a3 + o] + a3,

Ny = T (x3 + 24) + T3(T4 + T0) + T2 (T0 + 1) + Th (71 + T2) + TE (T2 + T3).
The relation Y z; = 0 induces the three linear relations

2o +m +n2 =0
No+2m +ns=0
N3 + 12 + 14 =0.

Thus the above subspace is generated by two independent generators, say 19, 71 -

Now we have to find two more independent generators for the subspace of
invariants in the span of the monomials {z;y,}.

Here the 3 invariants are generated by (; = >, ziyit;, where the indices
0 < j <4 are again to be understood as elements of Z /5Z.

The (; verify the trivial relation )" (; = 0, and the sum of the five linear
relations V1 <4 < 5 Zi’ Aijyj—1 = 0. An easy calculation shows that this sum
yields exactly (—6)¢;. Whence, we have only the other relation ¢; = 0.

Another easy calculation shows that o/(¢y) = —(, &/(G1) = ¢, /() =
—(4, and we can easily conclude that a system of independent generators for the
tricanonical system of the Barlow surface is given by 79,71, o — (2, (3 — (4.

In order to understand how many hyperelliptic divisors (with multiplicity) there
are in the bicanonical system of the Barlow surface, we have only to check what
is the minimal m s.t. there exists a non trivial element in

(S™(< &0,61 >) ® S*(< Mo, msCo — G2, (3 — G >)) N 1.

We are indebted to F.-O. Schreyer who wrote a Macaulay script that verifies
that this minimal number m is indeed equal to 3, and that the relation is given
by the following polynomial

17286075 + 1872656175 — 129660875 — 1584&5m5 + 547285m0m +
+5184£5€1mom — 5184&& nom — 5472&5mom + 1584&5mi +
+1296£561m7 — 187260é7m7 — 1728&5m7 — 1365 (Co — )+

—226561(Co — () — 1067 (Co — G2)* + & (G — &)+
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+14€5(Co — C2) (G — Ca) + 246261 (Co — C2) (G — Ca)+
+24&&7 (Co — G2)(C3 — Ca) + 1485 (o — ¢2)(Gs — Gu) — 5(¢s — Ca)*+
+10&561 (G — (a)® + 226067 (3 — Ca)? + 1365 (3 — Cu)*.

Afterwards we wrote a Macaulay?2 script (available upon request) that obtains
the same result in characteristic 0.

We can therefore summarize the main result of the foregoing section in the
following

Theorem 4.1. The bicanonical system of the Barlow surface has exactly 4 distinct
base points and contains two hyperelliptic fibres (counted with multiplicity).

The same result was obtained independently by [Lee].

5. The Craighero Gattazzo surface

Let us now compute what happens for the Craighero Gattazzo surface. As the
Barlow surface, this is a numerical Godeaux surface with torsion {0} (and indeed
simply connected, as shown in [DW]).

The Craighero Gattazzo surface S is constructed in [CG] as the minimal reso-
lution of the quintic X € P2 defined by the equation Fj

Fs = (z + my + a2)*t® + [a’z> + zy(bx + cy) + m*y® + (ex® + fry + cy®) 2+
+(bx + ey)2* + 2°]t* + [2a2’y + ex®y® + 2amzy®+
+(2ama® + fzly + foy® + 2my®)z + (ca® + foy + by?)2? + 2(mz + ay) 23|t +
+23y? + a®2%y® + 2y(2ma® + bay + 2ay?) 2+

+(m?2® + ca®y + exy® + y*)2* + (mz + ay)?2® = 0.

where 7 is a root of the polynomial ¢3 + #? — 1 and where the various coefficients
are defined as follows :

a=r? b=—%(2r? —13r — 18)
c = 55(73r% + T5r + 92) e=—1(r* —24r -9)
f=45(181r% + 241r + 163) m = £(3r? + 5r + 1).
In [CG] are given different expressions for the coefficients a,e,b,m, f,c, ex-
pressed as rational functions of r; we have computed the equivalent expression as
Q-linear combinations of 1,7,72 in order to simplify the calculations (we have done

this both by hand and via a calculation using MAPLE).
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This quintic surface X is invariant for the Z/4Z—action on P? induced by the
cyclical permutation of the coordinates  — y — 2z — t; the singular locus of X is
the set of coordinate points {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}.

It is possible to show, as we shall do shortly, that in the neighbourhood of
every singular point the singularity can be represented as a double cover of the
plane branched on a curve with a singularity of type (3,3) (a triple point that has
an infinitely near ordinary triple point). Therefore our singular points are simple
elliptic (-1)-singularities (for which the exceptional curve in the minimal resolution
is a smooth elliptic curve with self-intersection —1).

It follows that the adjoint divisor on the resolution is precisely the elliptic
exceptional curve counted with multiplicity one, whence the bicanonical system
of S is cut by the quadrics in P® whose pull-back on S yields a divisor containing
the exceptional locus twice, and the tricanonical system is cut by the cubics in P3
whose pull-back on S contains the exceptional locus with multiplicity three .

Craighero and Gattazzo compute explicitly both systems, but we found that
their computation is different (and non-equivalent) to ours. It is possible that
some misprint occurred, so let us sketch our calculation.

Let us look at the equation of X in a neighbourhood of (0,0,0,1). Setting
w = (z + my + az) we can write the Taylor development of the equation Fj in
affine coordinates as follows:

'LU2 + m2y3 + 'LUfz('LU,y,Z) + f4(wayaz) + fS(wayaz) =0

with f; homogeneus of degree i.
In local analytic coordinates (u, y, 2), where u = w—+1/2f2(w, y, ), the equation
takes the form

u? + m?y® + g4(u,y,2) + ... = 0.

Whence y = 0 is the equation (in the plane of coordinates (y, z)) of the direction
of the tangent cone of the branching locus, and therefore the pull-back on S of the
divisor div(y) is easily shown to contain the exceptional curve E at least twice.

Of course the multiplicity in the exceptional curve of w and z is at least one.
But, since w? belongs to the cube of the maximal ideal, it follows that div(w) > 2E.

Again, writing

f2(wayaz) = (122 + UJF1(UJ,yaZ) + yG1(UJ,yaZ)

f4(w5 Y, Z) = 624 + WF3 (U), Y, Z) + yG3 ('U), Y, Z)
we are able to rewrite our equation in a slightly different way as follows:

’U)2 + m2y3 + [awz2 + 1U2F1(’U),y,z) + ’U)yG1 (wayaz)]+

+[82" + wF3(w,y, 2) + yGs(w, y,2)] + fs(w,y,2) = 0.
From the above remarks follows that the function

w? 4+ awz® + B2*
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has a divisor which is greater than 5E.

But a tedious calculation shows that w?+awz?+B2* = (w— % (6r?+3r—>5)22)2.

Whence the multiplicity of w — £(6r% + 3r — 5)2? is at least 3.

It is in fact obvious that p,(S) = 0; moreover it is also clear that |2Kg| contains
the divisors corresponding to the quadrics Qg = zz and @; = yt: on the other
hand these two quadrics generate a fixed part free pencil on X, therefore the
corresponding pencil in |2Kg| has no rational curve in its fixed part; whence S
is minimal. Since K% = 1, it follows that the bigenus P»(S) = 2, hence the
bicanonical system is precisely the above pencil.

We can proceed further by using the Z /4Z—invariance of Fj, since then |3Kg|
is generated by the Z/4Z orbit of the cubic Cy = a(z + my + az)t? + txy + a®yzt +
$(6r% + 3r — 5)z2t.

If o is the generator of the Z/4Z action such that o(z) = y, let us set C; =
O'(Co), Cy = 0'2(00), 03 = 03(00).

In this way, also for the Craighero Gattazzo surface, we can calculate using
the computer algebra program Macaulay2 what is the minimal number m such
that the kernel of the map S™(H°(2K)) ® S?(H°(3K)) — H°((2m + 6)K) is not
trivial; and again the answer we get is m = 3.

At the moment we cannot yet determine whether there do exist numerical
Godeaux surfaces with bigger values of m = 5 or 7; we hope to address this
question in a sequel to this paper.

The explicit equation of this polynomial is

—(3r + 57 + 1)Q3 CoCa+
+Q2Q1[-Tr(C2 + C2) — 14(r + 1)(CoCy + CoC3) — T(r + 1)(C? + C2)+
+(r? 4+ 4r — 9)CoCs — 7(r* + 1 + 1)(C1C2 + CoCs) — (11r% + 167 + 6)C1 C3]+
+QoQ2[7(r + 1)(C2 + C2) + 7(r* + 1 + 1)(CoCy + CoCs3) + Tr(C? + C2)+
+(117% 4 167 + 6)CoCy + 14(r + 1)(C1Cy + CoC3) — (r* + 4r — 9)C1 Cs]+

+(3r* + 57+ 1)Q3C1C;3

We can combine the results of our calculations above with the previous results
of Craighero and Gattazzo ([CG]) and Dolgachev and Werner ([DW]),

Theorem 5.1. The Craighero Gattazzo surface is a simply connected numerical
Godeauz surface with ample canonical bundle. The bicanonical system has exactly
4 distinct base points and contains exactly two hyperelliptic fibres with multiplicity
1.

Proof.

We need only to verify the last two assertions.

Recall that by [DW], S does not contain (—2)—curves; so, by lemma 1.1, 2Kg
has no fixed part.
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Restricting to the line x = y = 0 the equation Fj, we get the polynomial
az?t® + z3t2. So the smooth point of X of coordinates (0,0, —a, 1) is a base point
of the bicanonical system of 2Kg; since its orbit by the Z/4Z action consists of
four distinct points, we have gotten 4 distinct base points. These build up the
whole base locus because (2Kg)? = 4.

We have shown before that the minimal m such that the kernel of the map
S™(H°(2K)) ® S?(H°(3K)) — H°((2m + 6)K) is not trivial, is 3. This allows us
to conclude, by theorem 2.5, that there are two hyperelliptic bicanonical divisors
(counted with multiplicity).

But the Z /47 action on X induces a Z/2Z action on the bicanonical system
(since the bicanonical sections are invariant by o2). So, if there were only one
hyperelliptic bicanonical divisor (with multiplicity two), it would be cut by a o—
invariant quadric in the pencil generated by Qo and @1, i.e. by Qo+ Q1 or Qo— Q1.

But we have written down explicitly the tricanonical system, so we can explic-
itly write the tricanonical images of these two divisors. We can prove that neither
of them is hyperelliptic, because otherwise we would find three quadrics containing
the image of one of them, whereas we have checked with the program Macaulay?2
that in both cases there is only one such a quadric.

O

6. The local moduli space of the Craighero
Gattazzo surface

It is known that the local moduli space of the Barlow surface is smooth of dimen-
sion 8 (cf. [CL], and also [Lee]). The main scope of this section is to prove that
the same holds for the Craighero Gattazzo surface:

Theorem 6.1. The local moduli space of the Craighero Gattazzo surface is smooth
of dimension 8.

Let X be the quintic constructed by Craighero and Gattazzo, and 7 : S = X
its minimal resolution.

By Kodaira and Spencer’s first main result in deformation theory (cf. [KS],
also [KM]) our claim will be stablished if we show that h'(©g) = 8, h?(0g) = 0.
In fact, h°(©5) = 0, since S is of general type, and moreover h'(©g)—h?(Os
—x(©s) = 10x(0s) — 2KZ% = 8. Therefore, it suffices to prove that h'(Og) =

Applying to the standard exact sequence

)=
8.

0= Ox(=5) = Qpx = % =0
the functor Home, (-, Ox), we get the standard long exact sequence

H(Ops x) — H°(Ox(5)) —»

— Exty (2, 0x) & H' (Ops x) = H' (Ox(5)) —»
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— Eaxt}y (Q%,0x) = H*(Ops x).
However, taking the restriction to X of the Euler exact sequence
0= Ox = Ox(1)* = Opsjx =0

we can easily compute that H'(Ops x) = H?*(Opsx) = 0.

Therefore, keeping also in mind that H!(Ox(5)) = 0, we find that the map
H°(0Ox(5)) EN Exty, (D, Ox) is surjective and that Ext?, (Q%,0x) =0.

In turn, applying the Ext spectral sequence, we obtain the following exact
sequence:

0 - HY(®x) — Exzth,_(Q%,0x) 5 H'(Exth (Q%,0x)) - H?(Ox) — 0.
Ox OX

We are now going to show the vanishing of H1(©x).

Let us denote by p the natural projection H°(Ops(5)) — H°(Ox(5)), and
consider the map go f op: H(Ops(5)) — H(Exty, (U, Ox))-

The Z /47 action on X allows us to choose a basis in H°(Ops(5)), say v1, - - - , Usg,
s.t., if o is the generator of the action given in the previous section,

v;  if1<v; <14

iv; if 15 <wv; <28
—v;  if 29 <v; < 42
—iv; if 43 <wv; <56

o(vj) =

(notice in fact that o acts freely on the set of monomials of degree 5).

We observe that HO(Exty, (Q,Ox)), as a representation of Z/4Z, is isomor-
phic to the direct sum of the quotients of Ox by the jacobian ideal in the 4 singular
points of X, and these addenda are permuted by o, since the 4 singular points are
a orbit for o.

Thus the map H°(Ops(5)) — HO(Exty, (2, Ox)) is given via a matrix of
the following form:

A B C D
A 4B —-C —iD
A -B C -D

A —iB -C D

where every block is a matrix of size 10 x 14. We observe immediately that the
above matrix has the same rank of the matrix

A 0 0 O

0 B 0 0
0 0 C 0
0 0 0 D
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We have explicitly checked with the program Macaulay2 that the matrices
A, B,C, D have maximal rank, so that g is a surjective map; since

dim Ezty (Q%,0x) = dim H°(Eaty, (0%, Ox)) = 40,
it follows that g is an isomorphism and therefore H!(0x) = H?(0x) = 0.
By [BW] 7.(©s) = ©x. So, by the Leray spectral sequence we get H!(Og) &

H°(R'm,©3), and the last vector space equals, by the theorem on formal functions
([H]) to

lim H1(®S\nD)a
pun

where D is the exceptional locus of 7.
Since D consists of the sum of the four elliptic curves D1, ..., Dy, corresponding
to the 4 singular points of X, we can conclude that

hl(@S) =4 dim h{inHl(G)Slw,C)a

where C is a smooth elliptic curve with C? = —1, KsC = 1.
So we are left with proving the following lemma:

Lemma 6.2. Let S a smooth surface containing a smooth elliptic curve with nor-
mal bundle of degree —1. Then

dim lim H' (0},¢) = 2.
—

Proof.

Since a simple elliptic singularity is analytically isomorphic to the blow down
of the 0-section in the normal bundle to the exceptional curve (cf. [R1], [Lau]), we
can assume, w.l.o.g., that S the total space of a line bundle over C of degree —1,
that is, O¢/(—p) for some p € C.

By the exact sequence

0— BOc = Og,c = Oc(—p) =0,

where C' is a smooth elliptic curve (thus ©¢ = O¢), we get h'(Ogc) = 2.
Tensoring this exact sequence by Oc(mp), we obtain, Ym > 0, h' (©g c(mp)) =
h(Oc((m — 1)p)), whence we get 0 if m > 2, 1 for m = 1.
Applying this result to the exact sequence

0= BOgc(—=(n—1)C) = Ogjnc = Ogj(n—1)c = 0

we get that for n > 3, the restriction map H'(Q@gjnc) = H'(Og|(n-1)c) is an
isomorphism, therefore

IEHHl(QMC) = H1(®\20)
and 2 < hl(G)Spc) < 3.

Let us now consider the canonical projection ¢ : S — C'; for every line bundle
Lon S, h°(R'q.L) =0, so h*(g.L) = h'(L). Moreover, ¢.(Os) = @,,5¢ Oc(np).
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Consider the exact sequence
(#) 0-g"0c(-p) & Os = ¢"Oc(= Os) = 0
Tensoring this sequence by Os(—2C) = ¢*O¢c(2p), since
H'(q*0¢ ® Os(-20)) = H'(¢.0s ® Oc(2p)) =

@OC (np)) ® Oc(2p)) @H’ (Oc(np)),
n>0 n>2
we get h'(0s)(—2C) = h*(05)(—2C) = 0, so h!(Og2¢) = h*(Os).
Again by (#), since

h'(q*0c) = h'(3.05) = > W' (Oc(np)) = 1

n>0

h'(g"Oc(-p)) = Y B (Oc(np)) =2

n>—1

remembering that we have shown that 2 < h'(@gj2c) = h'(O5) < 3, we see that
we have to prove that the projection map

H®(©s) - H(¢*O¢)

is not surjective.

We claim that we can write S = (C* x C)/ ~, where ~ is the equivalence
relation generated by (z,w) ~ (u?z,pwz). C C S is defined by the equation
w=0,s0that C 2 C*/ <z~ p?z >.

In fact we can assume the point p to be the origin of the elliptic curve C, and
we observe that every elliptic curve occurs as a quotient of C* as above. Since the
functional equation of the Riemann theta function is then f(u2z) = p=t271f(2),
we obtain the desired assertion.

We shall prove now that the global holomorphic never vanishing section of
q*O¢ defined by z% is not a projection of a global section of Og.

In fact, a global holomorphic vector field on S can be written as a(z,w)Z +
b(z,w) 2 with a,b global holomorphic functions on C* x C satisfying the following
functional equations: Vz,w € C* x C

I
a(zw) = pa( . n%)

b(z,w wa , + pzb(—,
(z,w) = p (u2“ ) u(u2u )-

If there were a global holomorphic vector field on S whose projection on ¢*©¢
is 2= 3 , then there would be a global holomorphic function b in C* x C s.t.

b(z, w) = ulwz+u%(zﬁt)
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Let us write b as a power series
E bpiz"w'.
neEZ,ieN

Then our condition can be Written as :

\_/
Ny
I

:u_lwz:b(z)w) :U/Zb 2;/J’ anz 2w’ _,uz(u ) (N

_anz i z+1 —2n n+1 zwz)

looking at the coefficient of wz we get p=! = by (1 — u°) = 0, a contradiction.
O

7. End of the proof of the main theorem

In this section we summarize some of the previous results, in order to prove theorem
0.1. The first two assertions are already proven in theorem 2.5.

That the curves in Y which are images of the hyperelliptic bicanonical divisors
are irreducible twisted cubic curves was proved in lemma 1.10, part b); the nature
of the singularity along these curves was explained in proposition 2.6.

Remark that wy = Oy (2+3—4,7—2h+3h—6—2) = Oy (1, h—1). Moreover,
recall that ¢g*Oy (0,1) gives the movable part of the bicanonical system, and that
g«w% = C?wi,. So we have a non trivial section Q' in H°(C*Oy (2,2h — 3)), which,
by proposition 2.6, induces a non trivial section Q" in H°(COy (2, h — 3)).

Let us denote by H; the class of a divisor in |Opsxp1(1,0)| and by H, the class
of a divisor in |Opsyp:(0,1)].

The divisor associated to the non trivial section Q' of H°(C?Oy (2,2h — 3))
gives a curve in P3 x P! of class (2,7 —2h)(3,3h—6)(2,h—3) = 12H{ + 12hHZ H,.
It must contain doubly the h singular twisted cubic curves, so we can consider the
residual curve E", of class 12H3.

The bicanonical system of S has 2(K 5—f*Kg) as fixed part, a divisor which is
easily shown to contain (with multiplicity) 12 (-1)-curves that are not contracted
by g. So their image in Y is precisely E".

Viceversa, let Y C P? x P! be as described. Let us consider the normalization
¢:X - Y, and a minimal resolution of singularities § : § — X; we have e,w 5 =
Cwy. By our assumptions, wy = Oy (1,h —1).

First, we claim that p,(X) = 0.

In fact, an easy computation shows that the restriction maps

HO(Opsypi(1,h —1)) = H°(Og(1,h —1)) = H(Oy(1,h — 1))

are isomorphisms.
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So, if h =0, pg(X') = h%(Opsyp1(1,—1)) = 0, while, if A > 0, a non trivial sec-
tion of H%(e.wx) induces a non trivial section of H%(Opsyp1(1, h — 1)) containing
some of the singular twisted cubic curves; since a plane in P® cannot contain a
twisted cubic curve, we derive a contradiction.

Let us now denote by Q" anon trivial section in H°(COy (2, h—3)); let moreover
F' be a non trivial section (unique up to scalar multiplication) in H°(Oy (0, h))
whose pull back in X gives the conductor divisor. Let us set Q' = F'Q" €
HO(C20y(2,2h - 3)), Q' = F'Q' € H*(C30y (2,3h — 3)).

The sections Q' and @l define two injective homomorphisms of sheaves

Oy (0,1) = C*°0Oy(2,2h — 2) = e,w%

Oy (1,0) = C*0Oy (3,3h — 3) = e,w.

In particular we can conclude that the morphisms w5 0¢ : X — P! and ML OE:
X — P3 are induced by some subsystem of the bicanonical, respectively of the
tricanonical system. It follows that X is of general type.

Since X has only R.D.P.’s as singularities, S is a surface of general type with
geometric genus p, = 0; in particular ¢ =0 and x = 1.

Let us denote by S the minimal model of S; then K% > 1. In order to prove
that S is a numerical Godeaux surface, we need only to prove that K2 = 1.

Observe that the divisor associated to Q" gives a curve in P3 x P! of class
12H} + 6hHH>.

The assumption Q" € H°(COy (2, h — 3)) ensures that such a divisor contains
h fibres; so we can consider the residual curve E” of class 12H;} (thus consisting
with multiplicity of exactly 12 fibres of the projection over P?). Let us denote by
E' and by E the respective divisors in X and S given by the difference between
the pull back of div(Q") and the h fibres corresponding to the conductor divisor.

We have

(2K%) = ((e 0 6)* Oy (0,1) + E)* = 24 + E?

(BK2Z) = ((e08)*Oy(1,0) + E)* =9+ E*.

In particular Kg =(9+E?>—-24—E?)/5=-3.

The morphism 8 : § — S is a sequence of n blow ups. Since S is of general
type and K% = -3, it follows that n = K7 — K% > 4.

An easy computation shows that, if we denote by E the difference K 5~ B*Ks,
E contains, with multiplicity, at least n (—1)—curves. Remark that the morphism
S — Y is composition of a finite map (X — Y) and of the minimal resolution
of the singularities of X. By hypotheses, X has only R.D.P., so the only curves
contracted are (—2)—curves, and our (—1)—curves cannot be contracted to Y.

Now we only need to remark that the fixed part of 3Kz contains 3E, whence
at least 3n (-1)-curves; and the corresponding divisor maps on Y to E", which has
12 components.
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Since n > 4, 3E is exactly the fixed part of 3K &; in particular n =4, KZ =1
and S is a numerical Godeaux surface.

Thus 3E is the fixed part of both 2K 5 and 3Kg; the rational map S --» Y is
the tri-bicanonical morphism, 3K g has no base points, whence (as shown in [Catl],
[Mil]) the torsion group of S is either 0 or Z/2Z. But if the torsion were Z /27,
by lemma 1.10, part ¢), in the singular locus we would obtain a fibre consisting of
a line with multiplicity 6, a contradiction.

Since the bicanonical system yields a genus 4 fibration, we are in case 1a).

We proved that the case with three distinct hyperelliptic fibres cannot occur
in proposition 3.1; the computations of the number of hyperelliptic fibres for the
Barlow and the Craighero Gattazzo surface are given in sections 4 and 5.

Finally, the local moduli space of the Barlow surface is computed in [CL],
whereas the assertion concerning the local moduli space of the Craighero Gattazzo
surface is the contents of theorem 6.1.
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