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Abstract In the last years there have been several new constructicusfaces of
general type withpg = 0, and important progress on their classification. The mitese
paper presents the status of the art on surfaces of genpehitigh pg = 0, and
gives an updated list of the existing surfaces, in the casge®? = 1,...,7. It also
focuses on certain important aspects of this classification
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Introduction

It is nowadays well known that minimal surfaces of genergketyvith py(S) = 0
have invariantgg(S) = q(S) = 0,1 < Kg < 9, hence they yield a finite number of
irreducible components of the moduli space of surfaces négd type.
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At first glance this class of surfaces seems rather narravwbwant to report
on recent results showing how varied and rich is the botarguoh surfaces, for
which a complete classification is still out of reach.

These surfaces represent for algebraic geometers an ghnobsbitive test case
about the possibility of extending the fine Enriques classiion of special surfaces
to surfaces of general type.

On the one hand, they are the surfaces of general type whidévathe minimal
value 1 for the holomorphic Euler-Poincaré characterjsts) := pg(S) —q(S)+1,
S0 a naive (and false) guess is that they should be “easieuhtierstand than
other surfaces with higher invariants; on the other haretgethre pathologies (espe-
cially concerning the pluricanonical systems) or probléafisthe Bloch conjecture
([Blo75]) asserting that for surfaces withy(S) = q(S) = 0 the group of zero cy-
cles modulo rational equivalence should be isomorphig€)tavhich only occur for
surfaces withpg = 0.

Surfaces withpy(S) = q(S) = 0 have a very old history, dating back to 1896
([Enr96], see also [EnrMS], |, page 294, and [Cas96]) wheridtes constructed
the so called Enriques surfaces in order to give a countergbeato the conjecture
of Max Noether that any such surface should be rational, idiately followed by
Castelnuovo who constructed a surface witS) = q(S) = 0 whose bicanonical
pencil is elliptic.

The first surfaces of general type witg = g = O were constructed in the 1930°
s by Luigi Campedelli and by Lucien Godeaux (cf. [Cam32], §i36]): in their
honour minimal surfaces of general type V\Mﬁ =1 are called numerical Godeaux
surfaces, and those wig = 2 are called numerical Campedelli surfaces.

In the 1970’s there was a big revival of interest in the cariton of these sur-
faces and in a possible attempt to classification.

After rediscoveries of these and other old examples a fewareag were found
through the efforts of several authors, in particular RebeBarlow ([Bar85a])
found a simply connected numerical Godeaux surface, wHayeg a decisive role
in the study of the differential topology of algebraic suda and 4-manifolds (and
also in the discovery of Kahler Einstein metrics of opp@sign on the same mani-
fold, see [CL97]).

A (relatively short) list of the existing examples appeairethe book [BPV84],
(see [BPV84], VII, 11 and references therein, and see alsi®®#4] for an updated
slightly longer list).

There has been recently important progress on the topictl@doal of the
present paper is to present the status of the art on surfdagneral type with
pg = 0, of course focusing only on certain aspects of the story.

Our article is organized as follows: in the first section wplain the “fine” clas-
sification problem for surfaces of general type wih= g = 0. Since the solution
to this problem is far from sight we pose some easier probiehich could have a
greater chance to be solved in the near future.

Moreover, we try to give an update on the current knowledgeeming surfaces
with pg =q=0.
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In the second section, we shortly review several reasonstimdng has been a
lot of attention devoted to surfaces with geometric gepgiequal to zero: Bloch’s
conjecture, the exceptional behaviour of the pluricanamitaps and the interesting
questions whether there are surfaces of general type hoorpbin to Del Pezzo
surfaces. It is not possible that a surface of general typhffsmmorphic to a ratio-
nal surface. This follows from Seiberg-Witten theory whizrbught a breakthrough
establishing in particular that the Kodaira dimension isfiecentiable invariant of
the 4-manifold underlying an algebraic surface.

Since the first step towards a classification is always thetcoction of as many
examples as possible, we describe in section three varamstreiction methods for
algebraic surfaces, showing how they lead to surfaces afrgétype withpg = 0.
Essentially, there are two different approaches, one iake tuotients, by a finite
or infinite group, of known (possibly non-compact) surfacesd the other is in a
certain sense the dual one, namely constructing the ssréec&alois coverings of
known surfaces.

The first approach (i.e., taking quotients) seems at the moitoebe far more
successful concerning the number of examples that have dmestructed by this
method. On the other hand, the theory of abelian coveringgmsenuch more use-
ful to study the deformations of the constructed surfaces, io get hold of the
irreducible, resp. connected components of the correspgmaoduli spaces.

In the last section we review some recent results which haea lobtained by
the first two authors, concerning the connected componérteanoduli spaces
corresponding to Keum-Naie, respectively primary Bureiafaces.

1 Notation

For typographical reasons, especially lack of space ingideables, we shall use
the following non standard notation for a finite cyclic graefporderm:

I :=7/mMZ =7/m.
Furthermoreg will denote the quaternion group of order 8,
Qs :={£1,+i,£j,+k}.

As usual, G, is the symmetric group in letters, 2, is the alternating subgroup.
Dp.qr is the generalized dihedral group admitting the followimggentation:

Dp.ar = (X, yIxP, ¥4, nyilyir%

while D = D2 —1 is the usual dihedral group of ordem.2
G(n,m) denotes them-th group of ordem in the MAGMA database of smalll
groups.
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Finally, we have semidirect produdtisx Z;; to specify them, one should indicate
the imagep € Aut(H) of the standard generator @f in Aut(H). There is no space
in the tables to indicat¢, hence we explain here which automorphigmwill be in
the case of the semidirect products occurring as fundargnaaps.

For H = 72 eitherr is even, and thew is —Id, orr = 3 and¢ is the matrix

(')

ElseH is finite andr = 2; for H = 72, ¢ is —Id; for H = Z4, ¢ is (1 0) e

11
10
(13)
Concerning the case where the grdsifs a semidirect product, we simply refer

to [BCGPO08] for more details.
Finally, [y is the fundamental group of a compact Riemann surface ofggnu

2 The classification problem and “simpler” sub-problems

The history of surfaces with geometric genus equal to zedssabout 120 years
ago with a question posed by Max Noether.
Assume thatS C P(’é is a smooth projective surface. Recall that geometric
genusof S
Pg(S) :=h°(S QF) := dimH°(S, Q3),

and theirregularity of S;
a(S) := h(S Qg) := dimH®(S, Qg),

arebirational invariantsof S.
Trying to generalize the one dimensional situation, Max tNeeasked the fol-
lowing:

Question 2.1Let Sbe a smooth projective surface wiph(S) = q(S) = 0. Does this
imply thatSis rational?

The first negative answer to this question is, as we alreadiewdue to Enriques
([Enr96], see also [EnrMS], I, page 294) and Castelnuova wednstructed coun-
terexamples which are surfaces of special type (this meatisKodaira dimension
< 1. Enriques surfacetave Kodaira dimension equal to 0, Castelnuovo surfaces
have instead Kodaira dimension 1).

After the already mentioned examples by Luigi Campedelli &y Lucien
Godeaux and the new examples found by Pol Burniat ([Bur@@i, by many other
authors, the discovery and understanding of surfaces afrgetype withpy =0
was considered as a challenging problem (cf. [Dol77]): amlete fine classifica-
tion however soon seemed to be far out of reach.

Maybe this was the motivation for D. Mumford to ask the follogy provocative
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Question 2.2 (Montreal 1980Lan a computer classify all surfaces of general type
with pg = 0?

Before we comment more on Mumford’s question, we shall texcathe basic facts
concerning surfaces of general type.

Let Sbe aminimalsurface of general type, i.€5,does not contain any rational
curve of self intersectiofi—1), or equivalently, the canonical divisé of Sis nef
and big Kg > 0). Then it is well known that

KZ>1, x(S):=1-q(S)+ pg(S > 1.

In particular,pg(S) =0 = q(S) = 0. Moreover, we have a coarse moduli space
parametrizing minimal surfaces of general type with fixeandK?.

Theorem 2.3.For each pair of natural numberg,y) we have the Gieseker mod-

uli spacemgig), whose points correspond to the isomorphism classes ofrmraini

surfaces S of general type wig{S) = x and KZ = y.
It is a quasi projective scheme which is a coarse moduli spaicthe canonical
models of minimal surfaces S of general type wits) = x and KZ =y.

An upper bound forKg is given by the famous Bogomolov-Miyaoka-Yau in-
equality:

Theorem 2.4 ([Miy77b], [Yau77], [Yau78], [Miy82]). Let S be a smooth surface
of general type. Then
K& < 9x(S),

and equality holds if and only if the universal covering ofshe complex ball
B, := {(z,w) € C?||Z>+ |w|? < 1}.

As a note for the non experts: Miyaoka proved in the first papergeneral in-
equality, which Yau only proved under the assumption of amess of the canonical
divisor Ks. But Yau showed that if equality holds, aKd is ample, then the univer-
sal cover is the ball; in the second paper Miyaoka showedftagtiality holds, then
necessarilKs is ample.

Remark 2.5Classification of surfaces of general type with= 0 means therefore
to "understand” the nine moduli spacf@ﬁi';) for 1 < n <9, in particular, the con-
nected components of eaﬁlﬁfﬂ) corresponding to surfaces wily = 0. Here, un-
derstanding means to describe the connected and irredwgbiponents and their
respective dimensions.

Even if this is the "test-case” with the lowest possible ealar the invariani (S)
for surfaces of general type, still nowadays we are quitéen realistically seeing
how this goal can be achieved. It is in particular a quite mimiad question, given
two explicit surfaces with the same invariafits K2), to decide whether they are in
the same connected component of the moduli space.

An easy observation, which indeed is quite useful, is thieohg:
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Remark 2.6Assume thas, S are two minimal surfaces of general type which are
in the same connected component of the moduli space. $hedS are orientedly
diffeomorphic through a diffeomorphism preserving the @halass of the canon-
ical divisor; whences andS are homeomorphic, in particular they have the same
(topological) fundamental group.

Thus the fundamental group is the simplest invariant which distinguishes con-

nected components of the moduli sp a;).

So, it seems natural to pose the following questions whiclhddeasier” to solve
than the complete classification of surfaces with geomggiws zero.

Question 2.7What are the topological fundamental groups of surfacesottal
type with pg = 0 andk2 = y?

Question 2.8Is rq (S) =: I residually finite, i.e., is the natural homomorphism-
[ =limug (I /H) from T to its profinite completior injective?

Remark 2.91) Note that in general fundamental groups of algebraicased are
not residually finite, but all known examples hawyg> 0 (cf. [Tol93], [CK92]).

2) There are examples of surfacgsS with non isomorphic topological fun-
damental groups, but whose profinite completions are isphior(cf. [Serre64],
[BCGO7)).

Question 2.10What are the best possible positive numteetssuch that

e K2<a = |m(9)| <,
o Ki>b = |m(9)|=w?

In fact, by Yau's theoreniKZ = 9 = |m(S)| = . Moreover by [BCGPO08]
there exists a surfac®with K& = 6 and finite fundamental group, $0> 7. On
the other hand, there are surfaces With= 4 and infinite fundamental group (cf.
[Keu88], [Nai99]), whencea < 3.

Note that all known minimal surfaces of general typ@ith pg =0 andKé =8
are uniformized by the bidisk; x B;.

Question 2.11ls the universal covering & with Kg = 8 alwaysB; x B;?

An affirmative answer to the above question would give a neganswer to the
following question of F. Hirzebruch:

Question 2.12 (F. Hirzebruchpoes there exist a surface of general type homeo-
morphic toP? x P1?
Or homeomorphic to the blow up; of P2 in one point ?

In the other direction, foKé < 2 itis known that the profinite completialy is
finite. There is the following result:

Theorem 2.13.1) KZ =1 = 7 = Zn for 1 < m< 5(cf. [Rei78]).
2) K2 =2 = || < 9 (cf. [Rei], [Xia85a]).
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The bounds are sharp in both cases, indeed for thekésel there are examples
with 18(S) = Zn, for all 1 < m < 5 and there is the following conjecture

Conjecture 2.14 (M. Reid)mffq) has exactly five irreducible components corre-
sponding to each choicg (S) 2 Zmn forall 1 <m<5.

This conjecture is known to hold true for> 3 (cf. [Rei78]).
One can ask similar questions:

Question 2.152) DoeskZ = 2, pg(S) = 0 imply that| 75 (S)| < 9?
3) DoeskZ = 3 (andpg(S) = 0) imply that|r (S)| < 16?

2.1 Update on surfaces witpg = 0

There has been recently important progress on surfacesefaeype withpg = 0
and the current situation is as follows:

K2 = 9: these surfaces have the unit ballGA as universal cover, and their funda-
mental group is an arithmetic subgrolpf SU(2,1).

This case seems to be completely classified through excigmgwork of Prasad
and Yeung and of Cartright and Steger ([PYO07], [PY09], [C&§¥erting that the
moduli space consists exactly of 100 points, corresponidirid pairs of complex
conjugate surfaces (cf. [KK02]).

Kg = 8: we posed the question whether in this case the universal eoust be the
bidisk in C2.

Assuming this, a complete classification should be possible

The classification has already been accomplished in [BC&0#8he reducible
case where there is a finite étale cover which is isomorgh&pgroduct of curves.
In this case there are exactly 18 irreducible connected coepts of the moduli
space: in fact, 17 such components are listed in [BCGO08]recehtly Davide Frap-
porti ([Frap10]), while rerunning the classification pragr, found one more family
whose existence had been excluded by an incomplete andlyxgise are many ex-
amples, due to Kuga and Shavel ([Kug75], [Sha78]) for thediacible case, which
yield (as in the casiZ = 9) rigid surfaces (by results of Jost and Yau [JT85]); but
a complete classification of this second case is still mgssin

The constructions of minimal surfaces of general type with- 0 and WithKé <
7 available in the literature (to the best of the authors\eolge, and excluding the
recent results of the authors, which will be described Jate listed in table 1.

We proceed to a description, with the aim of putting the rédenelopments in
proper perspective.

K2 =1, i.e.,numerical Godeaux surfacesecall that by conjecture 2.14 the mod-
uli space should have exactly five irreducible connectedpmmants, distinguished
by the order of the fundamental group, which should be cyafliorder at most 5
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Table 1 Minimal surfaces of general type witty = 0 andK? < 7 available in the literature

(k2] m | 9 | H; [References |
1 Zs Zs Zs |[God34][Rei78][Miy76]
Zs Zs Zs |[Rei78][OP81][Bar84][Nai94]
? Zs Zz |[Rei78]
Zo Zo Zy [Bar84][In094][KL10]
? Zo Zy [Wer94][Wer97]
{1} {1} {0} |[Bar85a][LP07]
? {1} {0} [[CG94][DW99]
2 Zg Zg Zg  |[MPOS]
72 72 7% |[Xia85a][MP08]
z3 z3 Z5  |[Cam32][Rei][Pet76][In094][Nai9
Lo X Ly Lo X Ly | Lo X7y [Rei][Nai94][Keu88]
Zg Zsg Zsg [Rel]
Qs Qs % |[Rei] [Beags]
L7 L7 Z7 [Rei9l]
? Zg Ze  |INP0O9]
Zs Zs Zs [Cat81][Sup98]
73 73 7% |[Ino94][Keu8s]
? Zs Zs |[LP09]
7o Z Zp  |[KL10]
? Zo Zo [LP0O9]
{1} {1} {0} |[LPOT7]
3 73X Ly 73 x Zs | Z3 x Z4 |[Nai94] [Keu88] [MP04a]
Qs x Zs Qg x Zo 73  |[Bur66][Pet77] [Ino94]
Z14 Z14 Z14  |[CS]
Z13 Z13 Z13  |[CS]
Qs Qs 7% |[Cs]
D4 D4 z5 |[CS]
Zg X Z4 Zg X Z4 Zz X Z4 [CS]
Z7 Z7 Z7 |[CS]
(G G3 Zz |[CS]
Zg Zg Ze |[CS]
Zg X Zg Zg X Zg Zz X Zz [CS]
Zg Zg Za [CS]
Z3 Z3 Zz |[CS]
Zo Zo Zo [KL10][CS]
? ? Zy  |[PPS08a]
{1} {1} {0} [[PPS09a][CS]
4 1-572%—~m—75—1 m 73 x Z4 |[Nai94][Keu88]
Qs x Z3 Qs x Z3 Z%  |[Bur66][Pet77][Ino94]
Zo Zo Zo [ParlO]
{1} {1} {0} |[PPS09b]
5 Qs x 23 Qs x 23 73 |[Bur66][Pet77][In094]
? ? ? [Ino94]
6 1578 >m—7Z5—1 m 75  |[Bur66][Pet77][Ino94]
1528 —>m—75—1 i Z3 C Hy |[Kulo4]
? ? ? [IN094][MP04b]
[7T][1>Mx2 >m—~2Z3—~1] m | ? [lno94][MP0la] [BCC10]

—
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([Rei78] settled the case where the order of the first homotpgup is at least 3;
[Bar85a], [Bar84] and [Wer94] were the first to show the ocence of the two other
groups).

KZ = 2, i.e.,numerical Campedelli surfacelere, it is known that the order of the
algebraic fundamental group is at most 9, and the cases ef 8/@have been clas-
sified by Mendes Lopes, Pardini and Reid ([MP08], [MPRO9EI[R who showed
in particular that the fundamental group equals the algefuadamental group and
cannot be the dihedral grolpy of order 8. Naie ([Nai99]) showed that the group
D3 of order 6 cannot occur as the fundamental group of a hunieCampedelli
surface. By the work of Lee and Park ([LP07]), one knows thate exist simply
connected numerical Campedelli surfaces.

Recently, in [BCGPO08], [BP10], the construction of eighifies of numerical
Campedelli surfaces with fundamental grdfipwas given. Neves and Papadakis
(INPQ9]) constructed a numerical Campedelli surface wigielraic fundamental
groupZg, while Lee and Park ([LP09]) constructed one with algebhaiciamental
groupZ,, and one with algebraic fundamental grdzipwas added in the second
version of the same paper. Finally Keum and Lee ([KL10]) ¢artted examples
with topological fundamental grous,.

Open conjectures are:

Conjecture 2.16ls the fundamental groug, (S) of a numerical Campedelli surface
finite?

Question 2.17Does every group of ordet 9 excepD,4 andD3 occur as topological
fundamental group (not only as algebraic fundamental gfdup

The answer to question 2.17 is completely oper¥igrfor Zg one suspects that this
fundamental group is realized by the Neves-Papadakiscsfa

Note that the existence of the case wheagéS) = Z; is shown in the paper
[Rei91] (where the result is not mentioned in the introdura}i

KZ = 3: here there were two examples of non trivial fundamentaligsp the first
one due to Burniat and Inoue, the second one to Keum and Nexieg®], [Ino94],
[Keu88], [Nai94]).

It is conjectured that fopy(S) = 0, Kg = 3 the algebraic fundamental group is
finite, and one can ask as in 1) above whether @ig®) is finite. Park, Park and
Shin ([PPS09a]) showed the existence of simply connectéacgas, and of surfaces
with torsionZ, ([PPS08a]). More recently Keum and Lee ([KL10]) constrdce
example withrg (S) = Z,.

Other constructions were given in [Cat98], together witlo tnore examples
with pg(S) = 0,K? = 4,5: these turned out however to be the same as the Burniat
surfaces.

In [BP10], the existence of four new fundamental groups magh Then new
fundamental groups were shown to occur by Cartright andeBtedpile considering
quotients of a fake projective plane by an automorphism dép8.

With this method Cartright and Steger produced also othemges withpg(S) =
0, Ké = 3, and trivial fundamental group, or with (S) = Z,.
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Kg = 4: there were known up to now three examples of fundamentalpg,othe
trivial one (Park, Park and Shin, [PPS09b]), a finite one, andnfinite one. In
[BCGPO08], [BP10] the existence of 10 new groups, 6 finite aindidite, is shown:
thus minimal surfaces witkZ = 4, py(S) = q(S) = 0 realize at least 13 distinct
topological types. Recently, H. Park constructed one meaengle in [Par10] rais-
ing the number of topological types to 14.

KZ = 5,6,7: there was known up to now only one example of a fundamentaigr
forK2=5,7.

Instead forkZ = 6, there are the Inoue-Burniat surfaces and an example due to
V. Kulikov (cf. [Kul04]), which containsZ% in its torsion group. Like in the case
of primary Burniat surfaces one can see that the fundamerdgap of the Kulikov
surface fits into an exact sequence

178 >m—73—1

Kg =5 :in [BP10] the existence of 7 new groups, four of which ar@dins
shown: thus minimal surfaces witk€ = 5, pg(S) = q(S) = 0 realize at least 8 dis-
tinct topological types.

KZ =6 : in [BCGPO8] the existence of 6 new groups, three of whichefjris
shown: thus minimal surfaces witk€ = 6, pg(S) = q(S) = 0 realize at least 7 dis-
tinct topological types.

KZ = 7 : we shall show elsewhere ([BCC10]) that these surfacestnacted by
Inoue in [IN094], have a fundamental group fitting into anasequence

1= Ma3xZ*—m— 73— 1.
This motivates the following further question (cf. questix10).

Question 2.18ls it true that fundamental groups of surfaces of generas tyjih
= pg = 0 are finite forkZ < 3, and infinite forkg > 77

3 Other reasons why surfaces withpg = 0 have been of interest
in the last 30 years

3.1 Bloch’s conjecture

Another important problem concerning surfaces wigh= 0 is related to the prob-
lem of rational equivalence of 0-cycles.

Recall that, for a nonsingular projective varietyAy(X) is the group of rational
equivalence classes of zero cycles of degree

Conjecture 3.1Let Sbe a smooth surface withy = 0. Then the kernel (S) of the
natural morphism (the so-callébel-Jacobi mapAS(S) — Alb(S) is trivial.
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By a beautiful result of D. Mumford ([Mum68]), the kernel dfet Abel-Jacobi map
is infinite dimensional for surfaceswith pg # 0.

The conjecture has been proven kdS) < 2 by Bloch, Kas and Liebermann (cf.
[BKL76]). If insteadSis of general type, theq(S) = 0, whence Bloch’s conjecture
asserts for those surfaces t#gtS) =~ Z.

Inspite of the efforts of many authors, there are only fevesas surfaces of gen-
eral type for which Bloch’s conjecture has been verified€dj. [IM79], [Bar85b],
[Keu88], [Voi92]).

Recently S. Kimura introduced the following notion fofite dimensionalityof
motives ([KimO05]).

Definition 3.2. Let M be a motive.

ThenM is evenly finite dimensiond there is a natural number> 1 such that
A"M =0.

M is oddly finite dimensionaif there is a natural numbem > 1 such that
Syn'M = 0.

And, finally, M is finite dimensionalf M =M™ @&M~, whereM™ is evenly finite
dimensional andl~ is oddly finite dimensional.

Using this notation, he proves the following

Theorem 3.3.1) The motive of a smooth projective curve is finite dimeradion
([KimO05], cor. 4.4.).

2) The product of finite dimensional motives is finite dimamai (loc. cit., cor.
5.11.).

3) Let f: M — N be a surjective morphism of motives, and assume that M is
finite dimensional. Then N is finite dimensional (loc. citap 6.9.).

4) Let S be a surface withyp= 0 and suppose that the Chow motive of X is finite
dimensional. Then {IS) = 0 (loc.cit., cor. 7.7.).

Using the above results we obtain

Theorem 3.4.Let S be the minimal model of a product-quotient surface, {iea-
tional to (C; x Cy)/G, where G is a finite group acting effectively on a product of
two compact Riemann surfaces of respective generad) with py = 0.

Then Bloch'’s conjecture holds for S, namely($) = Z.

Proof. Let Sbe the minimal model oK = (C; x C;)/G. SinceX has rational sin-
gularitiesT (X) =T(S).

By thm. 3.3, 2), 3) we have that the motive Xfis finite dimensional, whence,
by 4),T(S) =T(X) =0.

SinceSis of general type we have alggS) = 0, hencedd(S) = T(S) = 0.

Corollary 3.5. All the surfaces in table 2, 3, and all the surfaces in [BCO04],
[BCGO8] satisfy Bloch’s conjecture.
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3.2 Pluricanonical maps

A further motivation for the study of surfaces wifl = 0 comes from the behavior
of the pluricanonical maps of surfaces of general type.

Definition 3.6. Then-th pluricanonical map
$n 1= Py s S--» P
is the rational map associatedHd(s(nKs)).

We recall that for a curve of general tygg is an embedding as soon a$ 3,
and also fom = 2, if the curve is not of genus 2. The situation in dimensios 2 i
much more complicated. We recall:

Definition 3.7. The canonical model of a surface of general type is the nosoral
face

X := Proj(PH(F5(nKs))).
n=0
the projective spectrum of the (finitely generated) canalniag.

X is obtained from its minimal mode} by contracting all the curve€ with
Ks-C =0, i.e., all the smooth rational curves with self intersetgqual to-2.

Then-th pluricanonical mag« of a surface of general type is the composition
of the projection onto its canonical modeWith ¢, = ¢|nk, |- So it suffices to study
this last map.

This was done by Bombieri, whose results were later imprdethe work of
several authors. We summarize these efforts in the follgwheorem.

Theorem 3.8 ([Bom73], [Miy76], [BC78], [Cat77], [Reider88, [Fran88],
[CC88], [CFHR99]).
Let X be the canonical model of a surface of general type. Then

i) Pnky| is @an embedding for all & 5;

ii) Pjaxy is an embedding if &> 2;

iii) B3k, | is @ morphism if K > 2 and an embedding if K> 3;
IV) @y is birational for all n> 3 unless

a) either K =1, py=2,n=3or4.

In this case X is a hypersurface of degree 10 in the weightefgtive space
P(1,1,2,5), a finite double cover of the quadric cone~¥P(1,1,2), ¢3«, |(X)
is birational to Y and isomorphic to an embedding of the stefé in P>, while
Pjaxy| (X) is an embedding of Y if®.

b) Or K2 =2, pg =3, n= 3 (in this case X is a double cover Bf branched
on a curve of degree 8, anfizk, |(X) is the image of the Veronese embedding
v3: P2 — P9).

V) @poky| is @ morphism if € > 5 or if pg # 0.
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vi) If KZ > 10then |2k, | is birational if and only if X does not admit a morphism
onto a curve with general fibre of genBs

The surfaces wittpg = 0 arose as the difficult case for the understanding of
the tricanonical map, because, in the first version of hisrém, Bombieri could
not determine whether the tricanonical and quadricandnieg of the numerical
Godeaux and of the numerical Campedelli surfaces had torb&dsial. This was
later proved in [Miy76], in [BC78], and in [Cat77].

It was already known to Kodaira that a morphism onto a smoathecwith gen-
eral fibre of genus 2 forces the bicanonical map to factorutinathe hyperelliptic
involution of the fibres: this is called thetandard casdor the nonbirationality of
the bicanonical map. Part vi) of Theorem 3.8 shows that taeréinitely many fam-
ilies of surfaces of general type with bicanonical map noatlwnal which do not
present the standard case. These interesting familiesidemreclassified under the
hypothesipg > 1 or pg = 1, g # 1: see [BCPOG] for a more precise account on this
results.

Again, the surfaces witpg = 0 are the most difficult and hence the most interest-
ing, since there are "pathologies” which can happen onlgiéofaces withpg = 0.

For example, the bicanonical system of a numerical Godeadace is a pencil,
and therefore maps the surface otowhile [Xia85b] showed that the bicanonical
map of every other surface of general type has a two dimeakimage. Moreover,
obviously for a numerical Godeaux surfaggy, | is not a morphism, thus showing
that the conditiorpg # 0 in the point v) of the Theorem 3.8 is sharp.

Recently, Pardini and Mendes Lopes (cf. [MP08]) showed thette are more
examples of surfaces whose bicanonical map is not a morphisnstructing two
families of numerical Campedelli surfaces whose bicaradrggstem has two base
points.

What it is known on the degree of the bicanonical map of sedaxith py = 0
can be summarized in the following

Theorem 3.9 ([MP07a],[MLPO02], [MP08]). Let S be a surface withgp=q = 0.
Then

if K% =9= deg¢‘2KS‘ =1,

if K§=7,8= degpxy =10r2,

if K3 =5,6=> degpxg = 1, 20r 4,

if K% = 3,4 = degpxy < 5; if moreoverd k is a morphism, thedegg oy =
1,2o0r4,

e if KZ =2 (since the image of the bicanonical magP% the bicanonical map is
non birational), therdegg ok < 8. In the known examples it has deg@éand
the bicanonical system has two base points§ (and the bicanonical system has
no base points).
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3.3 Differential topology

The surfaces witlpg = 0 are very interesting also from the point of view of dif-
ferential topology, in particular in the simply connectede. \We recall Freedman'’s
theorem.

Theorem 3.10 ([Fre82]).Let M be an oriented, closed, simply connected topologi-
cal manifold: then M is determined (up to homeomorphismjdintersection form

q: Ho(M,Z) x Ho(M,Z) — Z

and by the Kirby-Siebenmann invariam{M) € Z,, which vanishes if and only if
M x S' admits a differentiable structure.

If M is a complex surface, the Kirby-Siebenmann invariant aatarally van-
ishes and therefore the oriented homeomorphism typd &f determined by the
intersection form.

Combining it with a basic result of Serre on indefinite unimlad forms, and
since by [Yau77] the only simply connected compact complefase whose inter-
section form is definite i®? one concludes

Corollary 3.11. The oriented homeomorphism type of any simply connected com
plex surface is determined by the rank, the index and theypafithe intersection
form.

This gives a rather easy criterion to decide whether two dexngurfaces are
orientedly homeomorphic; anyway two orientedly homeorharpomplex surfaces
are not necessarily diffeomorphic.

In fact, Dolgachev surfaces ([Dol77], see also [BHPV04 5[Xgive examples
of infinitely many surfaces which are all orientedly homeaopiac, but pairwise not
diffeomorphic; these are elliptic surfaces with= q = 0.

As mentioned, every compact complex surface homeomorpH#€ is diffeo-
morphic (in fact, algebraically isomorphic) 7 (cf. [Yau77]), so one can ask a
similar question (cf. e.g. Hirzebruch'’s question 2.12a gurface is homeomorphic
to a rational surface, is it also diffeomorphic to it?

Simply connected surfaces of general type with= 0 give a negative answer
to this question. Indeed, by Freedman’s theorem each siogipected minimal
surfaceS of general type withpg = 0 is orientedly homeomorphic to a Del Pezzo
surface of degre&é. Still these surfaces are not diffeomorphic to a Del Pezzo su
face because of the following

Theorem 3.12 ([FQ94]).Let S be a surface of general type. Then S is not diffeo-
morphic to a rational surface.

The first simply connected surface of general type vpgh= 0 was constructed
by R. Barlow in the 80’s, and more examples have been corsttuecently by V.
Lee, J. Park, H. Park and D. Shin. We summarize their resutte following

Theorem 3.13 ([Bar85a], [LP0O7], [PPS09a], [PPS09b]y1 <y < 4there are min-
imal simply connected surfaces of general type wifk=i® and K2=y.
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4 Construction techniques

As already mentioned, a first step towards a classificatitimigonstruction of ex-
amples. Here is a short list of different methods for corwing surfaces of general
type with pg = 0.

4.1 Quotients by a finite (resp. : infinite) group

4.1.1 Ball quotients

By the Bogomolov-Miyaoka-Yau theorem, a surface of gentgya withpg =0 is
uniformized by the two dimensional complex b&l if and only if Ké = 9. These
surfaces are classically calléake projective planesince they have the same Betti
numbers as the projective plaRé.

The first example of a fake projective plane was constructebmford (cf.
[Mum79]), and later very few other examples were given [KBB], [Keu06]).

Ball quotientsS= B,/I', wherel" < PSU(2,1) is a discrete, cocompact, tor-
sionfree subgroup are strongly rigid surfaces in view of tdass rigidity theorem
([Mos73]).

In particular the moduli spac#?; g) consists of a finite number of isolated
points.

The possibility of obtaining a complete list of these fakargs seemed rather
unrealistic until a breakthrough came in 2003: a surprisesplt by Klingler (cf.
[KIi03]) showed that the cocompact, discrete, torsiongelkgroups < PSU(2,1)
having minimal Betti numbers, i.e., yielding fake planeg, iadeed arithmetic.

This allowed a complete classification of these surfacesechout by Prasad and
Yeung, Steger and Cartright ([PYO7], [PY09]): the modulasp contains exactly
100 points, corresponding to 50 pairs of complex conjugatiases.

4.1.2 Product quotient surfaces

In a series of papers the following construction was explagstematically by
the authors with the help of the computer algebra program MAGcf. [BC04],
[BCGO08], [BCGPOg], [BP10]).

LetCy, C, be two compact curves of respective germara, > 2. Assume further
thatG is a finite group acting effectively @ x Cs.

In the case where the action & is free, the quotient surface is minimal of
general type and is said to BB®genous to a produgsee [Cat00]).

If the action is not free we consider the minimal resolutiésiagularitiesS of
the normal surfac¥ := (C; x Cz)/G and its minimal mode$. The aim is to give a
complete classification of thoseobtained as above which are of general type and
havepg = 0.
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One observes that, if the tangent action of the stabilizeremntained irsL(2,C),
thenX has Rational Double Points as singularities and is the deabmodel of a
surface of general type. In this caSds minimal.

Recall the definition of an orbifold surface group (here tloedvsurface’ stands
for ‘Riemann surface’):

Definition 4.1. An orbifold surface groumf genusy’ and multiplicitiesmy,...my €
N>, is the group presented as follows:

T(g;my,....m) = (ag,by,....aq,by, C1,....C]

g/
cTi,...,cF",r![a;,bi]-cl-...-cr>.

The sequencly’;m,...my) is called thesignatureof the orbifold surface group.
Moreover, recall the following special caseRiEmann’s existence theorem

Theorem 4.2.A finite group G acts as a group of automorphisms on a compact
Riemann surface C of genus g if and only if there are naturaiioers ¢, my, ..., m,
and an ‘appropriate’ orbifold homomorphism

¢:T(d;my,...,m) =G

such that the Riemann - Hurwitz relation holds:

29—2—|g| <2g’—2+|2(1—%)).

"Appropriate” means thatp is surjective and moreover that the images G of
a generator chas order exactly equal tojnthe order of ¢in T(¢’; my, ..., m)).

In the above situationy is the genus off’ := C/G. The G-coverC — C' is
branched irr pointspy, ..., pr with branching indicesn, ..., m,, respectively.

Denote as beforg(ci) by y € G the image oft; under¢: then the set of stabi-
lizers for the action oz onC is the set

S(Yi,- W) = Uaca Ul ™ {aia ™, ajja ).
Assume now that there are two epimorphisms

¢1: T(gy;my,...,m) — G,

¢2: T(g5;ny,...,Ns) — G,
determined by two Galois coveds: G —C/, i =1,2.
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We will assume in the following thai(C;), g(Cz) > 2, and we shall consider the
diagonal action oG onC; x C,.

We shall say in this situation that the action@bn C; x C; is of unmixedtype
(indeed, see [Cat00], there is always a subgrouf aff index at most 2 with an
action of unmixed type).

Theorem 4.3 ([BC04], [BCGO05] [BCGPO08],[BP10]).
1) Surfaces S isogenous to a product wifi§) = q(S) = 0 form 17 irreducible
connected components of the moduli spmgg).
2) Surfaces with p= 0, whose canonical model is a singular quotient=X
(C1 x C2)/G by an unmixed action of G form 27 further irreducible faesli
3) Minimal surfaces with p= 0 which are the minimal resolution of the singu-
larities of X :=C; x Cy/G such that the action is of unmixed type and X does not
have canonical singularities form exactly further 32 iremible families.

Moreover, Igz =8ifand only if S is isogenous to a product.
We summarize the above results in tables 2 and 3.

Remark 4.41) Recall that, if a diagonal action @ on C; x C, is not free, then
G has a finite set of fixed points. The quotient surface= (C; x C,)/G has a
finite number of singular points. These can be easily fountbbling at the given
description of the stabilizers for the action®fon each individual curve.

Assume thak € X is a singular point. Then it is a cyclic quotient singulaiity
type%(l, a) with g.c.d(a,n) =1, i.e.,X is, locally around, biholomorphic to the
quotient of C? by the action of a diagonal linear automorphism with eigéures
exp(zT"‘), exp(zln""). Thatg.c.d(a,n) = 1 follows since the tangent representation is
faithful on both factors.

2) We denote byKx the canonical (Weil) divisor on the normal surface corre-
sponding td*(Qio), i: X% — X being the inclusion of the smooth locusf Ac-
cording to Mumford we have an intersection product with ealin Q for Weil
divisors on a normal surface, and in particular we considerselfintersection of
the canonical divisor,

K2 8(9(C1) —1)(9(C2) - 1)

which is not necessarily an integer.

KZ is however an integer (equal indeed&té) if X has only RDP’s as singulari-
ties.

3) Theresolution of a cyclic quotient singularity of tyf—;el, a) with g.c.d(a,n) =
1 is well known. These singularities are resolved by theatedHirzebruch-Jung
strings More precisely, lett: S— X be a minimal resolution of the singularities
and letE = ", Ej = m1(x). ThenE; is a smooth rational curve witB? = —bj
andEi-Ej=0if |i— j| > 2, whilek; - Ej 1 =1fori e {1,...,m—1}.

Theb;'s are given by the continued fraction
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Table 2 Surfaces isogenous to a product and minimal standardvisdtfiorations withpg = 0,

K2>4

[k singx| & | | G IN| His2) | (S
8 0 2,52 | 3* As 1| Z%xZis |1-MaxMa—1m—G—1
8 0 5 | 233 As 1 73, 15 MgxMz—m—G—1
8 0 25| 25 As 1| Z8xZg¢ |1—TexMs—m—G—1
8 0 2,46 | 26 GaxZy |1| 7Z4x7Z4 1= MpxM—m—G—1
8 0 2.4 | 84| G(3227) |1|Z3xZsxZg| 1—>MsxMg—m—G—1
8 0 53 53 72 2 72 1> MgxMg—m—G—1
8 0 3,42 | 26 Ch 1| Z4xZg |1—=MxM—m—G—1
8 0 2242|122 2| G(163) |1|Z3xZsxZg| 1—TMsxMs—m—G—1
8 0 284 | 28 DaxZp |1| Z3x72 15 MgxM3—m—G—1
8 0 25 | 2 74 1 73 15 MsxMs—m—G—1
8| o * | 3 73 1 Y/ 1= MyxMy—m—G—1
8 0 25 26 z3 1 A 15 M3xMs—m—G—1
8 0 mixed G(256,3678 | 3
8 0 mixed G(256,3679 | 1
8 0 mixed G(64,92) |1
6| 1/22 | 22,4 | 244 ZyxDs |1| Z3xZF |1—-7Z°xMy—m—23—1
6| 1/22 | 244 |24,6| ZoxGs |1| Z3xZs |1 —m—ZoxZs—1
6| 1/22 | 2,52 | 2,3° As 1| Zs3xZss 72 % 715
6| 1/22 |2,4,10[2,4,6| Zyx&s |1| Zax7Z4 G3x Dys1
6| 1/22 | 2,77 | 32,4 PSL2,7) |2 Zo1 Z7 % Ua
6| 1/22 | 2,52 | 32,4 Ag 2 715 Zs % Aa
5(1/3,2/3| 2,4,6 | 24,3 | Zox Gy |1| 7Z3x7Z4 17?718 —Dygz—1
511/3,2/3| 2%,3 | 3,42 Ch 1| Z5xZg 15725 m—7Zg—1
511/3,2/3| 42,6 | 28,3 | Zyx&4 |1| ZoxZg 1572 5m—>7Zg—1
5(1/3,2/3| 2,5,6 | 3,42 Ss 1 Zg Dgs5,1
511/3,2/3| 3,5% | 25,3 As 1| ZoxZio Zs x Qg
5(1/3,2/3| 28,3 | 3,42 | Z4x&3 |1| ZaxZg Dsa43
5(1/3,2/3| 3,5% | 25,3 As 1| ZoxZio 72 % Zao
4| 1/2¢ | 25 | 28 z3 1| ZExZs 1-572%—>m—7—1
4| 120 | R\ R 8| ZyxZy |L| Z3xZ4 1-57%~m—73—1
4| 1724 25 | 28,4 ZpyxDy |1| ZE3xZ4 | 172> m—TpxZsg—1
4 1/2* | 3,62 |22,3| Z3xG&3 |1 73 72 % 73
4| 1/2* | 3,62 |2,4,5 Ss 1 73 72 % 7s
41 1/2* 2 (2,46| Z,x6, |1 73 72 %7y
4| 1/2% | 22,42 |12,4,6| ZoxGy |1| 7Z3x7Z4 VY
41 1/2¢ 25 | 3,42 h 1| 7Z3x7Z4 72 %7y
4| 1/2% | 8,4 | 284 ZixZp |1 72 G(32,2)
4 1/2* | 2,5% | 22,3 As 1 715 715
4| 1724 | 22,32 (22,32 Z3xZ, |1 z3 z3
4| 2/5% | 28,5 | F#5 As 1| ZoxZg Zo X Tg
4| 2/5% | 2,45|45| ZixDs |3 Zg Zg
4| 2/5% | 245|325 Ag 1 Zs Zg
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Table 3 Minimal standard isotrivial fibrations withg = 0, K2<3

(K singx | T [ | G [NH(2)] m(© |

3 1/5,4/5 225|325 As |1|ZoxZg|ZoxZg
3 1/54/5 |24,5|425|Z4xDs|3| Zg Zs
3(1/3,1/22,2/3|22,3,4/ 2,4,6| Zpy x G4 | 1| Zo X Za | Zp x Zsy
3 1/54/5 |245|325| A |1| Ze Zs
2| 1/32,2/3% | 2,67 |22,32| Z3xZ5 | 1| 73 Qs
2 1/28 8 | 8 7z |1 73 73
2 1/26 284 | 84| ZyxDy|1|ZpxZ4|ZyXZa
2| 1/32,2/3% | 22,3 | 3,4 G4 |1 Zs Zsg
2| 1/3%2,2/3% | 3?25 |35 |Z2xZs|2| Zs Zs
2 1/26 252 283 As |1 Zs Zs
2 1/26 284 12,46|Z;xG4|1| 73 73
2| 1/3%2,2/3% | #5223 A5 |1| Z3 73
2 1/2% 2,3,7| 4 |PSL(2,7)2| Z3 73
2 1/26 2,62 | 283 |63xG3|1| Zs 73
2 1/26 2,62 (2,45 &5 |1| Zs 73
2|1/4,1/22,3/4| 2,4,7 | 32,4 |PSLQ2,7)| 2| Z3 73
2(1/4,1/22,3/4| 2,45 32,4 As |2| 73 73
2|1/4,1/2%,3/4| 2,4,6 [2,45| &5 |2| 73 73
1(1/3,1/242/3| 28,3 [ 3,42 | G4 |1| Z4 Z4
1(1/3,1/2%2/3| 2,3,7 | 3,42 |PSL(2,7)| 1| 7Z» 7o
1(1/3,1/2%2/3| 2,4,6 | 22,3 | Zox G4 | 1| 7Zp Zo
E:blf%-
a bz_b37...

Since the minimal resolutiof — X of the singularities oK replaces each sin-
gular point by a tree of smooth rational curves, we have, Iy<@mpen’s theorem,
thatm (X) = m(S) = ().

Moreover, we can read off all invariants 8ffrom the group theoretical data. For
details and explicit formulae we refer to [BP10].
Among others, we also prove the following lemma:

Lemma 4.5.There exist positive numbers D, M, R, B, which depend eipl{eind
only) on the singularities of X such that:

1.x(S)=1 = K3 =8-B;
2. for the corresponding signatur€8;m,...,my) and(0;ny, .. .,ns) of the orbifold
surface groups we havesr< R,V im;,nj < M;

o Kg+D
318 = smma e o
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Remark 4.6The above lemma 4.5 implies that there is an algorithm whai-c
putes all such surfac& with py = =0 and fixecKSZ,:

a) find all possible configurations (= "baskets®)of singularities withB = 8 — K2;

b) for a fixed baske# find all signature0;my, ..., my) satisfying 2;

c) for each pair of signatures check all gro@sf order given by 3, whether there
are surjective homomorphisifig0;m) — G, T(0;n;) — G;

d) check whether the surfack¥s= (C; x C,)/G thus obtained have the right singu-
larities.

Still this is not yet the solution of the problem and there stiléseveral difficult
problems to be overcome:

e We have to check whether the groups of a given order adméaioesystems of
generators of prescribed orders, and satisfying morea@taia further condi-
tions (forced by the basket of singularities); we encouinténis way groups of
orders 512, 1024, 1536: there are so many groups of thesesdhdée the above
investigation is not feasible for naive computer calcolasi. Moreover, we have
to deal with groups of orders 2000: they are not listed in any database

e If X is singular, we only get subfamilies, not a whole irredueibbmponent of
the moduli space. There remains the problem of studyingéf@rchations of the
minimal modelsS obtained with the above construction.

e The algorithm is heavy foK? small. In [BP10] we proved and implemented
much stronger results on the singularitiesxofind on the possible signatures,
which allowed us to obtain a complete list of surfaces Wi 1.

e We have not yet answered completely the original questiomeS if X does
not have canonical singularities, it may happen t{@tg 0 (recall thatS is the
minimal resolution of singularities of, which is not necessarily minimal!).

Concerning product quotient surfaces, we have proven (inehrmore general
setting, cf. [BCGPO08]) a structure theorem for the fundatalegroup, which helps
us to explicitly identify the fundamental groups of the swds we constructed. In
fact, it is not difficult to obtain a presentation for thesedamental groups, but as
usual having a presentation is not sufficient to determiaegtbup explicitly.

We first need the following

Definition 4.7. We shall call the fundamental grouify, := 4 (C) of a smooth com-
pact complex curve of genwgga (genus g) surface group

Note that we admit also the “degenerate cages™0, 1.

Theorem 4.8.Let G, ...,C, be compact complex curves of respective gengraly
and let G be a finite group acting faithfully on eachas a group of biholomorphic
transformations.

Let X=(Cy x ... x Cy)/G, and denote by S a minimal desingularisation of X.
Then the fundamental groum (X) = @ (S) has a normal subgroup/” of finite
index which is isomorphic to the product of surface groups, there are natural
numbers k..., hy > 0suchthat4” =My, x ... x I,.
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Remark 4.9In the case of dimensiam= 2 there is no loss of generality in assuming
that G acts faithfully on eacl€; (see [Cat00]). In the general case there will be a
groupG;, quotient ofG, acting faithfully onC;, hence the strategy has to be slightly
changed in the general case. The generalization of the aheeeem, where the
assumption thaG acts faithfully on each factor is removed, has been proven in
[DP10].

We shall now give a short outline of the proof of theorem 4.&ia casen = 2
(the case of arbitrarg is exactly the same).
We have two appropriate orbifold homomorphisms

¢1: Ty :=T(gy;my,...,m) — G,
$2: Tp :=T(g5;N,...,Ns) — G.
We define the fibre produél := H(G; ¢1, ¢,) as
H:=H(G; ¢1,¢2) = {(xy) € Te x T2 | ¢1(x) = d2(y) }. 2)
Then the exact sequence
1= Mg x Mg, =T xTr - GxG—1, (3)
wherelly, := m(G;), induces an exact sequence
1— g, x Mg, — H(G; ¢1,¢2) - G=Ac — 1. 4)
HereAg C G x G denotes the diagonal subgroup.

Definition 4.10. Let H be a group. Then it®rsion subgrougorsH) is the normal
subgroup generated by all elements of finite ordé in

The first observation is that one can calculate our fundaahgnbdups via a sim-
ple algebraic recipe:

7T;|_((C1 X Cz)/G) = H(G; b1, ¢2)/TOI’#H).

The strategy is then the following: using the structure diifotd surface groups
we construct an exact sequence

1—E— H/TordH) —» Y(H) — 1,

where
i) Eis finite,
i) W(H) is a subgroup of finite index in a product of orbifold surfaceups.

Conditionii ) implies that¥(H) is residually finite and “good” according to the
following
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Definition 4.11 (J.-P. Serre).Let G be a group, and e be its profinite comple-
tion. ThenG is said to begoodiff the homomorphism of cohomology groups

HY(G,M) — HX(G,M)
is an isomorphism for ak € N and for all finiteG - modulesM.

Then we use the following result due to F. Grunewald, A. Jaiapirain, P.
Zalesski.

Theorem 4.12. ([GJZ08])Let G be residually finite and good, and it H — G
be surjective with finite kernel. Then H is residually finite.

The above theorem implies thHY/ Torg H) is residually finite, whence there is a
subgroupg” < H/TorgH) of finite index such that

rNE = {1}.

Now, ¥(I") is a subgroup of(H) of finite index, whence of finite index in a prod-
uct of orbifold surface groups, ar#|I" is injective. This easily implies our result.

Remark 4.13Note that theorem 4.8 in fact yields a geometric statemetttarcase
where the genera of the surface groups are at least 2. Agairsirhplicity, we
assume that = 2, and suppose that (S) has a normal subgroug” of finite index
isomorphic tol1g x My, with g,g’ > 2. Then there is an unramified Galois covering
Sof Ssuch thatr () = Mg x My. This implies (see [Cat00]) that there is a finite
morphismS— C x C', whereg(C) =g, 9(C') =g

Understanding this morphism can lead to the understanditigearreducible or
even of the connected component of the moduli space congpihe isomorphism
class[g| of S. The method can also work in the case where we only gage> 1.
We shall explain how this method works in section 5.

We summarize the consequences of theorem 4.3 in terms of ‘lnedamental
groups of surfaces witpg = 0, respectively "new” connected components of their
moduli space.

Theorem 4.14.There exist eight families of product-quotient surfacesmhixed
type vyielding numerical Campedelli surfaces (i.e., midimarfaces with I§ =
2, pg(S) = 0) having fundamental grouf,/3.

Our classification also shows the existence of families oflpct-quotient sur-
faces yielding numerical Campedelli surfaces with fundatalegroupsZ/5 (but
numerical Campedelli surfaces with fundamental gridyp had already been con-
structed in [Cat81]), respectively with fundamental gr@ég2)? (but such funda-
mental group already appeared in [In094]), respectively iiindamental groups
(Z/2)%, Qs, Z/8 andZ /2 x 7./ 4.
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Theorem 4.15.There exist six families of product-quotient surfacesdyeg mini-
mal surfaces with g: 3, py(S) = 0 realizing four new finite fundamental groups,
Z/2x17/6,7,/8,7/6andZ/2 x 7./ 4.

Theorem 4.16.There exist sixteen families of product-quotient surfageding
minimal surfaces with &= 4, py(S) = 0. Eight of these families realize 6 new
finite fundamental group¥,/15, G(32,2), (Z/3)3, 7Z/2 x 7./6, Z./8, 7./ 6. Eight of
these families realize 4 new infinite fundamental groups.

Theorem 4.17.There exist seven families of product-quotient surfacgdiyig min-
imal surfaces with B = 5, pq(S) = 0. Four of these families realize four new finite
fundamental groups, & 1, Z/5 x Qg, Dg 43, Z/2 x 7Z/10. Three of these families
realize three new infinite fundamental groups.

Theorem 4.18.There exist eight families of product-quotient surfacedying min-
imal surfaces with @z 6, pg(S) = 0and realizing 6 new fundamental groups, three
of them finite and three of them infinite. In particular, thesést minimal surfaces
of general type with p=0, K2 = 6 and with finite fundamental group.

4.2 Galois coverings and their deformations

Another standard method for constructing new algebraitasas is to consider
abelian Galois-coverings of known surfaces.

We shall in the sequel recall the structure theorem on ndfinitd Z5-coverings,
r > 1, of smooth algebraic surfac¥s In fact (cf. [Par91], or [BC08] for a more
topological approach) this theory holds more generallyafoy G-covering, withG
a finite abelian group.

Since however we do not want here to dwell too much into theegedrtheory
and, in most of the applications we consider here only the 3sis used, we
restrict ourselves to this more special situation.

We shall denote b := Z), the Galois group and bg* := Hom(G, C*) its dual
group of characters which we identify @& := Hom(G,Z/2) .

SinceY is smooth any finite abelian coverinig X — Y is flat hence in the
eigensheaves splitting

f.Ox = @Z;:ﬁy@ @ ﬁy(fLX).
XeG* XeGH\{0}

each rank 1 shea®’y is invertible and corresponds to a Cartier divisdry.

For eacho € GletRy C X be the divisorial part of the fixed point setaf Then
one associates  a divisorDy given by f (Ry) = Dg; let X be a section such that
div(xg) = Dg.

Then the algebra structure dndx is given by the following (symmetric, bilin-
ear) multiplication maps:
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Oy (—Lx) ® Oy (—Ly) = Oy (=Ly1n),

given by the sectiomy , € HO(Y, &y (Ly + L — Ly+n)), defined by

Xy, 1= [T X

It is now not difficult in this case to show directly the assdivity of the multipli-
cation defined above (cf. [Par05] for the general case of atiaabcover).

In particular, theG-covering f: X — Y is embedded in the vector bundle
V1= @ycer Ly, WhereLy is the geometric line bundle whose sheaf of sections
is 0y (Ly), and is there defined by the equations:

Note the special case whexe= n, when x + n is the trivial character 1, and
z1 = 1. In particular, lety, ..., xr be a basis 06* = Z5, and set; := zy,. Then we
get the followingr equations

7= [T % (5)
Xi(o)=1

These equations determine the extension of the functiafsfiblence one geks
as the normalization of the Galois covering given by (5). Tire@n point however
is that the previous formulae yield indeed the normalizagaplicitly under the
conditions summarized in the following

Proposition 4.19.A normal finite G= Z-covering of a smooth variety Y is com-
pletely determined by the datum of

1. reduced effective divisors;DVo € G, which have no common components,
2. divisor classes 1,...L;, for x1,... Xy a basis of G, such that we have the fol-
lowing linear equivalence

(#) 2L| = in(a):]_ Do'.

Conversely, given the datum of 1) and 2) such thaholds, we obtain a normal
scheme X with a finite & Z5-covering f: X — Y.

Proof (Idea of the proof.)lt suffices to determine the divisor clasdeg for the
remaining elements @&*. But since anyy is a sum of basis elements, it suffices to
exploit the fact that the linear equivalences

LX+’7 = Ln + LX - DO’
x(o)=n(o)=1

must hold, and apply induction. Since the covering is weflral as the normal-
ization of the Galois cover given by (5), eath is well defined. Then the above
formulae determine explicitly the ring structure Hifox, henceX. Finally, condi-
tion 1 implies the normality of the cover.



Surfaces of general type with geometric genus zero: a survey 25

A natural question is of course: when is the schefna variety? l.e.X being
normal, when isX connected, or, equivalently, irreducible? The obviousianss
thatX is irreducible if and only if the monodromy homomorphism

i Hi(Y\ (UgDg),Z) — G

is surjective.

Remark 4.20From the extension of Riemann’s existence theorem due toeBra
and Remmert ([GR58]) we know that determines the covering. It is therefore
worthwhile to see how is related to the datum of 1) and 2).

Write for this purpose the branch locDs= § ; Dy as a sum of irreducible com-
ponentdD;. To eachD; corresponds a simple geometric logmaroundD;, and we
seta; := u(y). Then we have thdd, := ¥, _, Di. For each charactey, yielding
a double covering associated to the composiferu, we must find a divisor class
Ly suchthat 2y =y y(5)-1Dg-

Consider the exact sequence

H2""2(Y,Z) - H*"2(D,Z) = @i Z[Di] — H1(Y \ D, Z) — Hy(Y,Z) — 0

and the similar one witl¥ replaced byZ,. Denote byA the subgroup image of
@iZy[Di]. The restriction ofu to A is completely determined by the knowledge of
theo;’s, and we have

0—-A— Hl(Y\D,Zz) — Hl(Y,Zz) — 0.
Dualizing, we get
0— HY(Y,Zp) — HY(Y\ D, Z,) — Hom(A,Z3) — 0.

The datum ofy o u, extendingx o |, is then seen to correspond to an affine
space over the vector spaldé(Y, Zy): and sinceHl(Y, Z) classifies divisor classes
of 2-torsion onY, we infer that the different choices dfy such that 2, =
Y x(a)—=1 Do correspond bijectively to all the possible choices{eru.

Applying this to all characters, we find hqwdetermines the building data.
Observe on the other hand thatifis not surjective, then there is a charagter
vanishing on the image @f, hence the corresponding double cover is disconnected.

But the above discussion shows that u is trivial iff this covering is discon-
nected, if and only if the corresponding elemenifit(Y \ D, Z,) is trivial, or, equiv-
alently, iff the divisor class y is trivial.

We infer then

Corollary 4.21. Use the same notation as in prop. 4.19. Then the scheme »is irr
ducible if{g|Dy > 0} generates G.

Or, more generally, if for each charactgrthe class in H(Y \ D, Z,) correspond-
ing to x o u is nontrivial, or, equivalently, the divisor class lis nontrivial.
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Proof. We have seen that D, > Dj # 0, thenu(y) = o, whence we infer thatt
is surjective.

An important role plays here once more the concephatiiral deformations
This concept was introduced for bidouble covers in [Cat84finition 2.8, and ex-
tended to the case of abelian covers in [Par91], definitibnhe two definitions do
not exactly coincide, because Pardini takes a much largenpeter space: however,
the deformations appearing with both definitions are theesdim avoid confusion
we call Pardini’s case the caseaftended natural deformations

Definition 4.22.Let f: X — Y be a finiteG = Z, covering withY smooth andX
normal, so thaKX is embedded in the vector bundfedefined above and is defined
by equations

ZyZy = Zy1n [T X

Let Yy be a sectionyy , € HO(Y, 04 (D — Ly)), givenVao € G, x € G*. To such
a collection we associate axtended natural deformatipnamely, the subscheme
of V defined by equations

ZyZy = Zy+n (g Yo - Ze) -
Xx(o)=n(0)=1

We have instead a (restrictedtural deformatiorif we restrict ourselves to the
@’s such tha (o) = 0,and we consider only an equation of the form

Zzg =2z ] <6(Z l.Ua,9'29> :

X(0)=n(0)=1 \68(57=0

One can generalize some results, even removing the assimopsmoothness of
Y, if one assumes th@ = Z)-covering to béocally simplei.e., to enjoy the property
that for each poiny € Y the o’s such thaty € Dy are a linearly independent set.
This is a good notion since (compare [Cat84], propositidr) if.also X is smooth
the covering is indeed locally simple.

One has for instance the following result (see [Man01],isa®):

Proposition 4.23.Let f: X —Y be alocally simple G Z, covering with Y smooth
and X normal. Then we have the exact sequence

69)((G)ZO(HO(ﬁDa(DU - LX))) - EXt(lﬁx (in ﬁx) - EXtJé’X(f*Qé-a ﬁx)
In particular, every small deformation of X is a natural defation if

1. HY{( oy (—Ly)) =0,
2. Exty, (f7Q¢,0x) =0.

If moreover
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3. H(&y (Do —Ly)) =0V0 € G, x € G*,
every small deformation of X is again a%&Z5-covering.

Proof (Comments on the proof.).
In the above proposition condition 1) ensures that

HO(6y (Do — Lx)) — H%(6b, (Do — Ly))

is surjective.

Condition 2 and the above exact sequence imply then thataheai deforma-
tions are parametrized by a smooth manifold and have siwgei€bdaira-Spencer
map, whence they induce all the infinitesimal deformations.

Remark 4.24In the following section we shall see examples where susfadeh
pg = 0 arise as double covers and as bidouble covers. In fact #nieremany more
surfaces arising this way, see e.g. [Cat98].

5 Keum-Naie surfaces and primary Burniat surfaces

In the nineties J.H. Keum and D. Naie (cf. [Nai94], [Keu88pnstructed a family
of surfaces withKZ = 4 andpg = 0 as double covers of an Enriques surface with
eight nodes and calculated their fundamental group.

We want here to describe explicitly the moduli space of tiseséaces.
The motivation for this investigation arose as follows: sider the following two
cases of table 2 whose fundamental group has the form

74— m — 75— 0.

These cases yield 2 families of respective dimensions 2 amhi¢h can also
be seen agy x Z», resp.Z3, coverings ofP! x P! branched in a divisor of type
(4,4), resp(5,5), consisting entirely of horizontal and vertical linesutris out that
their fundamental groups are isomorphic to the fundamemtalps of the surfaces
constructed by Keum-Naie.

A straightforward computation shows that our family of dms®n 4 is equal to
the family constructed by Keum, and that both families afgfamilies of the one
constructed by Naie.

As a matter of fact each surface of our familyj - coverings of?! x P! has 4
nodes. These nodes can be smoothened simultaneously inienBrsional family
of Z3 - Galois coverings oP* x PL.

It suffices to take a smoothing of eabh which before the smoothing consisted
of a vertical plus a horizontal line.The full six dimensiboamponent is obtained
then as the family of natural deformations of these Galoi®dags.

It is a standard computation in local deformation theory liove that the six
dimensional family of natural deformations of smoﬁ.@- Galois coverings aP! x
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P1 is an irreducible component of the moduli space. We will rie¢ghe details of
this calculation, since we get a stronger result by anotrethod.
In fact, the main result of [BC094a] is the following:

Theorem 5.1.Let S be a smooth complex projective surface which is horuatibp
equivalent to a Keum-Naie surface. Then S is a Keum-Naiacairf

The moduli space of Keum-Naie surfaces is irreducible atimnal of dimension
equal to six. Moreover, the local moduli space of a Keum-Narace is smooth.

The proof resorts to a slightly different construction ofuke-Naie surfaces. We
study aZ3-action on the product of two elliptic curv& x E5. This action has 16
fixed points and the quotient is an 8-nodal Enriques surfagestructindsas a dou-
ble cover of the Enriques surface is equivalent to constrgen etaIéZZ-covermg
Sof S, whose existence can be inferred from the structure of thégfmental group,
and which is obtained as a double coveEgfx E} branched in &3-invariant divi-
sor of type(4,4). Becaus& = S/73.

The structure of this etaIE2 coverlngS of Sis essentially encoded in the fun-
damental groupr, (S), which can be described as an affine gréug A(2,C). The
key point is that the double covér: S— E; x E} is the Albanese map &

Assume now tha$ is homotopically equwalent to a Keum-Naie surf&&hen
the corresponding étale cov8ris homotopically equivalent t&. Since we know
that the degree of the Albanese mapSi$ equal to two (by construction), we can
conlude the same for the Albanese mapﬁos[md this allows to deduce that alSo
is a double cover of a product of elliptic curves.

A calculation of the invariants of a double cover shows thettiranch locus is a
Z2-invariant divisor of typ€4,4).

We are going to sketch the construction of Keum-Naie susfacel the proof of
theorem 5.1 in the sequel. For details we refer to the origiriecle [BC09a].

Let (E,0) be any elliptic curve, with & = Z3 = {0, 91,092,091 + g2} action given
by

01(2) =241, R(2=-z

Remark 5.2Let n € E be a 2 - torsion point oE. Then the divisoro] + [n] €
Div?(E) is invariant unde6, hence the invertible shedz ([o] + [n]) carries a nat-
ural G-linearization.

In particular,G acts onHO(E, 0g ([0] 4 [n])), and for the character eigenspaces, we
have the following:

Lemma 5.3.Let E be as above, then:
HO(E, €& ([0 +[n])) = HY(E, Ge([o] + [n])) "+ & HO(E, G&([o] + [n]))
l.e., HU(E, G ([0 + [n]))*~ =H°(E, Gk (0] + [n])) " =0.

Remark 5.40ur notation is self explanatory, e.g.

HO(E, e (0] + [n])) "~ = HO(E, G&([o] + [n])X,
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wherey is the character o& with x(g1) = 1, x(g2) = —1.

Let nowE/ := C/A;, i = 1,2, where/; := Ze @ Z€, be two complex elliptic
curves. We consider the affine transformatignsys € A(2,C), defined as follows:

1\ ZlJr% Z1\ -1
n(5)- (%) »()-(%)

and letl” < A(2,C) be the affine group generated by y» and by the translations
6176(17627%-

Remark 5.5i) I induces & := Z2-action onE; x Ej.

ii) While y1, y» have no fixed points o&] x E}, the involutiony;y» has 16 fixed
points onE] x Ej. Itis easy to see that the quotiéht= (E; x E;)/Gis an Enriques
surface having 8 nodes, with canonical double cover the Kensurface(E; x

E))/ < vy >.

We lift the G-action onE] x E; to an appropriate ramified double cov@such
thatG acts freely orb.

To do this, consider the following geometric line bundleon E; x E}, whose
invertible sheaf of sections is given by:

Oy 1) = PiOg; (01] + [2]) @ P30y (fo2] + [ 2)),

wherep; : E] x E, — E/ is the projection to the i-th factor.

By remark 5.2, the divisojoi] + [] € Div2(E]) is invariant undeG. Therefore,
we get a naturaB-linearization on the two line bundleg; ([oi] + [$]), whence also
onL.

Any two G-linearizations ofL. differ by a charactey : G — C*. We twist the
above obtained linearization bfwith the charactex such thaf(y1) =1, x(y) =
—1.

Definition 5.6. Let

& &

f € HO(E] x B, Pi g, (2l01] + 2(5]) @ POy (2loz] + 21 5))°

be aG - invariant section oL.®2 and denote by a fibre coordinate of.. Let Sbe
the double cover of; x E} branched inf, i.e.,

S={wW=f(z,)} CL.
ThenSis aG - invariant hypersurface ib, and we have & - action onS
We callS:= S/G aKeum - Naie surfacef

e Gacts freely or, and i
e {f =0} has onlynon-essential singularities.e., S has at most rational double
points.
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Remark 5.7If

! ! * el * eZ
f € HO(Eq x B2, P10, (2lon] + 2[5]) @ P20y (2l02) + 2[5 1))°

is such thaf(z;,2) € Ey x B | f(z1,22) = 0} NFix(y1 +y2) = 0, thenG acts freely
onsS

Proposition 5.8.Let S be a Keum - Naie surface. Then S is a minimal surface of
general type with

) K&=4,
i) pg(S) =q(S) =0,
iii) Tm.(S) =T

i) is obvious, sinc&Z = 16,

ii) is verified via standard arguments of representationitye

iii) follows since m.(S) = m(E} x E}).

Let nowSbe a smooth complex projective surface with{S) = I" . Recall that
y2 =g fori=1,2. Thereford™ = (y1,€], y»,€,) and we have the exact sequence

15724~ (e,€),0,8) - — 7351,

whereg — V2.
We set/\/ := Ze ¢ Z€, hencer(E] x ES) = A] & Aj. We also have the two
latticesA; :=Z% & Zg.

Remark 5.91) I is a group of affine transformations @a & As.
2) We have an étale double cov&r= C/A/ — E; := C/A;, which is the quotient
by a semiperiod oE;/.

I has two subgroups of index two:

,_l = <Vl;e€|_;e2;e12>; ,_2 = <el7e,l7V25e12>a

corresponding to two étale covers®f§ — S, fori =1,2.
Then one can show:

Lemma 5.10.The Albanese variety of 8 . In particular,  S;) = q(S) = 1.

Let S— S be the étaleZ3-covering associated td* = (e1,€),&,€,) 1. Since
S— § — S andS maps toE; (via the Albanese map), we get a morphism

f:S— E;xEx=C/ALx C/A,.

Then the covering dE; x E; associated té\; ® A5 < A1 ® Ay is E] x ES, and since
nl(S) =\ ® A, we see thaf factors througtE;] x E; and that the Albanese map
of Sisa : S— Ej x EJ.

The proof of the main result follows then from



Surfaces of general type with geometric genus zero: a survey 31

Proposition 5.11.Let S be a smooth complex projective surface, which is homo-
topically equivalent to a Keum - Naie surface. L®t+ S be theétale Z3-cover
associated tde;, €], e, €,) <" and let

§— %L E/xE

N

Y

be the Stein factorization of the Albanese maé.of
Theng has degre@ and Y is a canonical model &

More precisely,$ is a double cover of £x E; branched on a divisor of type
(4,4).

The fact thaSis homotopically equivalent to a Keum-Naie surface immesdya
implies that the degree @f is equal to two.

The second assertion, i.e., tiyahas only canonical singularities, follows instead
from standard formulae on double covers (cf. [Hor75]).

The last assertion follows fromé = 16 and(Z/27,)?- invariance.

In fact, we conjecture a stronger statement to hold true:

Conjecture 5.12L et She a minimal smooth projective surface such that
) K2=4,
i) m(S)=r.
ThenSis a Keum-Naie surface.
We can prove
Theorem 5.13.Let S be a minimal smooth projective surface such that
) KE=4,
i) m(S) =r,
iiiythere is a deformation of S with ample canonical bundle.
Then S is a Keum-Naie surface.
We recall the following results:

Theorem 5.14 (Severi's conjecture, [Par05])Let S be a minimal smooth projec-
tive surface of maximal Albanese dimension (i.e., the incdgjee Albanese map is
a surface), then K> 4x(S).

M. Manetti proved Severi’'s inequality under the assumptiiKs is ample, but
he also gave a description of the limit c&@é: 4x(S), which will be crucial for
the above theorem 5.13.

Theorem 5.15 (M. Manetti, [Man03]).Let S be a minimal smooth projective sur-
face of maximal Albanese dimension withdnple then g > 4x(S), and equality
holds if and only if §S) = 2, and the Albanese map: S— Alb(S) is a finite double
cover.
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Proof (Proof of theorem 5.13yVe know that there is an éta@—coveré of Swith
Albanese majii : S— Ej x E}. Note thatkZ = 4K& = 16. By Severi's inequality,

it follows that x (S) < 4, but since < x(S) = %x(é), we havex(S) = 4. SinceS
deforms to a surface witks ample, we can apply Manetti’s result and obtain that
@ : S— E; x E5 has degree 2, and we conclude as before.

It seems reasonable to conjecture (cf. [Man03]) the foltmyiwvhich would im-
mediately imply our conjecture 5.12.

Conjecture 5.16Let Sbe a minimal smooth projective surface of maximal Albanese
dimension. TherkZ = 4x(S) if and only if q(S) = 2, and the Albanese map has
degree 2.

During the preparation of the article [BC09a] the authoiired that a com-
pletely similar argument applies pyimary Burniat surfaces

We briefly recall the construction of Burniat surfaces: farmdetails, and for the
proof that Burniat surfaces are exactly certain Inoue sedave refer to [BC0O9b].

Burniat surfaces are minimal surfaces of general type W#hk= 6,5,4,3,2 and
pg = 0, which were constructed in [Bur66] as singular bidoublesce (Galois cov-
ers with grouﬁZ%) of the projective plane branched on 9 lines.

Let Py, P, P € P? be three non collinear points (which we assume to be the point
(1:0:0),(0:1:0) and(0:0: 1) and let's denote by := P?(Py,P,,P3) the Del
Pezzo surface of degree 6, blow upfsfin Py, P, Ps.

Y is ‘the’ smooth Del Pezzo surface of degree 6, and it is theuwckof the graph
of the rational map

g:P? > P x P x P!
such that
€(y1:Y2:y3) = ((Y2:¥3),(¥3:¥1), (Y1:Y2)).
One sees immediately thdtc P! x P! x P! is the hypersurface of typd, 1, 1):

Y = {((¥1:x1), 0% : X2), (X5 : X3)) | X1XoX3 = X1 %pX3}-

We denote by the total transform of a general line #%, by E; the exceptional
curve lying oveR, and byD; 1 the unique effective divisor ifL — E; —Ej 4|, i.e., the
proper transform of the ling_1 = 0, side of the triangle joining the poinBs P 1.

Consider orY, for eachi € Z3 = {1,2,3}, the following divisors

Di =Dj 1+ Di2+Di3+Ei;2 € [3L—3E — Eiy1+ Eij2l,
whereD; ; € |[L — E|, for j = 2,3, Dj;j # D; 1, is the proper transform of an-
other line through? andD; 1 € |L — Ej — Ej; 1| is as above. Assume also that all the

corresponding lines if#? are distinct, so thad := >iDi is a reduced divisor.
Note that, if we define the divisa#; := 3L — 2E;_1 — Ej 1, then

Di-1+Djr1=6L—4E ;-2 =24,
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and we can consider (cf. section 4, [Cat84] and [Cat98]) 8weaiated bidouble
coverX’ — Y branched o := ¥; D; (but we take a different ordering of the indices
of the fibre coordinates, using the same choice as the one made in [BC09b], except
thatX’ was denoted b¥).

We recall that this precisely means the following: Det= div(&), and letu; be
a fibre coordinate of the geometric line bundle ;, whose sheaf of holomorphic
sections iy (£+1).

ThenX C Ly &1L, @ Lz is given by the equations:

2 .
Uiy = 01Uz, U7 = &0y,

Uplg = BoUy, U3 = &18;
Uty = Galiz, U5 = 505.
From the birational point of view, as done by Burniat, we anepdy adjoining

to the function field of*? two square roots, namev 2—; and,/ 2—2, where4; is the

cubic polynomial inC|xg, X1, %] whose zero set hd3 — E; ., as strict transform.

This shows clearly that we have a Galois coXér Y with groupZ%.

The equations above give a biregular mo#éhlhich is nonsingular exactly if
the divisorD does not have points of multiplicity 3 (there cannot be poafthigher
multiplicities!). These points give then quotient singitlas of type%(l, 1), i.e.,
isomorphic to the quotient a2 by the action ofZ4 sending(u,Vv) — (iu,iv) (or,
equivalently, the affine cone over the 4-th Veronese emingdafiP?).

Definition 5.17. A primary Burniat surfaces a surface constructed as above, and
which is moreover smooth. It is then a minimal surf&with Ks ample, and with
KZ =6, pg(S) =q(S) =0.

A secondary Burniat surfade the minimal resolution of a surfag€ constructed
as above, and which moreover has in < 2 singular points (necessarily of the type
described above). Its minimal resolution is then a minimalaceSwith Ks nef and
big, and withK3 = 6 —m, pg(S) = q(S) = 0.

A tertiary (respectively, quaternary) Burniat surfaisghe minimal resolution of
a surfaceX’ constructed as above, and which moreoverhas3 (respectivelyn=
4) singular points (necessarily of the type described apdigeminimal resolution
is then a minimal surfac8with Ks nef and big, but not ample, and wilﬁf =6—m,

Pg(S) = q(S) = 0.

Remark 5.181) We remark that foK§ = 4 there are two possible types of configu-
rations. The one where there are three collinear points dtipficity at least 3 for
the plane curve formed by the 9 lines leads to a Burniat seachich we call of
nodal type and withKs not ample, since the inverse image of the line joining the 3
collinear points is a (-2)-curve (a smooth rational curveedf intersection-2).

In the other cases witk2 = 4,5,6, Ks is instead ample.

2) In the nodal case, if we blow up the tWb, 1, 1) points ofD, we obtain a weak
Del Pezzo surfac¥, since it contains a (-2)-curve. Its anticanonical modeias a
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node (anA;-singularity, corresponding to the contraction of the {eBjve). In the
non nodal case, we obtain a smooth Del Pezzo sulfaeér’ of degree 4.

With similar methods as in [BC09a] (cf. [BCO9b]) the first taathors proved

Theorem 5.19.The subset of the Gieseker moduli space corresponding ricapyi
Burniat surfaces is an irreducible connected componentmad rational and of
dimension four. More generally, any surface homotopicatjyivalent to a primary
Burniat surface is indeed a primary Burniat surface.

Remark 5.20The assertion that the moduli space corresponding to pyiBamiat
surfaces is rational needs indeed a further argument, vidaarried out in [BCO9b].
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