Contents

Introduction

Notation

Chapter 1. Fibrations of curves of low genus

1.1.
1.2.

Fibrations with p, = ¢ =0
The sheaves T; and the multiplicity of hyp. fibres

Chapter 2. The numerical Godeaux surfaces

2.1.
2.2.
2.3.
2.4.
2.5.

The canonical ring

The bicanonical fibration
The fibres

The numerical invariants

Computations of the direct image sheaves

Chapter 3. Constructing numerical Godeaux surfaces

3.1.
3.2.

The adjunction condition

The classification theorems

Chapter 4. Some explicit computation

4.1.
4.2.
4.3.

4.4.

Resolution of the ideal sheaf of Y in case ia)

Some more computation for the case h = 2

The genus 4 fibration cannot have three distinct hyperelliptic

fibres

A computation of parameters and conditions in case ii)

Chapter 5. Examples

5.1

The Barlow surface

11

13
13
20

27
27
30
32
39
42

ol
ol
o4

61
61
67

73
76

79
79



5.2. The Craighero Gattazzo surface

5.3. The local moduli space of the Craighero Gattazzo surface

Bibliography

82
85

91



Introduction

In this thesis we face the problem of classification of numerical Godeaux sur-
faces. Recall that, by definition, a numerical Godeaux surface is a complex
algebraic surface of general type with p, = 0 and such that on its minimal
model K? = 1. Recall also that (see, e.g., [BPV]) a numerical Godeaux
surface is a regular surface (¢ = 0).

The first interest for surfaces with p,(S) = ¢(S) = 0 comes from Castel-
nuovo’s criterion on rationality (see, e.g., [BPV]): an algebraic surface with
Py(S) = ¢q(S) = 0 is rational. Castelnuovo asked whether it is possible to
improve the criterion: is a surface with p,(S) = ¢(S) = 0 rational?

The first counterexample was given by Enriques, who constructed what
are by now called the Enriques surfaces (cf. [E1], [E2], and [BPV] for further
details and references); these have fundamental group Z/2Z, and Kodaira
dimension 0 (so these are not of general type).

The first examples of surfaces of general type with py(S) = ¢(S) = 0 were
constructed by Campedelli ([Cam]|, K? = 2), and by Godeaux ([G1], [G2],
K? =1) in the ’30s.

Then Severi asked whether a simply connected surface with py(S) = 0
would be rational: the first counterexamples were constructed by Dolgachev
in [Dol2]; these are elliptic surfaces, that are now called Dolgachev surfaces.

Later, the interest for surfaces of general type with p,(S) = ¢(S) = 0 (al-
ready considered in Chapter VIII of Enriques’ book [E2] about the properties
of their pluricanonical systems), was revived by the fundamental Bombieri’s
article [Bo|, where the author left open problems about their pluricanonical
systems. Theorem 14 in that paper shows also that the torsion group of a
numerical Godeaux surface has order smaller than 6, and there Bombieri also
announced that he was able to show that this order is smaller than 5; an easy
proof is in [Cat1], page 263.



After that, surfaces of general type with p,(S) = ¢(S) = 0 and K* =1 (for
the minimal model) were called numerical Godeaux surfaces, while those with
py(S) = q(S) = 0, K? = 2 were called numerical Campedelli surfaces.

In the following years there were several papers devoted to these two classes
of surfaces, and to their tri- and quadri-canonical maps.

In particular, Reid ([R2]) showed that the torsion group is cyclic and com-
pletely described the geometry of the numerical Godeaux surfaces with torsion
group (the torsion subgroup of the Picard group) of order > 3, inverting the
method that Godeaux used in order to costruct the first example. More pre-
cisely, the surface constructed by Godeaux was a quotient of a quintic in P? by
a free action of Z/5Z. Reid described the canonical ring of the covering of a
numerical Godeaux surface with torsion Z/nZ, n > 3, induced by the torsion
group and the action of this group on it (the invariant subring is the canonical
ring of the original Godeaux surface).

Several examples and some families of numerical Godeaux surfaces with
torsion Z/2Z are constructed, as in [CD], [Bal], [Werl] and in [Wer2].

The first costruction of a numerical Godeaux surface with torsion {0} was
done by Rebecca Barlow in the early ’80s ([R3], [Ba2]). She constructed
a simply connected numerical Godeaux surface, with a variant of Godeaux’s
method, using a non free action of a dihedral group. In fact, Barlow method
constructs a dimension 4 family of simply connected numerical Godeaux sur-
face, with 4 distinct fundamental cycles (so that the canonical class is not
ample).

The only other explicit example of a numerical Godeaux surface was pro-
duced by Craighero and Gattazzo in 1994 ([CG]), as minimal resolution of
a normal singular surface. In [DW] was proved that the resulting numeri-
cal Godeaux surface is simply connected, and has Kg ample. It is an open
problem whether the Barlow surface and the Craighero Gattazzo surface are
diffeomorphic.

It came out that the Barlow surface is an useful example both for ap-
plications to the differential topology of 4-manifolds ([Kot1], [OVdV]), and
for problems on Einstein metrics ([CL]). In fact, a classification of simply
connected numerical Godeaux surfaces could produce new simply connected
differentiable 4-manifolds with b+ = 1. From this point of view we have to
say that the surface constructed by Craighero and Gattazzo is a interesting
example because of the ampleness of its canonical system.
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FI1GURE 1. The allowed region

Another source of interest is the conjecture of Bloch (cf. [Mu3], [BKL],
[Blo]) that for a surface with ¢ = p, = 0 the Chow group of degree zero 0-

cycles is trivial (this has been settled only in few very special cases, cf. [IM],
[Ba3], [V]).

Finally, another source of interest comes from the so called ” geography” of
surfaces of general type. Roughly speaking, the main problem of classification
of surfaces can be summarized as follows: find all surfaces with given values of
the invariants K2 and x (as usual, K2 is the self intersection of the canonical
class in the minimal model).

It is well known (see for details and references, [BPV], [Cat4]) that
K? > 1, x > 1, K < 9x (B-M-Y inequality), K? > 2x — 6 (Noether in-
equality). These inequalities delimitate a region in the plane (K2 ), the
"allowed region”. We drew a picture of that in figure 1.

For every surface of general type the values of these two invariants give
an integral point in this region. Conversely, results of Persson, Chen and
others show that almost every point in this region corresponds to some of
these surfaces.

In this picture, the numerical Godeaux surfaces live on the marked point,
let’s say the ”vertex” of the allowed region. Most of the usual methods used
in classification of surfaces work for high numbers of the invariants or near
the special lines (B-M-Y, Noether and the Castelnuovo line, let us write K2 =
3x — 10: in fact Castelnuovo work was for surfaces with K? = 3p, — 7: a line
in a picture similar to figure 1 one can draw with p, instead of x). The special
position of this point indicates that we are, in some sense, in one of the harder
cases of the classification of surfaces.

Now, let us write something about the method and the results.



For a numerical Godeaux surface the bicanonical system yields, on a suit-
able blow up S of the minimal model S, a fibration f : S — P! whose fibres
are curves of genus g, where g can only be 2, 3, or 4.

In fact, if we write the bicanonical pencil as [2K| as |M| + F, where F is
the fixed part, we see that KF = 0, KM = 2. This gives four possibilities:

ia) M?=4 F=0 g =4 |M]| has 4 base points

ib) M?=4 F=0 g¢g=3 |M|has1 double base point

i) M?*=2 F?=-2 ¢g=3

i) M?*=0 F?=—-4 g=2.

In every case we can consider a product rational mapping ¢ = @1 X @9 :
S ——» P91 x P!, where ¢, is the bicanonical map ok and ¢, maps every
divisor of M in the canonical image of the corresponding fibre of f. We shall
be more precise in chapter 1. Let us just remark that here the assumption
Py = ¢ = 0 is crucial. A similar construction is possible also for more general
surfaces but in those cases computations become harder because the target of
¢ is a suitable scroll (depending from the values of the invariants) instead of
P91 x P!, and the fibres can be mapped with a subsystem of its canonical
class.

We show that, in all the cases except (of course) the last one, the general
fibre of f is not hyperelliptic. In fact, we show that for a numerical Godeaux
surface, case iii) does not occur. This was already proved (unpublished) by
Bombieri using the classification of reducible genus 2 fibres. Bombieri’s proof
takes more or less 40 pages, so we think is interesting to have a shorter one.

Therefore, in these cases ¢ yields a birational map, and indeed, on S, we
get a product morphism ; X f, which fails to be an embedding when we
have a hyperelliptic fibre. So, for every birational class of numerical Godeaux
surfaces, the map ¢ gives a (singular) representative contained in PY~! x P

Every fibre of the projection Y — P! is a canonical curve. In the classical
theory the ideal of a canonical curve C is given by the kernels of the maps
S"(H®(we)) — H(wh); it turns out that defining equations for Y are given
by the kernels of the morphisms o, : S"(H°(f.w)) — f.w", where w is a line
bundle on S that induces by restriction the dualizing sheaf on every fibre of f.

Studying these maps, assuming that the torsion group is {0}, we prove
that the conductor divisor of the normalization of Y is a sum of the hyperel-
liptic fibres of f (with certain multiplicities), and this allows us to completely
describe the situation.

E.g., for case ia), summing up theorem 3.2.1 and proposition 4.3.1, we get
the following (already in [CP])



THEOREM 0.0.1. Assume that S is a numerical Godeaux surface with tor-
sion {0} and of type ia), i.e., s.t. the bicanonical pencil yields a genus 4
fibration f.

Let b =3¢ nypereiiptic MUt(C): then a priori 0 < h < 3; a posteriori the
case with three distinct hyperelliptic fibres cannot occur.

Moreover 3Q € |Opsyp1(2,7—2h)|, s.t. Y := ¢(S) is a divisor in the linear
system |Og(3,3h—6)| whose singular curves are exactly the twisted cubic curves

image of the (honestly) hyperelliptic bicanonical divisors. Moreover, if C is the
conductor ideal, h®(COy (2, h — 3)) > 0.

Viceversa, assume that 0 < h < 3 and that Q € |Opsyp1(2,7 — 2h)| is an
irreducible divisor, and that in turn'Y € |Og(3,3h—6)| is an irreducible divisor
whose normalization is a surface X with rational double points as the only
singularities. Suppose moreover that the conductor ideal C defines a divisor
on X equal to h fibres (counted with multiplicity). Assume moreover that the
singular curves of Y are (irreducible) twisted cubics, and that h®(COy(2,h —
3)) > 0. ThenY is the tri-bicanonical model of a numerical Godeauz surface
with torsion {0} and of type ia).

Similar theorems are given also in the other two cases (theorems 3.2.2 and
3.2.3).

Let us now describe the structure of this thesis.

In chapter 1 we describe the details of the strategy and state the first
basic results. Then we show that for a fibration whose generic fibre is non
hyperelliptic the sheaves cokernel of the morphism o, (7)) are skyscreaper
sheaves supported on the image of the hyperelliptic fibres, and compute the
length of the stalk of these sheaves at the points corresponding to some class
of fibres.

In chapter 2 after some result on the canonical ring of a numerical Godeaux
surface, we construct the fibration f, and we study which fibres are allowed (in
both cases of torsion {0} and Z/2Z). Then, computing the Euler characteristic
of the sheaves f,w™ and by the results of chapter 1, we compute in case of
torsion {0}, the sheaves L, (kernel of o,,). The degrees of these sheaves give
us the linear system in which Y is a divisor (more precisely, in case ia) Y
is a divisor in an hypersurface, so in another divisor; we compute the linear
systems of both). Finally, a precise computation of the sheaves f.w™ allows us
to exclude case iii) (without hypotheses on the torsion group).

In chapter 3 we compute the adjunction conditions, (e.g., in theorem 0.0.1,
h%(COy(2,h — 3)) > 0), and we prove theorem 0.0.1 and its analogous in the
other cases (torsion {0}).



In chapter 4 we write an explicit resolution for a defining ideal of Y in case
ia). These are the following

THEOREM 0.0.2. IfY is the tri-bicanonical model of a numerical Godeauz
surface with h < 1, then there exist linear forms Ly, ... , L11_5, and quadratic

forms Qq, ... ,Q7_on in P2, such that, if Ao, \1 are a basis for the linear forms
on P!, the ideal sheaf of Y has a resolution

Op(—3,2h — 7)12-5h

0 — Op(=5,2h—7)>-3 L, ® N
Op(=5,2h — 6)5=3
Op(=2,2h — 7)
by ® — Iy — 0
Op(—3,2h — 6)13-5h
where
Lo L sp 0 0 \
—Ao 0 Q7-2n 0
Al . ..
ap = : Q7—2n
Qo :
o
\ 0 N0 Q )
and
(Q?—Qh 0 \
Qo Q7—2n
Brn = 0 Qo
Ao 0
EV
S
\ 0 A/

THEOREM 0.0.3. IfY is the tri-bicanonical model of a numerical Godeauz
surface with h = 2, then there exist linear forms Ly, L1, quadratic forms



Qo,...,Qs and a cubic form C in P3, such that, if Ao, \1 are a basis for
the linear forms on P!, the ideal sheaf of Y has a resolution

O]P’(_37 _3)2 OIF’(_27 _3)
0 — ® = > - Iy — 0,
OIP’(_5, _3) OIP’(_?’a _2)3
Ly L C
| =X O A1Q3
where ap = Al =0 M@+ MQ2
0 X\ AoQo

By these two theorems we can explixitely write a parameter space for the
corresponding slices of the moduli space, as the relations induced by all the
closed conditions (we explicit also adjunction condition).

In particular for h = 2 (the only case for which we can show existence) we
manipulate these relations in order to simplify those equations; unfortunately
at the moment the equations are still too complicated for my computer. In this
chapter we also exclude the case with three distinc hyperelliptic fibres (again
in case ia)) and we develop a parameter computation for case ii).

Finally in chapter 5 we study the two existing explicit constructions (Bar-
low and Craighero Gattazzo), showing that in both cases we are in case ia),
and h = 2. Moreover we show that the local moduli space of the Craighero
Gattazzo surface is smooth of the expected dimension (8, this holds also for
the Barlow surface, as proved in [CL]).






Notation

For the reader’s convenience, we enclose here a list of notations more often
used, and of our abbreviations.

In this thesis we denote by S the minimal model of a numerical Godeaux
surface and by X its canonical model.

We let moreover Tors(S) be the torsion subgroup of the first homology
group Hy(S,Z) (equivalently, of H?(S,Z)).

For a Gorenstein algebraic variety Z (e.g. S, X) we denote by K, a Cartier
divisor associated to its dualizing sheaf wz. The rational map associated to a
divisor D is denoted by ¢p or ¢ p|; similarly the rational map associated to a
line bundle £ is denoted by .

S is the blow up of S at the base points of the movable part | M| of [2Kg|. X
is the surface obtained by S contracting all the (—2)-curves. This is the blow
up of X in the smooth base points of |2K x| except (possibly) in case ib) (see
introduction). The induced morphism are denoted by 3 : S—8S, ,3 X - X.

We have already defined ¢ : S —-» P91 x P! in the introduction; let us
denote by ¢ : X —» P9~! x P! the induced map on the canonical model, and
set YV 1= ¢(95), X := 34 (95).

Moreover, we denote by m; : P97 x P! — P9~ 7, : P91 x P! — P! the
natural projections.

 This allows us to define the morphisms g := po 8 : S—>Y,§:=¢ 0f:
X-=Y
Last, we denote by f :=mopof: ,S:” —>~]P’1 the fibration associated to the

bicanonical pencil, and by f := m0po S : X — P! the analogous fibration on
the canonical model X.

Quite often, given a Cartier divisor D on a scheme Z, by slight abuse of
notation we denote also by D the associated invertible sheaf Oz(D); and we
often write, as shorthand notation, H%(D) instead of H°(Oz(D)).

11



Moreover, Opg-14p1(a,b) is also a quite understandable notation for the
tensor product 75 Opg-1(a) @ 75Op1(b).



CHAPTER 1

Fibrations of curves of low genus

1.1. Fibrations with p, =¢=0

Let S a minimal surface, M a pencil on S without fixed components. Let
far o S --» P! be the induced rational map.

It is well known that there exists a unique minimal sequence of blow ups
B :S — S, and (relatively minimal) fibration f : S — P! such that the
following diagram commutes:

g
Bl N
s M op

The fibre of f is the strict transform on S of the pencil M, so let us denote
the corresponding linear system by M. For every p € P!, we denote by M, the
fibre of f corresponding to p.

We shall assume the generic fibre 1-connected, so that f is a fibration of
genus g, where g is the genus of M. The linear system |Kg + M| restricted
to every such a fibre induces the dualizing sheaf Wi, recall that, being f a

fibration, Vp € P!, HO((’)MP) =1, s0 HO(pr) =4g.

We consider the map g : § — P (Ks+M)=1 5 P! induced by the two linear
systems w := |Kg + M| and M. This map restricted to every fibre of f is
induced by a subsystem of its canonical system, so the image Y should be
contained in the total space of some fibration F — P! with fibre P!, | < g — 1:
the image of every fibre is a projection of its canonical image. The key idea is
to study Y instead of S, using results on canonical images of curves.

The situation becomes considerably easier in the case we are interested in.

REMARK 1.1.1. Ifp,(S) = q(S) =0, then F =Py ! x P!, and every fibre
of f is mapped with its canonical morphism.

Proof.

13



We have just to remark that, for every p € P!, from the exact sequence
0= Ksg—w—wpy —0
we have that the restriction map H°(w) — H°(wy; ) is an isomorphism.
O

We are mainly interested in numerical Godeaux surfaces. So in the fol-
lowing we will assume p,(S) = ¢(S) = 0, that, by remark 1.1.1, considerably
simplify the situation.

First of all, we need some lemma on canonical image of curves.

REMARK 1.1.2. Let C be a genus 3 curve, let w be the dualizing sheaf of
C. Assume that @, embeds C. Then ¢,(C) is a plane quartic.

Proof.

The image is a curve in P9~ = P? whose degree is deg(w¢) = 2¢9(C)—2 = 4.

]

The following is in fact is a slight improvement of Noether theorem (see,

e.g., [GH]) in case g = 4.

LEMMA 1.1.3. Let C be a 3—connected genus 4 Gorenstein curve, let w be
the dualizing sheaf of C. Assume that ¢, embeds C. Then ¢,(C) is a complete
intersection of type (2,3).

Proof.

C has genus 4, so h°(C,w) = 4, h°(C,w?) =9, h’(C,w?) = 15. Then the
natural map S?(H°(C,w)) — H®(C,w?) has a non-trivial kernel.

Assume, by contradiction, that this kernel has dimension greater than 1.

Thus, there exist two distinct quadrics )1, ()2 containing the degree 6 curve

©w(C). If @1, Q2 have no common components, their intersection is a curve of
degree 4, a contradiction.

Therefore there do exist linear forms Lg, L1, Ly such that Q1 = LoL1, Q2 =
L()LQ, and QOw(C) C L()L1 N L()L2 = L() U (L1 N LQ)
But ¢, (C) is non degenerate, so we can write C = C + Cy, with ¢, (C;) C
Ly of degree 5, ¢,(Cy) = Ly N Ly a line.
Now, recalling that C' is assumed to be 3—connected, we can compute
4=g(C’) :g(01)+g(02)—1+0102 Z6+0—1+3:8,

hence we derive a contradiction. Note that we don’t need to embed C in a
surface in order to derive C;Cy; it can be defined as degc, (we) - dege, (we, ),
of. [CFHR].
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Therefore there is only one quadric containing ¢, (C), let us denote it by
Q.

Now, by a dimension count, the map S*(H°(C,w)) — H°(C,w?) has a
kernel of dimension at least 5. In particular we get at least one cubic surface
G containing ¢, (C) and not having () as a component.

If G and () have no common components, their intersection is a degree 6
curve containing ¢, (C), so ¢,(C) = @ NG and we are done.

Otherwise, there must exist linear forms Lg, L, and a quadratic form @,
such that @ = LoL, G = LyQ', and ¢,(C) C Ly U (LN Q'). Again, we can
decompose C as C; + Cy, with ¢, (Cy) C Lo, ¢,(Cy) C LNQ'". If ¢,(Cq) #
LN @', we have decomposed ¢, (C) as the union of a plane quintic and of a
line, and we have already excluded this case. Else, ¢,(C1) is a plane quartic,
0w (Cs) a conic, and again we get

4=g(C)=9g(C1)+9(Cy) =14+C1C2>3+0—-1+4+3 =5,
a contradiction.

0

By remarks 1.1.1 and 1.1.2, for a genus 3 fibration whose total space has
Py = ¢ = 0 we expect that Y is a divisor in |Op2yp1(4, d)| for some suitable d
that we would like to compute.

Similarly, by remarks 1.1.1 and lemma 1.1.3, for a genus 4 fibrations we
would expect that Y is a complete intersection of a divisor in |Op2«p1(2, d)| for
some suitable dy and a divisor in |Op2yp1(3, d3)| for some suitable dz. Unfor-
tunately this is not true and in general Y will not be a complete intersection.

In propositions 1.1.5 and 1.1.6 we give answers to these ”expectations”.

LEMMA 1.1.4. Let S — P a genus g fibration such that p,(S) = ¢(S) = 0,
and such that the generic fibre is embedded by its canonical map.

Let w be defined as before. Then f.(w) = Op,.

Proof.
Let C a fibre of f. We look at the exact sequence

0— Kz — w—we— 0.
For a fibration every fibre is either 1-connected or multiple. In both cases
H°(O¢) =1, so, by Riemann-Roch, h°(w¢) = g.

By ([BPV]), theorem 1.8.5, f.w is a rank g locally free sheaf, so splits as
direct sum of line bundles Y7 O(d;).



By p, = 0, we get that the map H%(w) — H%wc) is injective, so f.w is
generated (Vi d; > 0).

By ¢ = 0 that map is also surjective, so g = h®(w) = h°(f.w) = > 9(d; + 1),
then Y 9 d; = 0, and we are done.
U

Let us recall that, in the setting of lemma 1.1.4, we denote by M the pencil
given by the fibres of f, and by Y C P¢~' x P' the image of the rational map
induced by the linear systems |Kg + M| and M.

Consider the natural homomorphisms of sheaves

S™(felw)) == fu(w™),
and set L, = kero, and T,, = coker o,.

ProPOSITION 1.1.5. If g = 3, and if the generic fibre is embedded by its
canonical class, Y is a divisor in Op2ypi1(4, d).

Moreover Ly = Opi1(—d).

Proof.
If the generic fibre is embedded, Y is a surface (so a divisor) in P? x P'.

By remark 1.1.2, a generic fibre C induces a quartic in P2, that is a gener-
ator of the kernel of the map S*(H(w¢)) — H®(w¢). For a genus g fibration,
Vi > 0, h%(wk) is constant.

So f.,w' is a locally free sheaf of rank H°(w%); more precisely, if M, is
the fibre of a point in P!, and M,, is the ideal sheaf of p, there is a natural
isomorphism between M, f,(w') and H%(w!, ).

p

So we can consider the map o4 : S*(f,w) — f.w?, by remark 1.1.2 and
Nakayama lemma we conclude that this is a generic surjective morphism of
locally free sheaves, and is kernel is a rank 1 locally free sheaf, so we can write
it as Opi(—d) for some suitable d in Z.

By lemma 1.1.4 the injection Opi(—d) = S*(f.w) = OF} describes a divisor
Z in Op2yp1(4,d) that “generically” is Y, in the sense that they coincide on
a generic p € P!. Y is irreducible, so Y C Z. Assume now, arguing by
contradiction Z =Y + D, D > 0.

Recall that Pic(IP? x P')=Pic(P?) x Pic(P'): on a generic fiber Y is a quartic,
so there exist @ > 0 such that D € |Op2yp1(0,a)|, Y € |Op2ypi(4,d — a)|.

But such a divisor would induce a complex

Opi(a — d) = S*(fuw) = fu(w?).



* J -*

We already computed that the kernel of o4 is Op1(—d), so, being a > 0, the
map Opi(a — d) — S*(f.w) should be zero, that is a contradiction (Y would
be the divisor corresponding to the zero section!).

0

PROPOSITION 1.1.6. If g = 4, the generic fibre embedded by the canonical
class, there exists a divisor Q € |Opsypi(2,ds)|, and a divisor Z € |Og(3,ds)|,
st. Y CZ, and Z =Y 1s supported on the points p where the corresponding
quadric and the corresponing cubic contain a common plane.

Moreover Ly = Opi(—ds) and we have an exact sequence
0 — L5 — L3 — Opi(—ds) — 0.

Proof.

Part of the proof is similar to the previous one and we shall skip most
details.

Being the generic fibre embedded by the canonical class, by lemma 1.1.3
the canonical image of the generic fibre is a complete intersection of a quadric
and a cubic.

Arguing as in the previous proof, we see that such a quadrics “glue” to a
divisor Q € |Opsyp1(2,ds)|, and Ly = Op1(—dy).

If we look at the system of cubics, we get a slightly more complicated
situation. In fact, o3 is still generically surjective, so L3 is a locally free sheaf

of rank (ho(“éH?’) —h%w?) = 20— 15 = 5. In fact we have 5 independent cubics

containing the canonical image of a generic fibre: 4 of them are the multiples
of the quadric.

Now we show that the morphism of sheaves

Lo ® HO(fuw) = L3
is injective, and that its cokernel is locally free.
First, the injectivity; it is enough to show the injectivity of the map Ly ®
HY(fuw) = S*(fuw).

This is a morphism of locally free sheaves, so the kernel is still locally free,
and it is enough to show that this map is injective on the stalk of point. Let
us fix a point € P!, and choose a local parameter ¢ for O,.

Then we can write the map as (fo(t), f1(t), f2(2), f3(t)) = (3o fivi)a(t, vs),
where ¢ is the quadric in the variables y; with coefficients in O, defining o,.

Then q is not 0; being the monomials of degree 3 in the variables y; a basis
for the free O -module S?(f.w),;, we immediately get the injectivity.



Now we show that the cokernel is locally free, i.e. that every stalk of
the cokernel is free as O,-module. By the fundamental theorem on finitely
generated modules over a principal ideal domain, the stalk of the cokernel is a
direct sum of cyclic modules.

Then, if it is not free, it contains an element m # 0, such that there exists
f #0in O,, with fm = 0. Let g be a preimage of m in the stalk of £3. Then,
g & i(L> ® HY(f.w0)), whence fg € i(Ly ® H(f.w)).

Then we can write fg = ng fivi, where f; € O, {y;} is a basis for
H°(f.w), q is a generator for the rank 1 free module (£5),, whence g cannot
be written in this form; in particular 3i such that f;/f & O,.

Let t be a local parameter for O,. Then, if a is the minimum of the
multiplicities in 0 of f, f;, we can write f = t*TL ') f; = t*f!, with f', f! € O,.
Dividing by t%, we get tf'g = ¢ Zg fly;, where there exists i with f/(0) # 0.

Evaluating both the sides of the last equation in 0, we would get a not
trivial linear relation between the four cubics multiple of a given quadric in
P?, that is clearly a contradiction.

Now, arguing as in previous proof we have two divisors Q € |Opsyp1(2, ds)|,
Z € |0g(3,d3)|, and Y C Z. We have to show that Z — Y is supported on the
points p where the corresponding quadric and cubic have a common plane.

For every p € P!, let us denote by Y,, Z, the fibers of Y, Z on p; Vp,
Y, C Z,. Y, is a curve of degree 6, Z, is complete intersection of a quadric and
a cubic. So, if Z, is a curve, Y, = Z,.

If Z, is not a curve, then Z has a component that projects to the point
p. Writing Z, = Q, N G)p, Q, corresponding quadric, G, corresponding cubic,
they have a common component; since by construction @), fG,, we have done.

O

REMARK 1.1.7. By lemma 1.1.8 (and its proof), if p € P! corresponds to
a 3-connected non-hyperelliptic fibre, then Z, = Y,.

REMARK 1.1.8. In the setting of proposition 1.1.6, Z is complete inter-
section of two divisors in |Opsyp1(2,ds)| and |Opsyp1(3,d3)| if and only if the
exact sequence

0— LQ X Ho(f*((,U)) — Lg — Oﬂml(—dg) — 0
splits.
We shall see in the following study of numerical Godeaux surfaces that this
exact sequence is not in general splitting.

Now we want to show how one can compute the sheaves L;.



We can use the exact sequences

0— L = S (fiw) = fuiwt = T = 0.

S!(f.w) is a trivial bundle of suitable rank; therefore we have to compute
the sheaves f,w' and 7).

More precisely, the sheaves we are interested in (for ¢ = 3 L4, for g = 4
Ly and L3/L3), are line bundles, so it would be enough to compute the Euler
characteristics of the sheaves f,w' and 7.

We conclude this section looking at the Euler characteristic of f.w!. A
more precise computation of these sheaves can be done in the specific cases,
as we shall do for torsion {0} Godeaux surfaces in chapter 2, section 2.5.

ProrosiTIiON 1.1.9. For a genus g > 2 fibration f, VI > 2, ¢+ < 1
h(fuw') = hH(w!).

Proof.

By definition of direct image sheaf h9( f,w') = h(w!).

For what concern h', we have just to remark that, by Leray spectral se-
quence, we have an exact sequence

0 — H'(f.w') — H' (W) — H°(R' f.w').
For genus greater than 2, VI > 2 hl(wl) = 0. By [BPV], theorem 1.8.5, we
conclude that R!f,w' is a locally free sheaf of rank 0, so is the “zero” sheaf.
]

COROLLARY 1.1.10. If S is the total space of a genus g > 2 fibration f,
and py(S) = q(S) =0, then VI > 2, i < 1, x(fuw') = x ().

Proof.

By proposition 1.1.9 we have to show that VI > 2, h®(Kz®@w ') = h?(w!) =
0.

But we assumed p,(S) = 0, so it is enough to show that VI h°(w') > 0, that

is equivalent to h°(w) > 0. But if p,(S) = ¢(S) = 0, we have that for every
fibre C', H’(w) is isomorphic to H%(w¢) &2 C9; so h(w) = g¢.

O

Remark that last corollary can be stated in more general hypotheses, in
fact we need only that h’(Ks ® w™!) = h?(w!) = 0; e.g. if w > 0 we only need
that h°(Kz @ w™?) = 0.



1.2. The sheaves J; and the multiplicity of hyp. fibres

In this section we will show how one can compute the sheaves J; we have
defined in the previous sections.

PROPOSITION 1.2.1. Let f : S — B be a fibration whose generic fibre is
embedded by its canonical class.

Then the sheaves T;, 1 > 2 are supported on the points of the curve B whose
corresponding fibre has canonical image not projectively normal.

Proof.

Let M, be the maximal ideal sheaf of the point p in Op. Let us denote by
M, the fibre of the point p.

By Grauert’s base change theorem (cf. e.g. [BPV], theorem 1.8.5.iv)

Vp € B, % o HO(MP, w¥); mod M, the morphism oy, acts on the stalks as

Sk(H®(M,,w)) — H(M,,w"), whence it is surjective when the corresponding
fibre has projectively normal canonical image.

Then, by Nakayama’s lemma, if the corresponding fibre has projectively
normal canonical image, then (o,,), is surjective, and the theorem is proved.

O

As we showed in previous section, we are mainly interested on the Euler
characteristics of these sheaves. We will see in proposition 2.2.3 that in our
cases the generic fibres are non hyperelliptic, so by proposition 1.2.1, they are
skyscraper sheaves. So we have to compute the lengths of these sheaves in the
“non projectively normal” points. Remark 1.1.2 and lemma 1.1.3 show some
class of “projectively normal” points.

The first interesting case (and the easier one) in which some point fails to be
“projectively normal” is when the corresponding fiber is honestly hyperelliptic.

LEMMA 1.2.2. Let B be a smooth curve and f : S — B a genus 3 fibration
whose generic fibre is non hyperelliptic. Let M be the fibre of f, set w =
M+ Kg.

Consider the homomorphisms of sheaves
Sn(f*w) &) f*(wn)a
and denote by L, = kero, and T, = coker o,,. Then

i) T, is a torsion sheaf with support contained in the image of the hyperel-
liptic fibres.
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ii) Let p € P' be the image of some 2-connected hyperelliptic fibre; then
ds > 0,s € N, such that

Vk > 2 length (T, p) = s(2k — 3).

Proof.
i) Follows from remark 1.1.2 and proposition 1.2.1.

ii) Recall that, by [ML], the canonical ring of a 2-connected hyperelliptic
fibre has the form

R =Clzy, 19,23, y]/ <11 :=Q(x;), 79 := y* — F(x;) >,

where deg z; = 1, deg y = 2, deg Q=2, deg F' = 4.

Let us denote by Rj the homogeneous part of R of degree k. Remark that

(f*wk)p Qo, C = Ry,

so, by flatness, @ (f.w*), = Oplx1, o, 23,y]/ < T1,T2 >, where the 7;’s are
lifts to O, of the r;’s.

Moreover, every syzygy of R lifts to a syzygy of the Op-module & (f.w*),.

Every lift of 7, can be written as

71 = Q(z,t) + F(t)y

where Q(z;,0) = Q(z;), and F(0) = 0. Remark that the assumption that the
generic fibre is non hyperelliptic imposes F' Z 0. Let s be the multiplicity of
Fin 0.

For a suitable change of the local parameter ¢ in O,, we can write
T = QI({L'Z', t) —+ tsy
for some s > 0, Q' (2;,0) = Q(x;).
This allows us to compute, using the lift of ry to eliminate the multiples of

y?, that the set {t'q;yli < s} is a basis for the stalk of T in p when the set
{g;} is a basis for the homogeneous part of degree k — 2 of the quotient ring

(C[ajl y L2, 3)'3]/@
U

LEMMA 1.2.3. Let B be a smooth curve and f : S — B be a genus 4

fibration whose generic fibre 1s non hyperelliptic. Let M be a fibre of f, set
w=M+ Kg.

Let p € B be the image of a honestly hyperelliptic fibre; then

i) T, is a torsion sheaf whose support does not contain the image of the
3-connected non-hyperelliptic fibres.



ii) there is a positive integer s such that

Vk > 2 length (Ty,p) = s(3k — 4).
Proof.

i) Follows from lemma 1.1.3 and proposition 1.2.1.

i) If Mp is a honestly hyperelliptic fibre, then Mp is a double cover of P!
branched, by Hurwitz formula, on a divisor of degree 10 . We can embed Mp
in P(5,1,1) as the hypersurface defined by the equation w? = P(tg,t;), where
P is the homogeneous polynomial of degree 10 whose divisor is the branch
divisor of the canonical map.

Following the same line of [ML] it is easy to prove that the canonical ring
of Mp is generated in degree 2; this ring can be described as a subring of the
ring A= (C[t(),tl, UJ]/ <w?= P(to,tl) >.

In fact, generators for H(w) are yo = 3, y1 = tat1, y2 = tot}, yz = t3;
the kernel of the map S?(H°(M,,w)) — H°(M,,w?) has dimension 3 (three
independent quadrics through a twisted cubic), so the cokernel has dimension
9 — 10+ 3 = 2, and we can see that it is generated by vy = tow, v1 = tyw.

It follows that, if we choose 3 degree 4 polynomials Py (v;), Po1(y:), Pi1(vi),
s.t. in the ring A is Pyy = t3P, Py = tot, P, Pi; = t2P, we get the following 9
relations:

e 02 2 —
1 =Y1 — Yo¥Y2 T ==Y5 — Y1Y3 T3 = YoYs — Y1Y2
T4 = VoY1 — V1Yo 75 = VY2 — V1Y1 Te = Vo¥Y3 — V1Y2
e )2 — 2
7‘7.—’UO—P00 Tg.—’U()’Ul—P()l Tg.—Ul—PH.

So we can describe the canonical ring R of Mp as a quotient of the graded
ring Clyo, y1, Y2, Y3, Vo, v1]/ < T1,...,79 >, where deg y; = 1, deg v; = 2. We
have HO(M,,w) = 4, and Vk > 2 H°(M,,w"*) = 6k—3 but on the other hand an
easy calculation yields that the homogeneous part of degree £ of our ring has at
most the same dimension. Therefore follows that R = Clyo, y1, ¥2, Y3, Vo, v1]/ <
T1y-..,T9 >.

Let us denote by Rj the homogeneous part of R of degree k.
As in the previous proof, we can remark that

(f*wk)p ®(f)p (C = Rk,

so, by flatness, ®(f.w¥), = Oplvo, Y1, Yo, Y3, Vo, v1]/ < T1,-.. ,Tg >, where the
7;’s are lifts to O, of the r;’s.

Moreover, every syzygy of R lifts to a syzygy of the O,-module & ( fw"),.
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Let t be a local parameter for O,, and write

T1 q1(y;,t) ani(t)  dua(t) v
To | = [ &y, t) | + | 02i(t) Geal(?) ( 0) ;
T3 3 (Y, t) iz (t)  Gsa(t)

where §;(y;,0) = r;, and &;;(0) = 0. Let s be the minimum of the orders of
vanishing of the &;;(t)’s; we can then find a new basis for the respective vectors
spaces generated by vy and vy, and by 71,79, 73, and a new local parameter ¢,
so that we can write our relations in the following simpler form:

U1

T a1 (y;, 1) t* 5 o () v
To | = | g2 (yja t) + ts+10121 (t) t* oo (t) (U?) .
T3 a3(yj, 1) t"Hag (t)  tPas(t)

Clearly then the linear space of conics generated by the ¢;(y;, 0)’s coincides
with the space generated by the r;’s (i = 1,2, 3).

Lifting the syzygy ysr1 + y172 + yor3, by degree reasons we get a syzygy
Of the form Lg(yj, t)?l + L1 (yj, t)?g + L2 (yj, t)?g + f4(t)F4 + f5 (t)?g, + fﬁ(t)?ﬁ,
where the L;(y;,0)’s are three independent linear forms, and 74, 75, T are lifts
of T4,75,T¢6.

Working modulo the ideal generated by ¢! and by the monomials of degree
3 in the (y;)’s we get
t*(Ls(y;, 0)vo + (22(0) L1 (y;, 0) + a3(0) La(y;, 0))v1) € (T4, T5,T6)

But in fact, there are no constant coefficients syzygies among r4, 5, rg, thus
we conclude that

L3(y;j,0)vo + (22(0) L1 (5, 0) + a23(0) La(y;,0))v1 € (74,75, 76)
which excludes the possibility that ags(0) = aa3(0) = 0.

Therefore, choosing new bases for the respective O,-modules generated by
vo and vy, and by 71,75, T3, we can write our relations in the following even
simpler form:

T a1 (Y. 1) 0\ /.
TQ = q2 (y], t) + 0 ts <U(1)) .
T3 q3(y;, 1) 0 0

This allows us to compute, using the lifts of r7, rg, r9 to eliminate the mul-
tiples of vZ, vovi, v?, and the lifts of 74,75, 76 to eliminate the multiples of v



as much as possible, that there exists a nonzero linear form Ly(y;) such that
the set {t'voLE~2(y;), t'v1q(y,)|i < s} is a basis for (T;),, when {g} is a basis
for the homogeneous degree k — 2 part of Clyo, y1, Yo, y3|/ < 71,72,73 >. But
this is the projective coordinate ring of a twisted cubic, whose homogeneous
part of degree d has dimension 3d + 1; whence the dimension of (T%), equals
s(1+3(k —2) +1) = s(3k — 4).

U

The integer s arising in lemmas 1.2.2 and 1.2.3 can in fact be defined as
follows:

DEFINITION 1.2.4. Let C be a honestly hyperelliptic curve of genus g, oc-
curring as a fibre of a genus g fibration with generic fibre non hyperelliptic
f:S — B where S is smooth. Define the multiplicity of C' (or mult(C)), as
the multiplicity of C in the conductor ideal of f (recall that the conductor is a
divisorial ideal).

In order to prove that this integer equals the previous one, we need some
local study.

PROPOSITION 1.2.5. Let C' be a honestly hyperelliptic genus g < 4 fibre
occurring as a fibre of a fibration f : S — B whose generic fibre is non-
hyperelliptic; @, : S — PI=1 a morphism inducing on every fibre the canonical
morphism, ¢ the map induced by ¢, and f on the suitable product. Let I' =

90(0): Y = QO(S)

Assume that the multiplicity of C equals s: then, in the neighbourhood of
a general point p € T, if g = 4, there exist local coordinates (y1, Yo, Y3, t), such
that Y is defined by the equations yo = y1(y1 —t°) =0, T by y1 =yo =t =0,
whence if g = 3, there exist local coordinates (yi1,ys,t), such that 'Y is defined
by the equations y1(y1 — t*) = 0, I' by y1 = t = 0, and the projection my is
(still) given by the coordinate t.

Proof.

We prove the statement only in the case g = 4; the proof in case ¢ = 3 is
identical (just forget the coordinate y,).

Near a the general p € I' for a suitable choice of a neighbourhood U of p
in Y we can see U embedded in C* x C, such that ¢~!(U) has two smooth
connected components, and ¢ identifies the two smooth holomorphic curves
corresponding to C.

So, for a first suitable choice of local coordinates in the source and in the
target, we can assume that I' = {y; = yo = t = 0}, the projection 7y is given
by the coordinate ¢, and the two branches of Y are parametrized as follows
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(ur,t1) — (0,0, uq,t1)
(ug,ta) —  (tad1(ug, ta), taga(usg, ta), us, ta).

So, for a suitable local analytic coordinate change that fixes ¢, we get the
simpler form

(ulatl) — (anaulatl)
(ug, t2) — (15,0, up, to).

And Y is described by the equations yo = y;(y; — t*) = 0.

Finally, remarking that the conductor ideal is generated by ¥, 1%, we get
a=Ss.

O
The following corollary is useful for the adjunction computations on Y.

COROLLARY 1.2.6. Assume that a fibre F = {t = 0} appears in the con-

ductor divisor with multiplicity s. Thus, if Q(y;,t) represents a divisor in
PI=! x P! s.t. o*div(Q(y;, t)) > 2sF, then t°|Q(ys,t) (mod Jy).

Proof.
By our assumption div Q(y;,t) pulls back to a divisor > 2sF.

Since we are interested in () mod Jy, using the local coordinates introduced
above, in case g = 4 we can look at ) modulo ys, and writing Q'(y1, ys,t) =
Q(y1,0,ys,t) we have no more differences in the two cases.

The first condition that we get is

]-) QI € (yl:t25)7
i.e. Q' =yi¢ +t*g and it suffices therefore to prove that ¢*|q'.

The condition imposed by the second branch is that t2%[t°¢' (¢, v, 1), i.e.
q' € (y1,t%). Thus, mod Jy, Q' = yia + y,t°b + t*%g.

But Jy 3 y1(y; — t*) and thus Q' = t*(y1(a + b) + t°9g).
U

Now let us come back to the multiplicity.

PROPOSITION 1.2.7. The integer s associated to a honestly hyperelliptic
fibre C as in lemmas 1.2.2 and 1.2.3 equals the multiplicity.

Proof.

Let p € B be a point such that C' is the fibre of p and U a sufficiently small
affine open neighbourhood of p. Let Y C P9~! x U be the image of map ¢
induced by the linear system K + C.



By abuse of notation let us still denote by S = f~'(U). The sheaf of double
points A, supported on the image I' of C' is defined via the exact sequence

0—= Oy = 0,05 — A = 0.

Twisting the exact sequence by Opg-1.p1(n,0), and observing that
©*Opg-1,p1(1,0) = w, from the definition of T,, we get that

(Ta)p = HO(T, A(n)).

From lemmas 1.2.2 and 1.2.3 we conclude that the length of A at the
generic point of I' equals s. Since (as we saw in lemma 1.2.5) at the general
point of I we have a singularity consisting of two smooth branches, we conclude
immediately that s equals the multiplicity of C' in the conductor divisor.

O

The geometric meaning of definition 1.2.4 and proposition 1.2.7 above is
that s should be interpreted as the intersection multiplicity of the curve B
with the hyperelliptic locus inside the moduli space of curves of the correct
genus.



CHAPTER 2

The numerical Godeaux surfaces

2.1. The canonical ring

Let S be a numerical Godeaux surface, i.e. a minimal surface of general
type with K2 =1, p,(S) = ¢(S) = 0.

Recall that the canonical ring of S (cf. [Mul]) is defined as the graded
ring
R(S) := @nenH(nKs).

In our case of numerical Godeaux surfaces we have

R(Ks) =0; Vn>2 h°(nKg) = (Z) + 1.

Let us look for a minimal system of generators of this ring (as a C-algebra).

As usual we denote by 1 the identity of R(S), given by the constant func-
tion equal to 1, moreover we fix a basis {z,z1} of H’(2Ks), and a basis
{y0,y1, 92,93} of H°(3K).

We remark that z2 z¢z;,2? are independent in H°(4Kj), since R(S)
is an integral domain; whence, we can complete these elements to a basis
{x2, 2oz, 22,00, V1, Vo, v3} of HY(4K).

Let X := Proj(R(S)) be the canonical model of S, and let 7: S — X be
the natural map; X has an invertible dualizing sheaf and, as customary, we
denote by Kx an associated Cartier divisor. Since 7*(Kx) = Kg, one has a
natural isomorphism between the canonical rings R(S) and R(X).

LEMMA 2.1.1. The fized part F' of the bicanonical pencil |2K | is supported
on the fundamental cycles of S (normal crossing configurations of smooth ra-
tional curves with self-intersection —2).

In particular |2K x| has no fized part.

This was already proved in [Mil] with similar argument.
Proof.

27



We can write |2Kg| = |M|+ F where M is a linear pencil without fixed
components; since K is nef and the only curves with KsC = 0 are the finitely
many smooth rational (—2) curves, building the so called fundamental cycles

(cf. [Bo], [BPV]), we know that KsM > 0, KgF > 0.

Since KsM + KsF = 2K2% = 2 we get 0 < KsM < 2, and clearly our
purpose is to show that KgF = 0, equivalently KgM = 2.

Assume by contradiction that KsM = 1. M being a pencil without fixed
part, we have M? > 0, but M? + KsM = 0 (mod 2). It follows then that
M? = 1, whence equality holds in the inequality given by algebraic index
theorem.

Our conclusion is thus that M is numerically equivalent to K, and since
h'(Os) = 0 but h%(Ks) = 0 # h°(M) = 2, M — Kg = p yields a non zero
torsion element y in Pic S.

An easy calculation (x(M) = x(Ks) = 1, h®(M) =2 =1 < h'(M) =
h'(Ks + u) = h'(—p)) shows that the covering of S induced by u, yields an
irregular covering of S. This is a contradiction, because the equality K% =
X(S) holds for S, hence for all its unramified coverings , whereas for minimal
irregular surfaces Y we have the inequality K& > 2x(Y) (cf. [Bo]).

U

REMARK 2.1.2. We have seen that KF =0, KM = 2. So, we have three
possibilities for F' and M, namely

i) M?’=4 F=0

i) M?2=2 MF=2 F?=_2

i) M*=0 MF =4 F?=-4.

In the second case F' is precisely a fundamental cycle, i.e., on the canonical
model X, we get in the base point scheme a reduced singular point.

LEMMA 2.1.3. H°(2K) ® H*(3K) — H°(5K) is injective.

Proof.

Otherwise we would have a relation xoy = x1y’ for suitable elements y, ' in
H°(3K). By lemma 2.1.1, on X min(div(z), div(z1)) = 0; whence, div(zy) <
div(y') and therefore the rational section y'/xy of 3K x —2Kx = Kxis a regular
section, contradicting p,(X) = 0.

[
COROLLARY 2.1.4. We can fiz a basis of H°(5K) of the form

{xiyj, wy, Wa, w3}.



Let us now consider the polynomial ring A := Clyo, y1, y2, y3], and let us
look for a set of generators of R(S) as A—module, (R(S) is an A—algebra via
the natural homomorphism A — R(S5)).

Define
R(O) = @n20H0(37’LK5),

R(l) = @nonO((:‘}n + 1)K5),
R(2) = @nonO((:‘}n + Q)Ks),
Of course, there is a splitting (as A—modules) R(S) = R® + RM + R?),

THEOREM 2.1.5. There are three resolutions
0= A(-3)"3 A0 A(-2)° - RO =0

at
0— A(-4) ® A(-2)* 5 A(-1)" = RW =0

0— A(-3)2@ A(-2® 5 A2@ A(—-1)* 5 R® 50
where B = L.

Proof.
It is an easy exercise following the same argument of [Cat3].
O

COROLLARY 2.1.6. R(S) = R(X) is generated in degree < 6 as an
A—module.

REMARK 2.1.7. In [Ci] is shown the weaker result that R(S) = R(X) is
generated in degree < 6 as a ring.

From now on, let us assume Tors(S) = 0 or Z/2Z. In this last case, denote
by p the nonzero torsion element in Pic (S).

Under this assumption, we can prove

PROPOSITION 2.1.8. R(S) = R(X) is generated as a ring in degree < 5.

Proof.

By corollary 2.1.6, we must only prove that every section of H*(6Kx) can
be written as sum of products of sections of degree < 5.

Take an effective divisor C' € |2K x|, and let C = div(c); then
H°(6Kx) D We :=cH (4K x) + S*(H°(3K x)).



We will prove that there exists some C' s.t. this inclusion is an equality.

Since H'(4K) = 0 we get the following exact sequence
0 — H°(Ox(4K)) = H(Ox(6K)) = H’(wg) — 0.

By definition W contains Ker 7; whence, it suffices to show that there
exists C' s.t. m : S?(H°(3Kx)) — H°(w2) is surjective; this is equivalent to
the surjectivity of m|¢ : S*(H%(we)) — H°(w?), that is verified for every C
irreducible and non hyperelliptic by Noether’s theorem.

It is clear that the general C is irreducible (since we have no fixed part,
and |M| is a linear pencil with h°(Og(M)) = 2). That the general C is non-
hyperelliptic follows from the forthcoming proposition 2.2.3.

O

2.2. The bicanonical fibration

In this section we study the fibration on a numerical Godeaux surface
induced by the bicanonical pencil. We have already denoted the movable part
of the bicanonical system by |M|.

Let 3 : S — S be a minimal sequence of ordinary blow ups such that
f := @ak o B is a morphism; the fibre of f is M, the strict transform of |M|
on S.

As we have already shown, by Pg(S) = ¢(S) = 0 we can consider the map
g: S8 — P15 P! induced by |Kg + M| and M, and define Y := g(5).

Denote by 7, the two respective projections of ¥ on P9M)-1 and P,
f=mopof:S —P.

By lemma 2.1.1 and remark 2.1.2 we immediately see that we have to study
4 cases:

ia) M?=4 F=0 M has genus 4 |M| has 4 base points

ib) M>=4 F=0 M has genus 3 |M]| has 1 double base point
i) M?=2 MF=2 F*>=-2 M has genus 3

iii) M>=0 MF=4 F?=—4 M has genus 2.

In fact, while in cases ii) and iii) (by M? < 3) the generic divisor in M is
smooth in the fixed points, in case i) (M? = 4) we can have one single base
point where every divisor of M has a double point. In the last case the genus
of M drops by one.

The situation can be summarized in the following diagram:
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LEMMA 2.2.1. The only possible decompositions of a bicanonical divisor
as sum of divisors A and B with AB < 3 are of the following form:

1) C is 2—connected, C = Dy + Dy, KgD; =0, D? = -2, D, Dy =2
2) Tors(S) =Z/2Z, C =2D, D = K.

Proof.

If C is not 3—connected we have a decomposition C' = D; + Dy with
DDy < 2 and either Vi KsD; = 1, or we can assume KgD{ =0, KgDy = 2.

In the last case D? = —D; D, = —2 and we get case ii).

Otherwise we get then D? + D2 = (2Kg)* —2D; D, > 0, so we can assume

D? non negative, whence positive because it must be odd; by the algebraic
index theorem D} = 1, and D; = Kg +¢, Dy = Kg — ¢, ¢ € Tors(S).

0

PROPOSITION 2.2.2. In every case (ia),ib),ii),iii)) f is a fibration

Proof.

By the Stein factorisation, if f is not a fibration, then it is composed with
a (rational or irrational) pencil. By ¢(S) = 0, there are not irrational pencil
on S; then if f is not a fibration, its fibres describe a pencil in |nD|, with
n > 2, h°(O(D)) > 2, then h°(O(nD)) > 3 whence we know that the fibres of

f describe a complete linear system.
]

PROPOSITION 2.2.3. In cases ia), ib) and ii) the generic fibre of f is not
hyperelliptic.

Remark that in the case iii) the genus of the fibration is 2, so every fibre
is hyperelliptic.

Proof.
In the case ia) the restriction of 5 to every element in the linear system

|M| is an isomorphism onto the corresponding element of [2Ks|. So we need
to show that there exists C' € |2Kg| on which the dualizing sheaf w¢ is very



ample. But we = 3K|¢ and p; = ¢ = 0 implies that the rational map induced
by we is exactly the restriction to C' of the tricanonical map. So, if every
fibre would be hyperelliptic, the tricanonical map would be not birational,
contradicting [Cat1].

In cases ib) and ii) the morphism induced by w is given composing the
tricanonical morphism with the projection on P? with center respectively the
image of the unique base point (case ib)) or the (singular) point image of the
fundamental cycle that gives the fixed part of |2Kg| (case ii)).

Let us restrict now to the case ib). If every divisor in M were hyperelliptic,
we would have an involution i on S fixing every divisor in [M|. If E is the
exceptional divisor of 3, being the only (—1)-curves in S, we can conclude
i(E) = E, and 1 would induce an involution i : S — S that acts trivially on
the bicanonical pencil, still contradicting the birationality of the tricanonical
morphism.

Finally, in case ii), if every divisor in M were hyperelliptic, we would have
an involution ¢ on S fixing every divisor in [2Kg—F'|. F'is the only fundamental
cycle in S with strictly positive intersection with |2Kg — F|, so i(F') = F, and
again we get an involution of S that acts trivially on the bicanonical pencil.

O

2.3. The fibres

In this section we will have a more careful look to what kind of canonical
images we can obtain when the genus of the fibration is at least 3. Case iii)
will be excluded in section 2.5.

Let us recall (cf. [Cat2]) that a honestly hyperelliptic curve is a finite
covering of degree 2 of P

Let us start with the “harder” case.

LEMMA 2.3.1. Let C € |2Kg|, S Godeaur surface of type ia) and
Tors(S )= {0} or Z/2Z. Then one of the following holds:

a) C is embedded by wc, Y3x|(C) = @u(C) is the complete intersection of
a quadric and a cubic; moreover, if ¢, (C) is reducible, it decomposes as the
union of two plane cubics intersecting (with multiplicity) in three points;

b) C' is honestly hyperelliptic, ¢3x|(C) = pus(C) is a double twisted cubic
curve;

¢) C = 2D; in this case Tors(S)=Z/2Z, D € |K + p|, and ppk|(C) =
0w (C) is a sextuple line.



Case a) is the general one.

Proof.

Let us consider first the case where the image of C' in the pluricanonical
model is not 3-connected. Then, by [CFHR/], lemma 4.2 and its proof, C is
not 3—connected, and we have a decomposition C' = Dy + Dy with D1 Dy < 2
and with KS'DZ =1.

As we showed in lemma 2.2.1, we get then D? =1, and D; = Kg+¢, Dy =
Kg—¢, € € Tors(S).

Since H°(Ks) = 0, by our hypothesis on the torsion group follows that
Tors(S) = Z/2Z, and that € = pp = —p.

Remark that h°(K + p) =1 (cf. [R3]) , whence D; = Dy € |Kg + pl.

Since h°(3K — (K + p)) = h°(2K — p) = h°(2K + p) = 2, then @p3((D1)
is a curve of degree (Kg + 1)3Ks = 3 contained in a line, thus it is a triple
line. This gives case c).

Now we can assume C 3—connected (this is true at least in the canonical
model); if C' is 3—connected, by [CFHR], theorem 3.6, either we = 3K|¢ is
very ample or C is honestly hyperelliptic. Note that if C' is honestly hyperel-
liptic and reducible, then C consists of two smooth rational curves intersecting
(with multiplicity) in 5 points. In this case ¢, (C) is an irreducible non de-
generate curve of degree 3 in P?, so its schematic image is a double structure
on a twisted cubic curve.

Assume now that C' is canonically embedded: by lemma 1.1.3 ¢, (C) is a
complete intersection of type (2, 3).

Finally, if C is reducible, C' = C; + (5, where C;,Cs are irreducible
and C7 # Cy by the hypothesis of 3-connectedness (else, C;Cy = 1). Since
Ksm*(Ci) = 1, ¢u,.(,(Ci) is a plane curve of degree 3Ks7m*(C;) = 3, and we
get thus two distinct irreducible plane cubics intersecting in three points.

Remark that case a) is the general by proposition 2.2.3.
]

LEMMA 2.3.2. Let S be a Godeauz surface of type ib) orii), §: S — S

the sequence of blow ups we have already defined, C € |M| strict transform of
the bicanonical system, Tors(S)= {0} or Z/2Z.

Then one of the following holds:
a) C is embedded by we, v)3x((C) = @u,(C) is a plane quartic.
b) C is hyperelliptic, 3x|(C) = Yue(C) is a (double) plane conic;



c) C = 2D; in this case Tors(S)=L/2Z, D € |K + p|, and ppg|(C) =
Ve (C) is a (quadruple) line.

Case a) is the general one.

Proof.

First, we consider the case when C' is the strict transform of the double
bicanonical divisor.

In case ib), C = 2D, D = *(Kgz + ) — E, E exceptional divisor for 8. D
maps on a curve of degree 4, and h®(Kg+ M — D) = h®(8*(2Kz+p) — F) =1,
so the image of D a line.

In case ii), the blow up is in smooth points, so we can consider C as a
double divisor in S, and one can easily show h’(2Ks + p— F) = 1.

Now, by lemma 2.2.1, we can assume that, if the strict transform of C can
be decomposed as A + B with AB < 2, then AB = 2 and A is supported on
the fundamental cycles.

If C'is 2— connected, we have done by classification of genus 3 fibres (see
[ML)).

In the case ib), every divisor in |M| induced by a 3—connected divisor in
12Kg| is 2—connected. In fact, consider C € M and D the corresponding
divisor in |2Kg|; C = B*D — 2F, with E exceptional divisor for 5. For a
decomposition C' = A + B, we can find a decomposition D = A + B such that
either A= 8*A, B=f*B—2F or A= f*A—E, B= *B — E. In first case
AB = AB, whence in the second AB = AB — 1, so the 3—connectedness of D
implies the 2—connectedness of C.

We are left, by lemma 2.2.1, with the case in which the bicanonical divisor
associated to C is of the form A + Z with Z supported on the fundamental
cycle. But by the same argument, in this case C' fails to be 2—connected only
if, if we denote by p the point blown up from g, p is contained in both A and
Z. This would induce a singular base point for the bicanonical system on the
canonical model, a contradiction.

In the case ii), recall that /5 is a sequence of two blow ups and F = Kg —
B*(Ks). One can easily show, by intersection arguments and Zariski lemma,
that the only exceptional divisor for 8 contained in a divisor in M = B*(2Ks—
F)—E, is the exceptional divisor with self-intersection —2 (this case holds only
if 8 is a blow up in two points infinitely near).

Then, assume C' € ]\N{ not 2—connected, C = A+ B. AB < 1. By previous
remark neither A nor B are supported on the exceptional locus. Then we



can find two (nonzero) divisor A and B on S, such that A+ B € 2Kz — F|,
A=p*A—FE, B=p*B—F,, E,+ FE, = FE, E; possibly zero, and with
negative part supported on the eventual —2-curve.

Now one can easily show that then F{Es > 0, so AB = AB+ E,\E, > AB.

Then, if C is not 2-connected, its image is a not 2-connected divisor D €
|2Kg — F|. Write D = A+ B, AB < 1. Recall that, by lemma 2.2.1, D + F
is 2-connected, then A(B + F) > 2, so AF > 1, and, of course, also BF > 1.
But AF + BF = (A+ B)F = —F? = 2, then AF = BF = 1, and, again by
AB+F)>2 AB =1.

So, A(B + F) = 2, and, again by lemma 2.2.1, either KA =0 or KB =
K(B+F) = 0; but F is a fundamental cycle, so it has negative self-intersection
with every (—2)-curve, and again we get a contradiction.

O

Remark now that, using propositions 1.2.3 and 1.2.2, when the fibration
has genus at least 3, we are able to compute the length of the sheaves J; in
all cases except for curves of type ¢, that occurs only in case Tors(S) = Z/2Z.
Moreover, looking at the proof of proposition 1.1.6 we have that in case of
torsion {0}, Z =Y, whence in case of torsion Z/2Z, Z — Y is supported on
the special fibre corresponding (again) to the curve of type c.

For such a curve, in cases ib) and ii), we can explicitely describe the canon-
ical ring. Let us denote by M this special fibre.

PROPOSITION 2.3.3. In case ib) M is a double fibre.

Proof.

This is an easy remark. The special bicanonical divisor is 2C),, where
C, € |Ks + p|, oo non trivial element in the torsion group of S.

Recall that 8 : S — S is a blow up in a single point p of S, double for
every bicanonical divisor. So, p must be smooth for C,, (otherwise we woul get
(2Ks)? > 4), we can write 8*(C,) = C, + E, and M = C,,.

O

So, by the classification of genus 3 fibrations in [ML], we can explicitely
write the canonical ring of M.

COROLLARY 2.3.4. In case ib) the canonical ring of M is

C[.Z'(),.Tl, T2, Y0, Y1, Y2, 21, ZQ]/Ia



where deg v; = 1, deg y; = 2, deg z; = 3, and I 1s generated by the following
list of polynomials

LoYo
T1Y0
zo(y1 — Aya) — 02175
T1Y1 — ToY2
Yo
zo(21 — Az2) — 630
T121 — T2
YolY1 — Toz2
YoY2 — T122
Y1 (41 — My2) — 825y, — Po
Yoz1 — Y122 — Py
Y121 — Azg) — 02529 — Py
Yoz1 — ToQ
Yozo — T1Q
z1(z — Azp) — 025Q — Py
2120 — Q@ — By

23 —1Q — Ps
where Q = Soya + S14y1Y2 + o2y + d3x3y1 + S473, with &g # 0, and Vi P; €
(25 2y0) + 21Clxo, Yo, 22] + 20Clx2, Y, 20|, Wwhere in every case n is the degree
of P;, that is 5 for i < 2, and 6 otherwise.

Moreover § # 0, A # 0.



Proof.

By proposition 2.3.3 and classification of genus 3 fibres in [ML], we have
only to show that M /2 is 2— connected.

But M/2 is the strict trasform of the divisor C,, in H*(K + p) and we
are blowing up a smooth point of this, so is enough to show thay C, is
2—connected. For every decomposition C, = A + B we can assume KA =1,
KB =0, so that B is supported on the fundamental cycles.

Then AB= (K — B)B=—-B%> 2.

]

Case ii) is slighty harder.

PROPOSITION 2.3.5. In caseii) M is a 1-connected fibre with an analytic
decomposition of type I with n = 1.

From the definition of 1-connected fibre with an analytic decomposition of
type I with n =1 see [ML].

Proof.

In this case 8 : S — S is a sequence of 2 blow ups. Moreover, the fixed

part of 2K must be a fundamental cycle. F' C 2C,, (where as usual C), is the
only divisor numerical equivalent to the canonical class), so F' C C,,.

Let us define C := C, — F; recall that by [Lan]| F is of type A, (with
n < 3). So H'(2Ks — 2F) = 1 and the restriction map H°(Os(2Ks — F)) —
H°(Or(2Ks—F)) have image of dimension 1, that implies that the fixed points
of M are supported on F', and they are obviously smooth for F'.

Viceversa, let p base point for |2Kg— F'|. We know that 2Kg¢—F = 2C+F.
So, if p were in C, we would have a divisor in |2Ks— F'| with multiplicity higher
than 3 in p, a contradiction because (2Ks — F)? = 2. So no base point for
2Kg — F are supported on C'. In particular F' ¢ C.

_ This allows us to write the special fibre as M=C+ (B*F — E), where
C := *C, E exceptional divisor for 38, so E? = KgFE = —2.

Now remark that C? = C%+ F? = —1 is an elliptic cycle. We want to
prove that C' + (C + (¢*F — E)), is a decomposition as in [ML] I1.4.2. So, as
proved there, is enough to show that:

a) C + (¢*F — E) 2-connected

b) for every (—2)—curve 6 c C, C < 0,

c) If B is the elliptic tail contained in C, then for every (—2)—curve
6 C Es, 0C =0,



The easiest part is part c); if # C Ex than 6 C C. We have seen that the
exceptional divisors are “far” from C, so 6 is the pull-back of a (—2)—curve ¢’
on S contained in C. So, 0C = #'Kg — 8'F = 0 because @' is in C while F is a
fundamental cycle of type A; not in C.

For part b), we have few cases to consider.
If 0 is exceptional for 8, we have done because C is a pull-back, so C = 0

So @ is the strict transform of some curve on S. If § is a pull-back of some
(—2)—curve on S not contained in F, then again C = 0F = 0.

Otherwise, @ is the strict trasform of some rational curve §' on S through
the base locus of 2Kg — F’; so ' had self intersection greater than —2, so it

had negative intersection with the canonical class, a contradiction because Kg
is nef.

We are left with part a). Remark that C), is 2-connected, because if C), =
A+ B, then I can assume KsA =1, KgB = 0, that implies by index therem
A*< —1,B*< -2,50 AB=3C2— A* - B*>2.

Now, a decomposition for C' 4 (6*F — E) can be written as (¢*A — E') +
(e*B — E"), with E' + E" = E, and (¢*A — E')(e*B — E") = AB + F'E".
So is enough to show that E is 0-connected. But E is contractible, so every
divisor supported on that has (strictly) negative self-intersection, and we can
conclude, by E2 = —2, E"* < —2, E"*> < —1, that E'E" > 0.

U

Now, as in the previous case, we can get the canonical ring by [ML].

COROLLARY 2.3.6. In case ib) the canonical ring of M can be written as
Clzo, x1, T2, Y1, Yo, 2| /I, where I is generated by the 2 X 2 minors of the matriz

0 2 1 ®
o A Yy 2z

U1 (y1 — T (010331 + 04131‘2) — O!Ql‘().TQ) — )\.731 (.T1P1 + .732P2) — LL‘().TQQ

and by the polinomials

2(y1 — 21 (o1 + qx2) — aexor2) — Ay (1 Py + 22 P) — 22 AQ — 2o H
2(2 — yo(0pT1 + 0113) — a9 A) — Mya Pl — 2oGQ — AH — zowe M

where

A =2l 4 0x5 + Y2 + apz1%2 + a1y

G = 21Y2 + apx2y2 + a1 2,



with A\, 8 # 0, yap = ya1 = apay = 0, Py, P, Q € Clzg, ya]o, M, H € Clzs, yala,
and Py, Q) satisfy

Ay Py = — (625 + 72) Q.

By 6 # 0, last relation induces that there exists k s.t. QQ = klys, Py =
—k (073 + o).

2.4. The numerical invariants

Finally, we are able to compute the fundamental numerical invariants of Y,
that means the d; we defined in lemmas 1.1.5 and 1.1.6, when Tors(S) = {0}
and the genus of the fibration is at least 3.

THEOREM 2.4.1. Assume that S is a numerical Godeaur surfaces with
torsion {0}, s.t. f is a genus 4 fibration. Let h =3 ¢ poorcniptic MUE(C).

Then 3Q € |Opsyp1(2,7 — 2h)|, s.t. Y := ¢(S) is a divisor in |Og(3,3h —
6)].

Proof.

Recall that the map § we had already defined at the beginning of this
section, is a sequence of blow-ups of smooth points of the generic bicanonical
divisor.

Let E;, i = 1,...,4 be the corresponding exceptional divisors of the first
kind, and set E = Y E;. Then K = 8*(Kg) + E, and if M is a generic
fibre of f (the strict transform of a generic bicanonical divisor on S by ),
M = f*(2Kg) — E = 2Kz — 3E is a genus 4 curve.

The pull-back of the tricanonical system is given by w = (*(3Ks) =
3K§—3E:K§+M.
First we show that the surface Z in proposition 1.1.6 is exactly Y.

We have to show that for every fibre of f, say Mp, the quadric and the cubic
(never multiple to the quadric) defining the corresponding fibre of Z — P!,
say Z,, containing the corresponding fibre of Y — P!, say Y,, have a common
component. Remember that Y}, is the canonical image of Mp.

But by lemma 2.3.1, either Y}, is complete intersection of a quadric and
a cubic or Y}, is a twisted cubic curve; in the first case it is obvious that do
not exist a quadric and a cubic not multiple of the quadric containing Y,
and having a common component, and in the second there are not reducible
quadrics containing Y, at all so Z =Y.



Now, in order to induce the thesis, by proposition 1.1.6 we have to consider
the exact sequences

(2.4.1) 0 — Ly = 8 (fiw) = fuw? = Ty — 0;
(2.4.2) 0= L3 = &(fiw) =5 fuwd = T3 — 0.
(2.4.3) 0— Ly — Lz — L' —0.

and compute that the line bundles Lo = Opi(—dy), L' = Opi1(—d3) are exactly
0]}»1(2]7, — 7) and OP1(6 - 3h)

In view of lemma 2.3.1 the hypotheses of lemma 1.2.3 are satisfied.

So, by lemma 1.1.4, corollary 1.1.10, and lemma 1.2.3, we can compute the
Euler characteristic of the sheaves involved in the exact sequence (2.4.1).

We get
X(L2) =1 —dy;
X(S*(fw)) = x(0") = 10;
X(fow?) = x(w*) = 16;
X(T2) = length (T3) = 2h;
so1l—dy+16 =10+ 2h, i.e. dy =7 — 2h.

Moreover, again by lemmas 1.1.4, corollary 1.1.10, and lemma 1.2.3, we
can compute the Euler characteristics of the sheaves involved in the other two
exact sequences, and get

But then
x(L3) = 8h — ds — 23;

xX(S?(fiw)) = x(0*) = 20;
x(few?) = x(w?) = 37;

X(T3) = length (T5) = 5h;

so, by the exact sequence (2.4.2) we get 8h — d3 — 23 + 37 = 20 + 5h, i.e.
ds = 3h — 6.

O

Consider now the case where F' = 0, but f is not a genus 4 fibration. In
this case 8 is the blow up of S in the single base point P of [2K|. If E is



the exceptional divisor of 3, the strict transform of the bicanonical system is
given by 3"2Kgs — 2F.

As in the previous case, let g : S — P2 x P! be the morphism obtained from
|B*3Ks — E| x |3*2Ks — 2E|, let my : P2 x P! — P? be the second projection,
set f=my0g4.

THEOREM 2.4.2. For a numerical Godeauz surface with torsion {0}, and
of type ib) (bicanonical system without fized part possessing a double base point)
f s a genus 3 fibration, and g yields fibrewise the canonical map of the fibres.
Moreover, f has exactly 7 hyperelliptic fibres (counted with multiplicity accord-
ing to 1.2.2) and the image of g is a divisor in |Opzyp1(4, 8)|.

Proof.

By proposition 1.1.5, setting w := M + Kz, we have to consider the exact
sequences

(2.4.4) 0— Ly — 8(fuw) == flw? = Ty — 0;
(2.4.5) 0— L3 — 8 (fiw) =5 flw® — T3 — 0;
(2.4.6) 0— Ly — 8*(fiw) 25 flw* — Ty — 0;

and show that the line bundle L4 = Op1(—dy) is in fact Op1(—8).

Remark that the maps o9 and o3 are injective, so Ly and L3 are in fact the
0 sheaves.

By lemmas 2.3.2 and 1.2.2 the sheaves J; are torsion sheaves supported on
the points corresponding to the hyperelliptic fibers and for every such point
p € P! there is a multiplicity s, s.t. Vi > 2

length (T;,p) = (2¢ — 3)s,.

So let us write h = ) s,. Using lemmas 1.1.4 and 1.2.2 (and Riemann-
Roch) we can compute that the Euler characteristics in (2.4.4) are

X(8*(fuw)) = x(O°) = 6;
X(fiw?) = x(w?) = 13;
X(%) = h;
then h="7.

Similar computation on (2.4.5) give the same result.



In (2.4.6) we have
x(L4) =1 —dy;

x(8*(fiw)) = x(O") = 15;
x(few*) = x(w*) = 57;

x(T4) = bh = 35;
sothat 1 —dy +57=15+35 < dy = 8.
O
Finally, consider the case where F' is a fundamental cycle, that we denoted
by case ii). In this case § is the blow up of S in the two base points of

|2Kg — F|. If E is the exceptional divisor of 3, the strict transform of the
bicanonical system is given by 8*2Kgs — 2F.

As in the previous case, let g : S — P2 x P! be the morphism obtained from
|*3Ks — E| x |3*2Ks — 2E)|, let 7y : P? x P! — P? be the second projection,
set f=my0g4.

THEOREM 2.4.3. For a numerical Godeauz surface with torsion {0}, and
of type i) (bicanonical system with a fundamental cycle as fized part) f is a
genus 3 fibration, and g yields fibrewise the canonical map of the fibres. More-

over, f has ezxactly 6 hyperelliptic fibres (counted with multiplicity according to
1.2.2) and the image of g is a divisor in |Opzyp1(4,7)].

Proof.

This case is identical to the previous one, except for the Euler characteris-
tics of the sheaves f.w'.

More precisely, x(f.w?) = 12, so by (2.4.4) we get h = 6.

Again, the exact sequence 2.4.5 give the same result, whence for equation
(2.4.6) we get x(f.w*) = 51, that implies dy = 7.

O

2.5. Computations of the direct image sheaves

In this section we want to have a careful look at the sheaves involved in
the computation of the maps o,,. At the end of the section we’ll show that the
case iii) cannot occur.

Let us recall once again our notation. In all cases we denote by S the
minimal model of a Godeaux surface, M the movable part of the bicanonical



system, [ : S — S the blow-up of S at the base locus of M, f : S — P! the
morphism |M| induces on S. Finally, we denote by M the strict transform of
M on S, i.e. the fibres of f.

As we showed in previous section, the genus of M is 4 in case ia), 3 in cases
ib) and ii), and 2 in case iii).

We also define w = ]\ZH—KS, so that VC € M, we = w)c. We want to study
the sheaves f,w' for small values of [.

Recall that in lemma 1.1.4 we showed that (in all the cases) f.w = O9,
where g is the genus of the fibration.

Now we want to compute f,w' for some | > 1.

PROPOSITION 2.5.1. In case ia)
f*(wZ) == 0]17:1(3) D OP1(1)4 (&) 01?»1

fo(w?®) = 0p1(3)' @ Op1(2) ® Op1(1)* @ O,

Proof.

The exceptional divisor for 8, say £ := Kz — *(Ks) has E? = K;FE = —4.
Moreover, w := *(3Kg) = 3Kz — 3E, whence M = 2K; — 3F.

Remark that f.w? = f.(2Ks) ® Op1(2).

Consider (for every C' € M ) the exact sequence

0 — 3E — 2Kz — wi — 0.

By standard result on fibrations (e.g., [BPV], theorem 1.8.5) we get that
[+(2K3) is a locally free sheaf of rank h%(w3) =12 —-4+4+1=0.

Moreover, H%(f,(2K3)) = H°(2K3) = 2, and these 2 sections generate a
subbundle of dimension 1 = dim Im(H°(2K ) — H®(w?)).

So f.(2K3z) = O(1) ® &% ,0(a;) with Vi a; < 0.

Moreover, by lemma 2.3.1, the map oy : S*(f.w) — fiw? is generically
surjective; but, by proposition 1.1.4, S?(f,w) is a trivial bundle, so Vi a; > —2,
and we can write f.(2Ks) = O(1) ® O(-1)* ® O(—2)" with a + b = 8.

Finally, we remark that 3 + a = h%(f,(2K5) ® O(1)) = h°(4K5 — 3E) =
Py(S) =7, and we have done (remark that, in general, nF is in the fixed part
of [nKg|, so Vi <n, h®(nKg —iE) = P,(S).

Similar computation allows us to compute f,w?; this is a locally free sheaf
of rank 15, so let us write f.w® = ®13,0(l;), with (still by proposition 1.1.4
and lemma 2.3.1) Vi [; > 0.



Let us define n; = #{l;|l; = j}.

The first remark that h°(Kg+3FE) = 0. In fact, E is the exceptional divisor
of a sequence of 4 blow up. Let us assume by sake of simplicity 8 blow up
in 4 distinct points, so that E is the union of 4 (—1)—curves, E; one of these
curves. Then Vi (K5 + 3E)E;) = —4, so E is in the fixed part and we get a
non trivial section of Kz + 2E. Iterating this argument we can induce a non
trivial section in Kg, contradicting py = 0.

If B is not a blow up in 4 distinct points, we have few distinct cases to
consider, and similar argument can be carried out in all the cases.

Arguing as before, by the exact sequence
0— Kz +3E — 3Kz — wg, — 0
we get that f,w® ® Opi(—3) has 4 independent global sections that span a
dimension 4 subbundle, so n3 =4, Vj > 4 n; = 0.

Then, by f.w? ® Opi(—2) = f.(5K; — 3F), computing global sections, we
get no = 3.

Finally, by f.w® ® Opi(=2) = f.(7Kg — 6E) we get n; = 4, so ng =
15—4-3-4=4.

0

PROPOSITION 2.5.2. In case ib)
f*(w2) = Opl(s) o) OP1(1)4 &b OPl

fo(W®) = Op1(3)* @ Op1(2)® @ Opi(1)3
fe(W*) = Op1(6) ® Op1(4)* @ Op1(3)* © Op1(2)* ® Op1(1)

Proof.

In this case we have that E is a single exceptional curve (so E* = KzE =
—1), M = 2Kz — 4E, w = 3Kz — 4E. Arguing as in previous proposition
we immediately get that f,w? is locally free of rank 6 and “semipositive”, i.e.
few? = @8, 0(l;) with Vi l; > 0.

By

0—4E — 2Kz — wg — 0

we have f,w? = O(3)®d?¢_,O(l;) with 0 < I; < 1, and by A®(f.w?*®@0Op1(—1)) =
h%(f.(4Ks — 4E)) = 7, there are exactly 4 [; equal to 1.

Similarly we can write f,w® = @2, 0(l;) with [; > 0.



Remark again h°(Kz + 4E) = 0. In fact, in this case, E is a (—1)—curve,
and its intersection with some effective divisor D € |Kg + nE| should be
—(n + 1), so E should be contained in D inducing an effective divisor in
|Ks + (n — 1)E|; iterating we contradict p, = 0.

Then, by
0— Kg+4E — 3Kz — wl — 0,
we get fuw® = O(3)* @ @;2,0(l;) with 2> 1; > 0.

Then, by h°(f.w® ® O(-2)) = h°(5Ks — 4E) = Ps = 11 we find that there
are exactly 3 [; equal to 2.

Moreover, by h'(w?) = 0 (and, as usual, theorem 1.8.5 in [BPV]), we
know that h'(f,(5Kg — 4E)) = h'(5K5 — 4F) and the last one vanishes by
Riemann-Roch, so there are no /; equal to 0, and the computation of f.w? is
complete.

Finally let us f.w* = &2 O(l;) with I; > 0.
It is not difficult to show, by intersection arguments, that h°(2Kz+4F) = 2.
By

0— 8F — 2Kz +4E — wg — 0

we have f.w*= 0(6) ® ®2,0(l;) with 4 > 1; > 0.
So,computing the h° of the sheaves
fiw* @ Opi(—4) = f.(4K3);
fur! ® Op1(=3) = f.(6K5 — 4E);
fuw* @ Op1(—2) = f.(8Kg — 8E);

we have f,w* = 0(6) ® 0*(4) & O*(3) ® O*(2) ® O(l14) with 1 > 134 > 0.
Finally by Riemann-Roch h'(f.(8 Kz — 8F)) =0, so0 l14 = 1.

PROPOSITION 2.5.3. In case ii)
fo(w?) = Op1(3) © Opa(1)° & O

f*(w3) = O]}nl(3)4 @ 0]1)1(2)2 @ OPI(]_)Q @ OHQM
whence either

f*(w4) = OP1(6) ©® OP1(4)4 D OP1(3)3 D OP1(2)2 D OP1(1)2 D 01%1



or
fo(W") = Op1(6) @ Op1(4)* @ Op1(3)® ® Op1(2)® @ O3,
Proof.

Here the situation is slightly more complicated that in the previous case.
We have the exceptional locus (for ) E s.t. E? = KgE = -2, M = 2K; —
3E — B*F,w=3Kz; —3E — *F.

As in the previous propositions, we start looking at f.(2K35) = fiw? ®
Op1(—2).
By the exact sequence
0—3E+pBF— 2Kz — wg — 0

we get that this is a rank 6 locally free sheaf with 2 global section that span
a dimension 1 subsheaf, and h! = 2, that, with proposition 1.1.4, give us the
statement for f,w?.

Now we want to compute f,w?.
First remark that h°(Kz + 3E + §*F) = 0.

In fact, by intersection arguments as in the previous cases, an effective
divisor in |Kz + 3E + *F| would induce an effective divisor in |3*(Ks + F)|.
Now the same argument can be applied to F' (in general, if you have an effective
divisor D € |[nK + > a;E;|, a; > 0, E; (—2)-curves, then, by (3. a;E;)? < 0,
one get E; s.t. DE; < 0; iterating the argument one can easily show > a; F;
is in the fixed part of [nK + ) a;E;|), and again we contradict p, = 0.

Moreover, having 5K g no base points (and being F' a fundamental cycle),
W(5Kg) — 3E — B*F) = P5(S) — 1 = 10.

So, by exact sequences
0— Ks+3E+BF —3K; > ws — 0
and
0—3Ks;—>5K;—3E—fBF—wl—0

remarking by Riemann-Roch that h'(5Kg—3F — 3*F) = 2 we get the expres-
sion for f,w? in the statement.

Last, we can do the same computation for f,(w?). Is easy to show that
h°(6E +28*F) =1, h°(2Kz + 3E + B8*F) = 2; by exact sequences

0— 6E+26°F = 2Kz +3E + °F = wg — 0

0— 2Kz +3E+ F - 4K5 — wg — 0



04Kz — 6Kz —3E — B*F — wg — 0
we compute
fo(w?) = Op1(6) ® Op1(4)* ® Op1(3)> ® Op1(2)* @ Op1 (1) ® OF,
with 2a + b = 6.
Moreover by exact sequence
0— 6Kz —3FE—B*F - 8Kz — 6E —28°F — wg, — 0

we get a = h°(8Kz — 6E —23*F) — 23. It is clear that h°(8Ks —6E — 3*F) =
B(S) —1=28.

We are looking for section in this line bundle containing S*F', i.e. for
sections in h°(8Kg — F) containing F'; 5 — a is the dimension of the cokernel
of the map H°(O(8Ks — F)) — H°(Op(—F)) 2 C*;soa > 2 (and by b > 0
we get a < 3).

Remark the a = 2 if and only if the restriction H°(O(8Ks — F)) —
H°(Op(—F)) is surjective.

O

PROPOSITION 2.5.4. In case iii)
f*(w2) = Opi1(3) ® OP1(1)2

[« (w3) = Op: (3)4 (&) OPI(Q)

Proof.
Let us recall the situation.

f:S — P'isinduced by the pencil |M| = |2Ks— F|, KsF =0, F? = —4.
There is (at least) a fundamental cycle Z C F. Let us write F' = F — Z, so
F'? = -2, F'Z = 0. Remark that both Z and F’ are 1—connected, and either
F' is supported on Z or is a different fundamental cycle.

We need the following:
LEMMA 2.5.5. h®(Ks+ F) =0.

Proof.

We consider the invertible sheaf Op(—Z2). This is a sheaf on a genus 0
1-connected divisor, with degree 0, and, by properties of fundamental cycles,
of degree > 0 on every component, so 0 on every component.

By [ML], corollary 1.3.4, Op/(—2) = Op.



So, we have the exact sequence
0—=0p =0 —=0;—0
h°(Or) = 2. Using
0= 0s(—F) > 05— Op =0
we can conclude (by ¢ = 0 and the trivial h°(Og(—F)) = 0), k' (Os(—F)) =1,

and, by Riemann-Roch h%(Os(—F)) = 0, that, by Serre duality, give us the
result.

U
Proof of proposition 2.5.4.

We try to develop in case iii) the same computation we did in the previous
cases. As usual, w =K + M.

By
0= F —32Kg—wi =0

we easily get that f,(2Ks) = f.w?®Op1(—2) is a locally free rank 3 line bundle
with h%(f.(2Ks)) = 2, but whose global sections generate a subsheaf of rank 1,
and, by Leray spectral sequence, h'(f.(2Ks)) = 0. So f.w? = Op1(3)®Op1(1)2.

By
0= Kg+F —3Kg— wh, =0,
using lemma 2.5.5 we easily get that f,(3Ks) = fuw®®@Op1(—3) is a locally free
rank 5 line bundle with h°(f,(3Ks)) = 3, and whose global sections generates

a subsheaf of rank 4, and, again by Leray spectral sequence, h'(f,(2Ks)) = 0.
So f*w3 = OP1(3)4 (&) O]pl(2)

COROLLARY 2.5.6. The case iii) does not occur.

Proof.
We need to take a careful look to the maps o; : S'(f,(w)) — fo(w!).

By lemma 2.2.2 the generic fibre is smooth. Remark that, by [ML], the
canonical ring of a 2-connected genus 2 fibre is of the form R(M,wy) =
Clzo, 71, 2]/ Fs, with deg(z;) = 1, deg(z) = 3, deg(Fs) =6, Fs = Z> + ...

For a 1-connected (but non 2-connected) genus 2 fibre the canonical ring has
the form R(M,wy) = Clzo, 21, y, 2]/ (Q2(2:), Qs), with deg(z;) =1, deg(y) =
2, deg(z) = 3, deg Q; = j, Qs = 22—y + ...

So we can easily see that oy is injective, that its cokernel T, is a torsion
sheaf supported on the points corresponding to the not 2-connected fibres, and



that the length of such a sheaf in such a point is exactly the multiplicity of
the coefficient of y in the deformation of the equation 5.

Computing the Euler characteristics in the exact sequence
0— S%(fi(w)) = fiw? = To =0

we get that the sum of these multiplicities (that equals the Euler characteristic
of Ty) is 5.

Now remark that we have an involution on S induced by hyperelliptic
involution on every element of |M].

Let us define the two subsheaves f.w? and f,w? given by the invariant and
anti-invariant parts of f.w?® respect to our involution; so f.w?splits f.w? @ fow?.

i is a trivial check to remark that the involution acts on the canonical
rings we described before (so on every stalk), fixing zo,z; and y, and acting
as z — —z, so fyw? has rank 4, whence f,w? has rank 1.

Arguing as before, the map of : S3*(f.w) — f.w? is well defined and
injective, and its cokernel is a torsion sheaf of length (locally is given by the
monomials of type z;y) 2-5 = 10.

So X(f*wi) = 14, X(f*wi) = X(f*wg) - X(f*wi)
Finally, x(f.w?®) = 19, then x(f.w?®) = 5, so fiw® = Opi(4) that contra-
dicts proposition 2.5.4.
]






CHAPTER 3

Constructing numerical Godeaux surfaces

3.1. The adjunction condition

PROPOSITION 3.1.1. Let Y be the tri-bicanonical image of a numerical
Godeaux surface with torsion group {0} and type ia) with h hyperelliptic fibres
(counted with multiplicity).

Then there exists a non trivial section in H*(COy(2,h — 3)), where C is
the conductor ideal of the normalization of Y.

We shall denote by Q" the divisor associated to this section. As usual we
shall denote in the same way the analogous in the other cases (in propositions
3.1.2 and 3.1.3).

Proof.

Let X be the canonical model of S, and let B : X = X be the blow up in
the base points of |2K x| (they are smooth points of X by our hypothesis).

Let 9 be given by the relative canonical map of f : X — P
We have the following diagram

X Y C P8

Bl \§ tm

X 55 v c PPxP!
2
Pl

Recall that g = ¢ oﬁA is a birational morphism factoring through a possible
contraction € : X — X of strings of (—2) curves (to rational double point
singularities), and a finite birational map §: X — Y.

By [H], ex. II1.6.10 and II1.7.2, §.(K3) = Homo, (§:0%, Ky). Moreover
wy =O0y(2+3—-4,7—2h+3h—6—2) = Oy(1,h — 1), whence §,(K3) =
C ® Oy(1,h — 1), C being the conductor ideal of g.
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D is here the adjunction divisor. We have K3 +D = §*(Oy(1,h — 1)), so D
is given by h fibres of ¢ (as we already know). More generally, since C
3:05(=D), the n'™ adjoint ideal 9,04 (—nD) equals C".

Whence
hO(S, nKg) = hO(X', nKyg) = hO(Y, G«(nKg)) = hO(Y, C"Oy(n,n(h —1))).

The pull back to X of the conductor ideal C is an invertible sheaf O (- D),

In particular, a global section of g.(K3) is a global section of Oy (1,h —
1), whose divisor pulls back to an effective divisor containing the honestly
hyperelliptic fibres with their multiplicity; in particular its divisor contains
the special twisted cubics. Since no plane contains a twisted cubic curve, we
recover the basic assumption h’(Kg) = 0.

Moreover, letting E be defined as Kz — *Kg (in the generic case the sum
of the four (—1) divisors of the blow-up), since |p*(Oy (0,1))| = |/*2Ks—E| =
12K — 3E| = |¢*(Oy(2,2h — 2)) — 2D — 3E], there exists Q' € |Oy(2,2h —
3)| whose pull-back on S is a divisor consisting of 3F plus the sum of the
honestly hyperelliptic fibres counted each 2s times (s being their respective
multiplicity).

It is easy to show that, for every p € P!, for a suitable neighbourhood A of
p, the restriction of Q' to Y N(P? x A), is restriction of a divisor on P® x A. Then
we can apply corollary 1.2.6, and write Q' = Q" P, with P € H%(Opsyp1(0, h)).

Since the pull-back of @' contains the adjunction divisor D doubly, while
P pulls-back to D, follows that the pull back of div Q" is at least D.

O

PROPOSITION 3.1.2. Let Y be the tri-bicanonical image of a numerical
Godeauz surface with torsion group {0} and type ib) (so we have 7 hyperelliptic
fibres, counted with multiplicity).

Then there ezists a non trivial section in H°(COy(2,4)), where C is the
conductor ideal of the normalization of Y.

Proof.

The proof is similar to the previous one. Let us recall what the notation
means in this case.

Let X be the canonical model of S, and let B : X = X be the blow up in
the base point of [2K x| (it is smooth for X by our hypothesis).

Let 9 be given by the relative canonical map of f : X — P,



As before, we have the following diagram

X P2

By N tm

X % v c pxP
s
IF;I

and recall that g = ¢ oﬁ: is a birational morphism factoring through a possible
contraction € : X — X of strings of (—2) curves (to rational double point
singularities), and a finite birational map g: X — Y.

NOW, Wy = Oy(4 - 3, 8 — 2) = Oy(l, 6), whence g*(KXv) =C ® Oy(l, 6), C
being the conductor ideal of g.

The pull back to X of the conductor ideal C is an invertible sheaf O (—D);
more generally, .0 ;(—nD) equals C". We have K + D = §*(Oy(1,6)), so
D is given by 7 fibres of 1.

Whence

RY(S,nKg) = h*(Y,C"Oy (n, 6n)).
and a global section of g, (K ) is a global section of Oy (1, 6), whose divisor pulls
back to an effective divisor containing the honestly hyperelliptic fibres with

their multiplicity; in particular its divisor contains the special (irreducible)
conics. No line contains a irreducible conic, so h’(Kg) = 0.

Moreover, letting E be the exceptional divisor of the blow-up, since
"0y (0,1))] = [26°Ks — 2B| = [2Kg — 4E| = |¢*(Oy (2,12)) — 2D — 4E],
there exists Q' € |Oy(2,11)| whose pull-back on S is a divisor consisting of
4F plus the sum of the honestly hyperelliptic fibres counted each 2s times (s
being their respective multiplicities).

By corollary 1.2.6 @' belongs to the sheaf of ideals (Q, P), where Q is
the polynomial defining Y, P is a polynomial of degree 7 on P! such that its
divisor pulls back to the adjunction divisor on S. Since (Q, P) form a regular
sequence, it follows easily that there exists Q" such that Q' = @Q"P, that
obviously has the properties in the statement.

Since the pull-back of @’ contains the adjunction divisor D doubly, while
P pulls-back to D, follows that the pull back of div Q)" is at least D.

U
PrRoOPOSITION 3.1.3. Let Y the tri-bicanonical image of a numerical

Godeaux surface with torsion group {0} and type ii) (so we have 6 hyperel-
liptic fibres, counted with multiplicity).



Then there exists a non trivial section in H°(COy(2,3)), where C is the
conductor ideal of the normalization of Y.

Proof.

In this case we have a singular base point for the bicanonical system on
the canonical model.

Then in this case we define X as the surface obtained by S contracting all
its (—2)—curves; this could not coincide with the blow up of X in the smooth
base points of |2K x| (when on S there is a fixed points of |M| contained in

From now on the proof is almost identical to the previous one, so let us
skip most details.

In this case the dualizing sheaf of YV is wy = Oy (1,5), and the adjunction
divisor D of the normalization of Y is given by 6 fibres (as usual counted with
multiplicity).

We know that h°(S,nKs) = h°(Y,C"Oy (n, 5n)).

But w? = Oy(2,10), so, arguing as in previous proof, there exists a non
trivial section Q' € H°(C?Oy(2,9)), and again by corollary 1.2.6, we can divide
Q' by the polynomial P € H®(Opsyp1(0,6)) whose pull back on the normaliza-
tion of Y is D, and get a non trivial section Q" in H°(COy (2, 3)).

O

3.2. The classification theorems

THEOREM 3.2.1. Assume that S is a numerical Godeaux surface with tor-

sion {0} and of type ia), i.e., such that the bicanonical pencil yields a genus 4
fibration f.

Let h =3¢ pypercitiptic Mult(C): then 0 < h < 3.

Moreover 3Q € |Opsyp1(2,7 — 2h)|, s.t. Y = ¢(S) is a divisor in
|Og(3,3h — 6)| whose singular curves are exactly the twisted cubic curves im-

age of the (honestly) hyperelliptic bicanonical divisors. Moreover, if C is the
conductor ideal, h®(COy (2, h — 3)) > 0.

Viceversa, assume that 0 < h < 3 and that Q € |Opsyxp1(2,7 — 2h)| is an
irreducible divisor, and that in turn'Y € |Og(3,3h—6)| is an irreducible divisor
whose normalization is a surface X with rational double points as the only
singularities. Suppose moreover that the conductor ideal C defines a divisor

on X equal to h fibres (counted with multiplicity). Assume moreover that the
singular curves of Y are (irreducible) twisted cubics, and that h°(COy (2, h —



3)) > 0. ThenY is the tri-bicanonical model of a numerical Godeauz surface
with torsion {0} and of type ia).

Proof.

The first part of the statement is given by theorem 2.4.1, lemma 2.3.1
(part b) and proposition 3.1.1; we have still to show that a surface in P* x P!
enjoying these properties is a tri-bicanonical model of a numerical Godeaux
surface of type ia).

First, in order to let the proof be more clear for the reader, let us recall
what exactly, for a numerical Godeaux surface of type 1a), the divisor of the
not trivial section Q" € H°(COy (2, h — 3)) is.

We already computed wy = Oy (2+3—-4,7—2h+3h—6—-2) = Oy(1,h —
1); g*Oy(0,1) gives the movable part of the bicanonical system, and g*w?§ =
C%w?. So we have a non trivial section @' in H°(C?*Oy(2,2h — 3)), which,
by proposition 1.2.5, induces a non trivial section Q" in H°(COy (2, h — 3)),
removing ”once” (with multiplicity) every special fibre.

Let us denote by H; the class of a divisor in |Opsxpi(1,0)| and by Hy the
class of a divisor in |Opsyp1(0,1)|.

The divisor associated to the non trivial section Q' of H°(C?*Oy (2, 2h — 3))
gives a curve in P x P! of class (2,7—2h)(3,3h—6)(2,h—3) = 12H}+12hH? H,.

This divisor induces the immersion Oy (0,1) — g*wg. This contains 4 times
the h singular twisted cubic curves (with multiplicity), because g.w% = C*wi;
we found a subdivisor of class 12hHZH.,.

Let E" be the residual curve of class 12H3; E" is the union of the images
of curves in the fixed part of the bicanonical system of S and eventually of
some more curve coming from the conductor ideal. But, by construction, the
bicanonical system has 3(Kg — 8*Kjg) in the fixed part.

Easy intersection arguments show that every (—1)—curve in Kz — 8*Kg
maps on a curve of class H?; moreover for a sequence of n blow ups S =S,
the exceptional divisor Kg— 3*Kg can have many different configurations, but
one can easily prove that in every case it contains (with multiplicity) at least n
(4 in our case) (—1)-curves; again by intersection arguments one see that every
other curve in the exceptional divisor for our sequence of blow ups contracts
to a point on Y, so E” is exactly the image of the fixed part of 2K5.

Vice versa, let Y C P? x P! be as described. Let us consider the normal-
ization € : X — Y, and a minimal resolution of singularities § : S — X; we
have e,wg = Cwy. By our assumptions, wy = Oy (1,h — 1).



First, we claim that p,(X) = 0.

In fact, an easy computation shows that the restriction maps
H®(Opsypi(1,h — 1)) = H*(Og(1,h — 1)) — H°(Oy(1,h — 1))

are isomorphisms.

So, if h = 0, py(X) = h%(Opsypi(1,—1)) = 0, while, if h > 0, a not
trivial section of H°(e,wy) induces a not trivial section of H°(Opsa,p1(1, h—1))
containing some of the singular twisted cubic curves; since a plane in P? cannot
contain a twisted cubic curve, we derive a contradiction.

Let us now denote by Q" a non trivial section in H(COy (2, h — 3)); let
moreover F’ be a non trivial section (unique up to scalar multiplication) in
H°(Oy (0, h)) whose pull back in X gives the conductor divisor. Let us set
Q' = F'Q" € H(C?Oy(2,2h — 3)), Q@ = F'Q' € H'(C30y (2, 3h — 3)).

The sections @' and @' define two injective homomorphisms of sheaves

Oy (0,1) = C*0Oy(2,2h — 2) = e,w%
Oy (1,0) <= C°Oy(3,3h — 3) = e,w?.

In particular we can conclude that the morphisms 7m0 ¢ : X — P! and
moe : X — P3 are induced by some subsystem of the bicanonical, respectively
of the tricanonical system. It follows that X is of general type.

Since X has only R.D.P.’s as singularities, S is a surface of general type
with geometric genus p, = 0; in particular ¢ = 0 and x = 1.

Let us denote by S the minimal model of S; then K2 > 1. In order to prove
that S is a numerical Godeaux surface, we need only to prove that K2 = 1.

Observe that the divisor associated to Q" gives a curve in P? x P! of class
12H? + 6hH? H,.

The assumption Q" € H*(COy (2, h — 3)) ensures that such a divisor con-
tains h fibres; so we can consider the residual curve E” of class 12H} (thus
consisting with multiplicity of exactly 12 fibres of the projection over P?). Let
us denote by E’ and by E the respective divisors in X and S given by the
difference between the pull back of div(Q") and the h fibres corresponding to
the conductor divisor.

We have
(2K%) = ((06)* Oy (0,1) + E)* = 24 + E?

(BK%) = ((e 0 6)* Oy (1,0) + E)* =9+ E?.



In particular K7 = (9+ E? —24 — E?)/5= -3

The morphism 3 : S — S is a sequence of n blow ups. Since S is of general
type and K7 = —3, it follows that n = K7 — K3 > 4.

We already noticed that, if we denote by E the difference K s — B*Ks, E
contains, with multiplicity, at least n (—1)—curves. Remark that the morphism
S —Yis composition of a finite map (X — Y') and of the minimal resolution
of the singularities of X. By hypotheses, X has only R.D.P., so the only curves
contracted are (—2)—curves, and our (—1)—curves cannot be contracted to Y.

Now we only need to remark that the fixed part of 3Kz contains 3E, whence
at least 3n (-1)-curves; and the corresponding divisor maps on Y to E”, which
has 12 components.

Since n > 4, 3F is exactly the fixed part of 3Kjg; in particular n = 4,
K2 =1 and S is a numerical Godeaux surface.

Thus 3E is the fixed part of both 2K and 3K; the rational map S --» Y
is the tri-bicanonical morphism, 3K s has no base points, whence (as shown in
[Catl1], [Mil]) the torsion group of S is either 0 or Z/2Z. But if the torsion
were Z/27Z, by lemma 2.3.1, part ¢), in the singular locus we would obtain a
fibre consisting of a line with multiplicity 6, a contradiction.

Since the bicanonical system yields a genus 4 fibration, we are in case 1a).

O

THEOREM 3.2.2. Assume that S is a numerical Godeaux surface with tor-
sion {0} and of type ib).

Y := ¢(S) is a divisor in |Op2yp1(4, 8)| whose singular curves are exactly
the 7 (with multiplicity) double conics image of the hyperelliptic bicanonical
divisors. Moreover, if C is the conductor ideal, h°(COy(2,4)) > 0, and no
fibres of the projection P? x P1 — P? are contained in'Y .

Conversely, assume that Y € |Opayp1(4,8)| is an irreducible divisor whose
normalization is a surface X with rational double points as the only singulari-
ties. Suppose moreover that the conductor ideal C defines a divisor on X equal

to 7 fibres (counted with multiplicity) whose image is supported on irreducible
conics, and that h°(COy(2,4)) > 0.

Assume moreover that Y does not contain fibres of the projection P? x P! —
P?; then Y is the tri-bicanonical model of a numerical Godeaux surface with
torsion {0} and of type ib).



Remark that in this case no fibres of the projection P? x P! — P? are
contained in Y, whence in the other cases, the images of the exceptional divisor
for (B are exactly of this form.

In order to construct the tri-bicanonical model of a surface of this class,
this condition should be interpreted as the open condition that there are no
fixed points for the system of quartics.

Proof.

The first part is already proved in theorem 2.4.2 and proposition 3.1.2; the
first statement we have still to prove is the remark about the fibres of the
projection P? x P! — P2.

The strict transform on S of such a (rational) curve would have intersection

—1 with the canonical class, so it should be a exceptional divisor of the first
kind.

On S we have only one exceptional divisor of the first kind corresponding
to the single base point of the bicanonical system, that has intersection 2 with
every fibre of the projection on P'; on the contrary a fibre of the projection
P? x P! — P? is of class H? (so intersect the generic fibre of the projection on
P! transversally in one point).

Conversely, assume Y := ¢(S) in |Op2yp1(4, 8)|, so that wy = Oy (1,6). If
Y is as described in the statement, considering € : X — Y normalization, we
have e,wg = Cwy. This immediately implies (no line contains an irreducible

plane conic) p,(X) = 0.

Again, let Q" be a non trivial section of H°(COy (2,4)), F' the natural non
trivial section in H*(COy (0,7)), and remark that Q"F' and Q"F'* define two
injective morphisms

Oy (0,1) = e,w%

Oy (1,0) = e.wk

that implies that the the two projections are induced by subsystems of the
bicanonical and the tricanonical system. In particular, X is of general type.

By assumption X has only R.D.P., so, if § : $ — X is a minimal desingu-
larization of X, S has geometric genus 0 (so x =1, p, = ¢ = 0). We want to
compute K% where S is a minimal model for S.

The divisor of Q" is a curve in P? x P! of class 8H? + 32H, H,, containing
7 fibres, so we can consider the residual part E” of type 8H? + 4H, H, that
contains both the images of the fixed parts of 2Kz and 3K3. Let us denote by
E the divisor on S whose image is E”. E contains all the (—1) curves in S.



We have
(2K3) = ((€06)* Oy (0,1) + E)* = 16 + E?

(BK%) = ((e06)"Oy(1,0) + E)> =8 + 8 4+ E?,

that gives us K% = 0, E* = —16. Every (-1) curve in E has multiplicity greater
than 3 (because E contains the fixed part of 3K3), and remark that the image
on Y of a (—1)-curve should be of type aHZ+ (a—1) H; H, (intersecting with the
canonical class), with a > 2 by our assumption on the fibres of the projection
on P2, so it contains at most 4 such a curve (with multiplicity).

Then, P, = 2, and S — S is exactly a blow up in a point of S. In fact, S
is not minimal because it is of general type but Kz = 0; but if S — S would
be a sequence of 2 or more blow ups, as we remarked in the previous proofs,
we would get at least 6 (with multiplicity) (—1)—curves in the fixed part of
the tricanonical system, whence we proved that there are at most 4 of them.
Then K% =1 and S is a numerical Godeaux surface.

Then the projection of Y on P! is given by the complete bicanonical system,
and by our classification on the bicanonical system of a numerical Godeaux
surface, we conclude that we are in case ib).

We are left with the torsion group. The natural rational map S —-» P? is
induced by a subsystem of the tricanonical system and has degree 8.

We know that the rational map S --+ Y is given by 2K, 3K — p with p
base point for 2K but not for 3K, so the tricanonical model has degree 9, that
implies torsion {0} or Z/2Z, and we can exclude last case because, by lemma
2.3.2, this would induce a multiple line as fibre of Y — P!,

O

THEOREM 3.2.3. Assume that S is a numerical Godeaux surface with tor-
sion {0} and of type ii).
Y := ¢(S) is a divisor in |Op2yp1(4,7)| whose singular curves are exactly

the 6 (with multiplicity) double conics image of the hyperelliptic bicanonical
divisors. Moreover, if C is the conductor ideal, h°(COy (2, 3)) > 0.

Conversely, assume that Y € |Opzyp1(4,7)| is an irreducible divisor whose
normalization is a surface X with rational double points as the only singulari-
ties. Suppose moreover that the conductor ideal C defines a divisor on X equal
to 6 fibres (counted with multiplicity), and that h°(COy(2,3)) > 0. Then Y is
the tri-bicanonical model of a numerical Godeaux surface with torsion {0} and

of type ii).



Proof.

The proof is similar to the previous one, so let us skip most details. The
first part of the statement is given by theorem 2.4.3 and proposition 3.1.3.

Exactly with the same arguments used in proof of theorem 3.2.2, we im-
mediately get X of general type and with p, = 0.

Now the divisor of Q" is a curve in P? x P! of class 8 HZ+26 H, H,, containing
6 fibres, so we can consider the residual part E” of type 8H? + 2H, H, that
contains both the images of the fixed parts of 2Kz and 3K 3. The corresponding
divisor E on S contains all the (—1) curves in S.

We have
(2K2) = (¢ 06)" Oy (0,1) + E)? = 16 + B

(BK%) = ((06)"Oy(1,0) + E)* = 7+ 8 4+ E?,
that gives us K% = —1, B = —18.

Being S of general type, we have then that S — S is given by a sequence
of at least 2 blow ups.

If S — S were given by a sequence of 3 or more blow ups, then we would
have at least 3 (—1)—curves (with multiplicity) in the relative canonical divisor;
this would induce at least 9 (—1)—curves in the fixed part of the tricanonical
system. We showed that the image of this fixed part is contained in a curve of
class 8H? + 2H, Hy; but the image of every (—1)—curve is of class aH? + (a —
1)H1H,, and this gives a contradiction.

Then the surface is a numerical Godeaux surface, P, = 2, and looking at
our classification of the bicanonical fibration for a numerical Godeaux surface
we can conclude that we are in the case ii).

In particular the rational map X --+ Y is given by 2K, 3K — p where p is
a singular base point for 2K but not for 3K.

The map Y — P? has degree 7, and, being both the tricanonical map of
a numerical Godeaux surface and the map X — Y, birational, we get that
the induced rational map from the tricanonical model (in P3) to P? has still
degree 7. But this map is given by the projection from a singular point in
the tricanonical model, so the tricanonical model has degree (at least) 9, that
implies torsion {0} or Z/2Z.

Finally, we can exclude that the torsion is Z /27, because, by lemma 2.3.2,
this would induce a multiple line as fibre of Y — P,

O



CHAPTER 4

Some explicit computation

4.1. Resolution of the ideal sheaf of Y in case ia)

In this section, we look for the resolution of the ideal sheaf of a numerical
Godeaux surface of type ia), for h < 2.

First, we need an easy technical lemma. Recall that, by theorem 3.2.1,
the bitricanonical image of a numerical Godeaux surface is a divisor ¥ €
|0g(3,3h — 6)|, where Q € |Opsypi(2,7 — 2h)|. By sake of simplicity, let us
write P := P? x P

LEMMA 4.1.1. For every n € 7Z, the natural restriction maps induce iso-
morphisms

H*(Op(n,6 — 2h)) =2 H*(Og(n,6 — 2h))
and
H*(Og(2,n)) = H*(Oy(2,n)).
Proof.
The first isomorphism comes from the exact sequence
0— Op(n—2,-1) = Op(n,6 —2h) — Og(n,6 —2h) - 0
remarking that Vn € Z H*(Op(n — 2,—-1)) = 0.

For every n € Z, H*(Op(—1,n)) = H*(Op(—3,n)) = 0; this allows us to
conclude, by exact sequence

0— Op(—3,n+2h—7) > Op(—1,n) = Og(—1,n) = 0
that Vn € Z H*(Og(—1,n)) = 0.
Finally, exact sequence
0— Og(—1,n—3h+6) = Og(2,n) = Oy(2,n) = 0

gives us the result.
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Let us write
7-2h o
o= Yt
i=0
where \g and \; form a basis for H°(Op(0, 1)).

Moreover, let us denote by D a section in H°(Og(3,3h — 6)) whose asso-
ciated divisor is Y.

By lemma 4.1.1, there exists a unique equation
6—2h

G=>) MN"NG,
=0

G; € H°(Op(3,0)), s.t. the restriction of G to Q gives exactly \[* "D ¢
H(Og(3,6 — 2h)).

Then set ; =0if i > 8 —2h, G; =01if 1 > 7 — 2h.

LEMMA 4.1.2. There exist linear forms Lq, ..., Li1_sn S.t.
L G
( L L \( Qf ) c. )
L2 Ll LO 0 Q2 G2
Ly :
L, L
\L11_sn L; L(l) Ly / \Qn—sh/ \G11—5h)

Remark that, if 11 — 5h > 6 — 2h (h < 1), this matrix induces relations
with linear coefficients among the quadrics defining Q.

Proof. Let us define G®) = N2 "D ¢ H°(Og(3,6 — 2h)), and write,
by lemma 4.1.1, G*¥) = Z?:_o% )\g_Zh_i/\ZiGEk)_ Then GO = @G.

We know that, mod Q, V0 < k < 12 — 5h, G¥*1) = 20G®).
So, VO < k < 12 — 5h, there are linear forms L; such that
(4.1.1) MG® = \GED L L0,

In particular G(()k) = LQo.

Finally, equation 4.1.1 allows us to compute

Gj = Ggp) = LoQ; + Gg.l_)l == LoQj 4 L1 Qi1 + - + LiQo.



e el

The ideal sheaf of Y is generated by Q and the equations G defined in
the proof of lemma 4.1.2.

Remark that, if h < 1, then 11 —5h > 6 — 2h; then in this case lemma 4.1.2
explicit G as function of Q and of the linear forms. The same argument
used in the proof of the lemma can be applied to G*) for every k, reducing
the problem of the construction of a numerical Godeax surface of this type to
the problem of the construction of 12 — 5h linear forms and 8 — 2h quadratic
forms in P? with suitable properties.

This is no more true in the case h = 2 (lemma 4.1.2 gives explicit ex-
pressions for Gy and G; but not for G3). This difference forces us to treat
separately the two cases.

THEOREM 4.1.3. IfY is the tri-bicanonical model of a numerical Godeaux
surface with h = 2, then there exist linear forms Ly, L1, quadratic forms
Qo,...,Q3 and a cubic form C in P3, such that, if Mg, \1 are a basis for
the linear forms on P!, the ideal sheaf of Y has a resolution

O]P’(_?” _3)2 O]P’(_27 _3)
0 — @ X ® - Iy — 0,
Op(—5,—-3) Op(-3,-2)3
Ly Ly C
| =X O A1Q3
where oz = Al Ao AQ1+ Q2
0 X AoQo
Proof.

Consider, in the notation of the proof of the lemma 4.1.2, the equation
AQoG® + (MQ1 + MQ2)GW + X\,Q;GO.
On Q, this equation restricts to A3Qo D+ XA (AoQ1+A1Q2) D+X3Q3D = 0,

then there exists a cubic C s.t. —CQ = A\QoG? + (M@ + /\1Q2)G(1) +
M Q3G

This is a relation between the generators of our ideal sheaf. Other two
relations come from equation (4.1.1): this induces a complex

Op(=3,-3)*® Op(=5,-3) B3 0p(-2,-3) ® Op(-3,-2)> = I — 0,
Ly L C
=X 0 A1Q3

At =0 Q1 + Qo
0 X A0Qo

where oy =



Remark that the 3 x 3 minors of o are exactly (Q,G®, G, G?). So, by
Hilbert-Burch theorem, this complex is exact, and, in particular, a minimal
resolution, if and only if these minors describe a surface.

0

In case h < 1, by lemma 4.1.2, we get 5—3h relations with linear coefficients
between the quadrics defining Q, that we can write in the following form:

COROLLARY 4.1.4. If h <1, there exist linear forms Ly, ..., L11_5, S.1.
Ly 3n L3 3 Ly Ly \ ( Qo \ (0
Ls 3n  Li3n Lo Ly 1 0
Lo sn Lo sn Lroon Le-on | | Qg_on 0
Ly sn Lo s Lg op L7—2h) \Q7_2h) \0)

Finally, we can compute the resolution of the ideal sheaf of Y.

THEOREM 4.1.5. IfY is the tri-bicanonical model of a numerical Godeauz
surface with h < 1, then there exist linear forms Ly, ... , L11_sn and quadratic

forms Qo, ... ,Qr—an in P2, such that, if Ao, \1 are a basis for the linear forms
on P!, the ideal sheaf of Y has a resolution

Op(—3,2h — 7)12-5h

0 — Op(=5,2h—T7)>-% L, ® SN
Op(—5,2h — 6)6-3
Op(—2,2h — 1)
RN ® — Iy — 0

Op(—3,2h — 6)13-



where

(Lo T T 0 \
—Ao 0 Q7—2n 0
A o
ap = 5 Qr—2n
Qo :
o
\ 0 A1 0 Qo /
and
(Q?—Zh 0 \
Qs Qroon
Br = 0 Qo
Ao 0
)\
S
\ 0 N
Proof.

Looking for relations between the generators of the ideal sheaf of Y, we
have the relations coming from the equation 4.1.1, and the following 6 — 3h
new relations:

QOG(12_5h) 4.+ Q7_2hG(5—3h) — 0’

QoG + 4 Qr_anG¥ = 0.

In fact, mod Q, we have, e.g., QoG(?™M 4 . 4+ Q; GO
QoA "D + ..+ QrapA)ATTMD = AT DQ = 0, then QoG*7M +
4 Qr_ppGB3M = AQ with A € H*(Op(3,—1)), then A = 0.

Moreover, corollary 4.1.4 shows 5 — 3h syzygies. Summing up we conclude
that there is a complex as in the statement.

Locally (writing either A\y = 1 or A\; = 1), we can eliminate the syzygies
(and 5 — 3h relations) and conclude again by Hilbert-Burch theorem.



COROLLARY 4.1.6. x(Oy) =1 — 4h.

The linear and quadratic forms (and a single cubic for A~ = 2) induce
a natural "ambient” (product of projective space) in which we can embed
(as locally closed subvariety) the stratum of the moduli space of numerical
Godeaux surfaces; the resolutions we have computed give us some of the closed
conditions.

The close conditions missing are the conditions coming from the adjunction
condition in theorem 3.2.1 (or in proposition 3.1.1).

Let us compute also these.

Assume that the fibre over (0, 1) for the fibration ¥ — P' is non hyperel-
liptic; let Q" be a non trivial section in H°(COy (2, h — 3)) > 0.

By lemma 4.1.1 we can consider Q" as a section in H°(Og(2, h — 3)), and

there exists a unique Q € H%(Op(2,6 — 2h)) whose restriction at Y gives
A73Q". Let us write

6—2h

Q=) NN
0

and, as usual, set Q7 =0if i > 6 — 2h.

LEMMA 4.1.7. There are constant aq, ..., a9 3 S.t.
"
(o \( @\ (@)
as as aj 0 Q2 ’2’
: a : :
as a
Kag_gh az a; aq / \Q8*3h) \ g—Sh/
Proof.

Let us skip this proof: it is exactly the same argument used in the proof
of the lemma 4.1.2.

Lemma 4.1.7 and theorems 4.1.5 and 4.1.3 give a natural system of pa-
rameters and equations that define in every case a subvariety of a product of
projective spaces in which the corresponding stratum of the moduli space of
numerical Godeaux surfaces can be embedded as a Zariski open set.



4.2. Some more computation for the case h = 2

In this section we try to understand the equations we found in last section
in case h = 2.

Why h = 27 Two are the principal motivations.

First, this case looks easier than the cases with h < 1; in the other cases the
number of parameters is considerably higher, so we expect higher codimension.

Second, only in this case we can show existence (see next chapter). A
computation of the dimension of this stratum of the moduli space (expected
to be between 6 and 8) would give interesting indications on the answer to the
existence problem of the other two (a priori more general) cases.

We want to construct an open set of this stratum of the moduli space of
numerical Godeaux surfaces. We had to do some open assumption; in order
to ensure that we are not working on the empty set, we checked (using the
program Macaulay2) that all the open conditions we imposed hold for the
Craighero Gattazzo surface (we will show in last chapter that the Craighero
Gattazzo surface is in fact of type ia) with h = 2).

First of all we restrict to surfaces with exactly two distinct hyperelliptic
bicanonical divisor with multiplicity one.

In the notation of the previous section, the equation of Q is
(4.2.1) QoA + QiATAL + QXA + @Q3A} = 0

We can assume (acting by automorphisms of P!) that the two honestly
hyperelliptic bicanonical divisors are preimages of the coordinates points in
P': so the equations \g = 0 and A\; = 0 cut on Y two double twisted cubic
curves, that are the divisorial part of the singular locus of Y.

Remark now that Y is not complete intersection of two hypersurfaces of
respective bidegrees (2,3) and (3,0)); in fact otherwise the image of the pro-
jection of Y in P3 would be supported on a cubic, whereas for a numerical
Godeaux surface with torsion 0, the tricanonical morphism is birational on a
surface of degree 9 ([Catl]).

LEMMA 4.2.1. Qo, Qs are quadric cones. If we call Vy, V3 the respective
vertices, Vo € @1, V1 € Q1.

Proof.

We prove the statement for QQq, Vo, Q1.

Qo contains a twisted cubic curve; then has rank greater than 3. Assume
by contradiction )y smooth. By theorem 4.1.3, lemma 4.1.2 and its proof, we



see that the cubic C — LyQ cuts on )y a double twisted cubic curve. But a
smooth quadric is isomorphic to P! x P!, and a cubic cuts on it a divisor of
type (3,3) that cannot be double, a contradiction.

So Qo has rank 3. Let us call 1} its vertex.

We know that Y is singular on a twisted cubic curve (say I'y) contained in
(o- So, again in the notation of the previous section, computing derivatives,
we get that Q1(C + L1Q1) — Qo(Lo®s + L1Q)2) is singular in [';. Remark that
C + L1Q) vanishes in V{, but is smooth there, otherwise these points would
appear with higher multiplicity in the intersection.

Finally, @ is singular in Vj while C' 4+ L@, is smooth, Q;(C + L1Q1) —
Qo(LoQ3 + L1Q)2) singular, so V; € Q.

U

Now we assume V) € 1 and V; & Q)s.

Let us fix (by a coordinate change in P?), V; = (0,1,0,0), V; = (1,0,0,0):
then Qo = Qo(Yo, Y2, ¥3) and Qs = Q3(y1, Y2, ¥3).

This assumption guarantees that the coefficients of y2 in Qp and 47 in @,
are nonzero. Completing the squares, we can assume Qo = y2 + qo(¥2, ¥3),
Qs = Y7 + as(y2, y3)-

Assume now that gogz vanishes in 4 distinct points (as polynomial in P! );

Y2,Y3
up to a coordinate change involving only the variables y», y3 the quadrics have

the form
Qo = yS — Y2U3

Qs =v7 — (y2 — y3)(M\y2 + u3)
for some \ € C.

Remark that, fixed a twisted cubic curve and a quadric cone containing it,
the movable part of the system of quadrics defining the t.c.c., restricted to the
quadric cone itself, is given the pencil of lines through the vertex.

So, fixed a line in @, there is exactly one (mod @) quadric cutting I’y
and the line.

Let us fix the line yo = yo = 0; a quadric trough this line can be uniquely
written as (Yo, Y1, Y2, Y3)Yo + 1(Y1, Y2, Y3)Ye; acting mod @y we can further

assume oy = ag(y1, Y2, y3) and conclude that we can describe every twisted
cubic curve I'y in Qg in unique way by the 2 X 2 minors of a matrix of the form

<y2 Yo o(Y1, Yo, ys))

Yo Y3 041(3/1, Y2, y3)



Let us denote

Qoa = Yo — Y201y

Qob = Yoo1 — Y30

By the description of the matrix as, we get that the surface Y in a
neighborhood of the double I'y is complete intersection of @ and the cubic
)\%(LIQI + C) —+ )\0A1 (L()Qg =+ Lng) =+ A%L1Q3, while in a neighborhood of the
double T’y is complete intersection of @ and the cubic A3 LoQo + Ao (LoQ1 +
L1Qo) + M (Lo@2 — C).

Every cubic Gy s.t. GoN @y = 2I'y can be uniquely written as determinant
of the matrix

Y2 Yo Qo
Yo Ys 1
Qo O lo

with [, linear form.

So a first condition is that there exists (up to multiply the coefficients of
a;, ly for some suitable constant) Iy such that C' + L;Q; = Gp.

Doing the same computation for ()3, we get that ['; is defined by the 2 x 2
minors of the matrix

Y2 — Y3 U1 50(90; Y2, y3) .
Y1 Aya+ys  Bi(Yo, Y2, y3)

Again we denote

Q3a = Y180 — (y2 - y3)ﬁ1

Q3 = Y161 — (Ay2 + ¥3)Bo
The generic cubic G s.t. G; N Q3 = 2"y is the determinant of the matrix

Y2 — Y3 U1 Bo
Y1 Ay +ys B
Bo B ly

So there exists some linear form /; such that C'— Ly()2 = (G;. This equation
suggests us to add to our system of parameters the coefficients of the 2 linear
forms Iy and /4, and "remove” the coefficients of the cubic C (i.e., use the
last equation to give explicit espression of its coefficients as function of the
other parameters); in the new system of parameters the "mirror” condition



C = Gy + LyQ- gives us the (20) relations induced by the vanishing of the
cubic (Go - Gl) - (L()QQ + LIQI)-

Imposing singularity of Y in I'y is a slightly stronger condition. This can
be written as (just compute derivatives)

Yo(LoQ3 + L1Q2) — (cwar — yolo) Q1 € Iy,
and the singularity of Y in I'; give the equation

Y1 (Lo@Q1 + L1Qo) + (BoBr — y1l1)Q2 € Ir,.

We are left with the adjunction condition: we have just to write lemma
4.1.7; we get that the adjunction condition is the existence of 3 non zero
constants ay, ag, as s.t. s.t. a1Q1+a2Q2+a3Qs € Iy, and a;Qp+axQ)1+asQ2 €
Ir,.

Recalling that V; € Q1 N 'y, we can easily conclude by the first equation,
looking at the coefficient of yf that (up to a constant), if Q; = 3 ¢ijkY; Yk,

as = —1 agz = @211, and analogously the second equation gives a; = —1 a; =
qi100- Let us simplify the notation with the following definitions: ¢y := ¢i90;
q1 ‘= (G211

Summing up we have the following system of relations:
qoQ1 — Q2 + 1Q3 € Ir,

q0Qo — Q1+ Q2 € Ir,
Yo(LoQs + L1Q2) — (aoar — yolo)@1 € I,
y1(Lo@1 + L1Qo) + (BoB1 — y111) Q2 € Ir,
Gy — G1 = LyQy + L1 Q.

The first 2 equations can be written as

Q@1 — Q2+ Q3 = qng + ElQOa + EZQOb
G0Qo — Q1+ Q2 = Q%Q?, + k1Q30 + k2Q3s

that in the generical assumption gog # 1 are equivalent to (h; := (goq1 —
1) hi, ki = (qoqr — 1) 'ky)
(4.2.2) Q1 = qQo + h1¢1Qoa + h2q1Qop + k1Q34 + k2Q3p

(4.2.3) Q2 = h1Qoa + haQop + 1Q3 + k190 Q34 + k2q0Q3p



This two equations allows us to transform the other 3 relations in the
following:

Yo(Lo + L1¢1)Q3 + (yo(lo + goL1) — a1 ) (k1Qsa + k2Qs3p) € I,

Y1(L1 + Logo)Qo + (11 (=l + ¢1Lo) + BoB1)(h1Qoa + hoQus) € Ir,

(—loQo + aQop + 01 Qoa) — (—11Q3 + LoQsp + f1Q3a) =
= Lo(h1Qoa + h2Qob + ¢1 Q3 + k1GoQ34a + k2goQ3s) +
+ L1(qoQo + h1q1Qoa + hoq1 Qop + k1 Q34 + k2Q3p)-

and the last one can be written as

— (lo + qoL1)Qo + (a1 — hi (Lo + ¢1L1))Qoa + (g — ho(Lo + ¢1L1))Qop =
= (=l + qL1)Qs + (B1 + k1 (L1 + goLo))RQ3a + (Bo + k2(L1 + goLo))Qs3p-

So we can define Z() = —l() - QOL1;Z1 = _ll + qlLo; ZO = L() + qlLl; fl =
L1 + goLo; and we have the simpler equations (where for extetic reasons we
have changed the signs of the £;)

(4.2.4) YoLoQs + (Yolo + 1) (k1Qsa + k2Q3s) € Ir,

(4.2.5) y1L1Qo + (yil1 + BoB1) (h1Qoa + hoQus) € I,

(4.2.6) 1oQo + (a1 — h1Lo)Qoq + (a9 — hoLg)Qop =
11Q3 + (81 — k1L1)Q3a + (Bo — k2L1)Qsp.

Remark now that for every solution of this system of equation we got a
dimension 2 space of solution of the original one, parametrized by ¢y and ¢

(with gogi # 1).

We add a new assumption: h; # 0, k; # 0. This allows to define h = hy/hy,
k= kz/k)l, Cc = 1/h1k1

Remark that we can reconstruct hq, ho, ko by h,k,c, ki by the equations
hl = 1/Ck'1, hg = h/Ckl, kQ = kkl

Let us define with a little abuse of notation Ly = hyiLg, L1 = kiLy; our
equations become



(4.2.7) cyoLoQs + (yolo + 00 ) (Qsa + kQss) € Ir,

(4.2.8) eyiL1Qo + (yili + BoBr)(Qoa + hQuob) € Ir,

(4.2.9) 16Qo + (a1 — Lo)Qoa + (g — hLg)Qop =
=1hQs+ (81 — L1)Qsa + (Bo — kL1) Qs
and we got one more (k;) free parameter.

The last system of equations define a subset of P x C?, where ), h,k are
the coordinate on the second factor, while P is a 28-dimensional weighted
projective space with 9 coordinates of degree 2 (c and the coefficients of Iy, [;),
20 of degree 1 (the coefficients of vy, a1, 5o, 1, Lo, L1).

Remarking that in our assumptions ¢ # 0, it looks quite natural to set
¢ = 1 and get simpler equations.

(4.2.10) YoLoQs + (yolo + o) (Qsa + kQsz) € I,

(4.2.11) y1L1Qo + (y1l1 + BoB1) (Qoa + hQus) € Ir,

(4212) ZOQO + (Oél — LO)QOa -+ (ao — hLO)QOb —
=1Qs + (81 — L1)Qsa + (8o — kL1) Qs

Remark that, looking at the coefficients of y3 and %} in equation 4.2.12,
Iy = Zo(ylayz,yfz), = 21(90,112,?!3)-

More precisely, the coefficients of all the monomials multiple of y5 and y?
in equation 4.2.12; allows us to determine /g and /; as functions of the other
parameters.

So equations 4.2.10, 4.2.11 and 4.2.12 define a subvariety of an affine
23—dimensional space, a generic point of which defines a 3-dimensional family
of numerical Godeaux surfaces of type ia).

Let us conclude with some parameter computation.

Remark that dim S?(H°(3Ks))N(H°(2Ks)® H°(4K5)) is (since |2Kg| has
no fixed part) by Grassman formula 10 + (2 X 7 — 2) — 16 = 6.

This space contains Q;, Q;q, Qip, and ()1 and Q2 that we have computed as

functions of the other quadrics. So generically we expect that the two twisted
cubics have no common quadrics.



Similar computation shows that there are at least 4 common cubics between
the two t.c.c. (that in some sense are the “mirror” of the 4 common points
we expect by the base locus of [2K|). So in our equations the existence of
this 4 common cubics is “hidden” somewhere, and we can add this 4 condition
to our list of equations; under this condition 4.2.10 and 4.2.11 give only 6
conditions, while equation 4.2.12 give 16 conditions, and we already used 8
of these equations (eliminating [;), so we have at most 4 + 6 + 6 + 8 = 24
conditions in a 23-dimensional space.

We know that a solution exist: remembering that a generic solution gives
a 3-dimensional family, we expect a family of solutions of dimension 3 or 5.

4.3. The genus 4 fibration cannot have three distinct hyperelliptic
fibres

In this section we prove the following

PROPOSITION 4.3.1. Let S be a numerical Godeaux surface with torsion
{0} such that |2Ks| has 4 base points possibly infinitely near (equivalently, s.t.
f is a genus 4 fibration). Then the bicanonical pencil cannot contain three
distinct honestly hyperelliptic fibres.

We shall argue by contradiction and assume by theorem 2.4.1 that h = 3
and that Y is a divisor in |Og(3, 3)|, with Q € |Ops,p1(2,1)].

REMARK 4.3.2. Y is the complete intersection of Q with a hypersurface
G, where G € |Opaypi(3, 3)|.

This is an immediate consequence of remark 1.1.8 because
Ext'(O(-3),0(-1)*) = H'(0(2)*) = 0.

Let us write down explicitly the equations of the two divisors whose com-
plete intersection in this case gives our image surface Y.

Let @y = AoQo + MQ1; G = )\gGooo + )\(2))\16'100 + AO/\%GOII + )\:I’Gln-

We can assume that for A = (1,0), (0,1) or u = (o, p1) (fixed), @ N Gy
is a double twisted cubic.

An easy computation shows that the restriction map H°(Opsyp1(2,0)) —
H%(0y(2,0)) is an isomorphism.

So, the adjunction condition in theorem 3.2.1, is equivalent to the existence
of a quadric Q" containing the three twisted cubic curves.

LEMMA 4.3.3. Qo, Q1,Qu are quadric cones of rank 3.



Proof.

If one of these quadrics, say (o, were smooth then )y would be isomorphic
to (P! xP'). Then the cubic Gogo would cut on @y a divisor in the linear system
(3, 3), while we know that this intersection must be twice an irreducible twisted
cubic curve (t.c.c. for short), a contradiction (observe that a t.c.c. lies in a
linear system of type (2,1) or (1,2)). Moreover, since the t.c.c. is irreducible
and non degenerate, rank ()9 = rank ¢; = rank @, = 3.

O

Then @, @1, @u, are quadric cones. Let Vp, V3,V be their respective
vertices, I'g,I'1,T',, the corresponding twisted cubic curves. The tricanonical
image Y of S is the hypersurface of P? defined by ¥ = {Q3G00 — Q?*Q0G100 +

Q1Q5Gon — QG111 = 0},
LEMMA 4.3.4. If Vi = Vi = Qo, @1, Q" have a common line L.

Proof.

Let us consider the lines ly,l,,/, residual to the twisted cubics in the re-
spective intersections of the three quadratic cones with the ”adjoint” quadric
Q”. I.e., we have QO N Q” = F() U lo, Ql N Q” = Fl U ll, QN N Q” = FM U l'u.

Observe that, since Vo = Vi = V), then clearly Vj € [p N1 N ,.
Q" D Ty = rank Q" > 3.

If Q" is smooth, then Q" = P! x P! and every line in Q" is contained in one
of the two rulings. So, at least two of the above lines are in the same ruling,
and since they intersect, they do coincide.

This line is in the base locus of the pencil ), hence our assertion follows.

If Q" is a quadric cone, denote by V" its vertex. Every t.c.c. in a quadric
cone passes trough the vertex, so Vi V" € T'; C Q;; let V =V = V;, and
observe that V' # V" (else the two quadric cones would intersect in 4 lines),
whence the line VV” is contained in all these quadrics.

O
LEMMA 4.3.5. Vi # V)

Proof.

Observe preliminarly that the previous lemma implies that the three
twisted cubics I, I'1, I, are distinct (otherwise there would be a twisted cubic
[' contained in each ),: but then @)y = 1, since they have the same vertex
V and they are the join of V' with T).



Observe now that 3 must be singular in our three twisted cubics: in fact X
is the image of Y under the birational morphism given by the first projection,
and Y is singular along the three twisted cubics.

Thus, Q" N'Y > 2Ty + 2Ty + 2T,.

Both @" and ¥ are irreducible, so their intersection must be a curve of
degree 18 and equality must hold.

But, by lemma 4.3.4, we have a line in Q" N Qg N @1, which is a fortiori
also in Q" N X, whence a contradiction.

0

So, we can assume V, # V.

LEMMA 4.3.6. VA € P!, Q5 is a quadric cone and the line VoV, is con-
tained in Q.

Proof.

Recall that Qg N Gy = 2Iy. But @y is singular in Vj, so Gggp must be
smooth in V}, thus also in a general point of I'y.

Observe that V € T'y C Sing X, so, by inspecting the equation of 3, we
infer that Vy € ();. Similarly, V; € Qo, and the line VuV; C Q) VA.

Let us now fix coordinates s.t. Vo = (0,0,0,1), Vi3 = (0,0,1,0); VoV =
{.’L‘O =T = 0}

Thus the matrix of the quadric @), has the following form:

* x Aok Ark
_ * x Aok A%
Qi = Xox Aox 0 0 ’
Ax Mx O 0

whence the determinant of the matrix of |Q,| equals the square p3, of a ho-
mogeneous polynomial p, of degree 2 in the A;’s; since we know that it has at
least three distinct roots, we conclude that ps = 0, therefore @), is a pencil of
quadric cones.

O



So, after a suitable change of coordinates in P! and in P?, we may assume
that

0 0 ¥ -y

Q=] O MtA 0 0

ATl -2 0 0o 0 |’
-2 0 0 0

ie., Qo= a7 — zox2, Q1 = =] — ToT3.
Remark that this choice imposes that it cannot be py = —pu;, because
otherwise we get a t.c.c. I', contained in a reducible quadric Q.

End of the proof. The vertices Vj, Vi and V), of the quadric cones @y, @1
and (), must be respectively contained in the twisted cubics Iy, Iy and I,
therefore also in ()”. However, these three points lie on the same line VjV7; in
particular, we get a line intersecting a quadric in three distinct points. The
conclusion is that V;Vi C Q".

Recall that ¥ must be singular in our three twisted cubics, and that by
inspecting its equation, it follows easily that X is triple on the complete inter-
section of the two quadrics g, @)1, which contains the line V4 Vj.

Let us write the complete intersection Qo N Q)1 as VoVi + T, where T is thus
a l-cycle of degree 3.

Only two cases can occur:

o 'y, 'y and T, are distinct
L F(): Pl = F“ =T

In the first case, the schematic intersection XN Q" has degree 18, however it
contains I'g, I'; and I', with multiplicity two and V4 Vi with multiplicity three:
this is clearly a contradiction, since 18 + 3 = 21 > 18.

In the second case, the irreducible twisted cubic 7" would intersect the line
VoVi in the three distinct points Vg, Vi, V), which is well known not to be
possible.

O

4.4. A computation of parameters and conditions in case ii)
In theorem 2.4.3 we describe completely the tri-bicanonical image of a
numerical Godeaux surface of type ii).

Remark that a divisor in |Op2y.p1(4, 7)| can be seen as a rational curve vy of
degree 7 in the space of quartics of P3.



Moreover, by the exact sequence
0— O]P’2><IF’1(_2> —4) — 0}p2x]p1(2, 3) — Oy(?, 3) — 0

the adjunction conditions (proposition 3.1.3) induce a rational curve 7' of
degree 3 in the space of quadrics.

Recall that in case ii) M? = 2, so we have two base points (possibly infin-
itely near). Assuming the two points distinct, they induce two (—1)-curves in
S that have intersection 1 with the the fibres of f, 0 with w, so their image
are two distinct lines that are sections of the projection on P! and map to two
distinct points in P2.

Let us denote by p; and p, their image in P?, and let us moreover assume
the six hyperelliptic fibres in proposition 3.1.3 distinct: they are defined by
double quadrics, let us say ¢7,. .. , gz

So 7 is contained in the 12-dimensional projective space of the quartics
through p; and ps, and 7' is contained in the 3—dimensional projective space
of the quadrics through p; and p,.

Recall that the space of rational curve of degree d in P" has dimension
(d+1)(n+1) — 4. Then, we have 8-13 — 4 = 100 parameters for 7. Moreover
qi,...,qs gives 6 points of P? so we have other 18 parameters. But we can
still act by automorphisms of P? that fix two given points; the last space has
dimension 4 so we found a space of parameters of dimension 114 (given by the
6 special quadrics and 7).

First of all we want to impose that  contains ¢?, ... , ¢Z; this gives 6-11 =
66 conditions.

Then we want that Y is singular in the fibres corresponding to those points.
Locally, Y has equation g7 +tc+t*.... A derivative computation shows that
the singular locus of Y contains the locus defined by the ideal (t,¢q;) if and
only if g;|c, then if and only if the tangent vector to v in the point ¢7 lies
in the 5—dimensional linear subspace of the space (P'2) of quartics we are
considering, defined by the quartics multiple of g;.

Finally, we can conclude that every singular fibre imposes 12 — 5 = 7
conditions.

So we have found 114 parameters and 66 + 42 = 108 conditions, but we
have still to impose the adjunction condition.

As we already remarked, we are looking for a rational curve of degree 3 in

P2 through 6 given points, so (for a generic choice of the six quadrics) we have
exactly one curve. But we need that, for a suitable parametrization of v and

Y, v(t) = ¢ &+ (t) = ¢



Then the adjunction gives (we can act with automorphisms of P') 6 — 3 =
3 more conditions. Finally, we have 114 parameters and 111 conditions, so
we expect a space of solutions of dimension at least 3; we can sum up this
computation in the following

PROPOSITION 4.4.1. If there exists a numerical Godeauz surface with tor-
sion {0}, of type ii), with 2 distinct base point for the movable part of the
bicanonical system, and such that all the singular fibres have multiplicity 1,
then the moduli space of numerical Godeauz surfaces of type ii) has dimension
greater than 3.

At the moment, we are not able to show if there exist a numerical Godeaux
surface of this class.

Remark that we have not a similar computation in case ib). In that case,
in fact, the image of the exceptional divisor has intersection 2 with the fibre of
f and 1 with w, so we cannot restrict to subspaces of the spaces of the quadrics
and of the quartics of P? as we did in this case.



CHAPTER 5
Examples

5.1. The Barlow surface

Up to now there are only two known explicit constructions of numerical
Godeaux surfaces with torsion {0} (and indeed simply connected), respectively
due to Barlow ([Ba2]), and Craighero and Gattazzo ([CG]): let us consider
first Barlow’s example .

For the Barlow surface, we can study the bicanonical and tricanonical sys-
tem according to the manuscript [R3], where Reid describes the canonical ring
of the Barlow surface as follows.

Let A the symmetric matrix

—2.T4 Lo —Xyg— Ty Tog— L1 — T4 T3 —Tog—Tyg L1 — T3 — T4

—2%0 I3 —T1 — g X1 — T —Tyg T4 — T3 — X
A= —2.%‘1 Ty — T2 — 1 To — T3 — T1
—2332 Tog — T3 — T2

—2.1'3

Let A;; the ¢j-th entry of A, B;; the ij-th entry of the adjoint matrix B of
A.

Let us consider the authomorphism 3 of C[xy, ... ,z4, Yo, --- ,ys] that acts
as B(x;) = ziy1, B(Yi) = ¥iz1, and the automorphism « that acts as a(x;) =
Ta) (@ = (25)(34) in S5), a(yi) = —ya—s, where all indices are to be taken
in Z/5Z. They generate a subgroup G of the group of automorphisms of
Clzo,--- ,%4,Y0,- -, Ya]- One can indeed check that G = D;y.

Let R= Clzg,...,Z4,Y0,---,Yya]/I, where the ideal I is generated by

Z.’L‘i :0,
5
V1 <i <5, ZAijyj—l =0,
1

V1<i,5 <5, yi1yj—1 — By =0.
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We consider the ring R as a graded ring via the following grading which
makes I a homogeneus ideal: deg x;=1, deg y;=2.

One can check that the ideal I is G-invariant, whence G acts on R. Since
the action acts only with isolated fixed points, it follows (cf. [R3]) that the
canonical ring of the Barlow surface can be described as the ring of the invari-
ants of R for the action of G.

In order to simplify the computations, one can choose as generators for G,
B and o/ = Bo; o (2;) = e (), with ' = (12)(35), and o/ (y;) = —y_;.

So we can easily compute that there are no nontrivial invariants in Ry,
while the subspace of invariants in R, is generated by

§o = T1T2 + T2T3 + T3T4 + T4To + ToT1,
§1 = T1T3 + ToTy + T3T0 + T4T1 + T,
& = o} + 75 + 23 + 23 + 3.
Moreover, the relation ) z; = 0 induces the relation
28 +286 +& =0.

So we can take &, &; as generators of the bicanonical system.
The tricanonical system needs more computations.

We know that Rj is generated by z;z;x) and z;y;; the invariants must have
the same decomposition.

The subspace of invariants in the span of the monomials z;x;xy is generated
by the invariants:

No = T1T2T3 + ToX3Ls + T3LaTo + LaLoT1 + ToT1X2,
M = T1T2T4 + ToX3To + T3L4T1 + LaLoTo + ToT1X3,
Ny = 22 (29 + T0) + 22(23 + 1) + T2(T4 + T2) + 23 (20 + T3) + T3 (21 + 74),
ns = a5 + T3 + T3 + T3 + T,
Ny = 23 (23 + 14) + 25(24 + o) + 73 (To + 1) + 25 (21 + T2) + 25 (22 + T3).
The relation ) x; = 0 induces the three linear relations

20 +m +me =0
Mo+ 2m +n4 =0
N3+ n2 +ns=0.



Thus the above subspace is generated by two independent generators, say
Mo, M-

Now we have to find two more independent generators for the subspace of
invariants in the span of the monomials {z;y,}.

Here the § invariants are generated by (; = ), #;yi;;, where the indices
0 < j <4 are again to be understood as elements of Z /5Z.

The (; verify the trivial relation ) (; = 0, and the sum of the five linear
relations V1 <1 <5 Zi’ Aijyj—1 = 0. An easy calculation shows that this sum
yields exactly (—6)¢;. Whence, we have only the other relation ¢; = 0.

Another easy calculation shows that o/((y) = —(, o'((1) = =G, /(3) =
—(4, and we can easily conclude that a system of independent generators for
the tricanonical system of the Barlow surface is given by 19, 71, (o — (2, (3 — (4-

In order to understand how many hyperelliptic divisors (with multiplicity)
there are in the bicanonical system of the Barlow surface, we have only to
check what is the minimal m s.t. there exists a non trivial element in

(S™(< &,& >) @ S2(< noy iy Co — Cos G — G >)) N L.

We are indebted to F.-O. Schreyer who wrote a Macaulay script that verifies
that this minimal number m is indeed equal to 3, and that the relation is given
by the following polynomial

1728315 + 1872£5€1m5 — 1296£0& 715 — 1584€7m5 + 547265 nom: +
+ 5184£5&1mom — 5184&E o — BAT2E momy + 1584&5mT +
+1296&5€1n; — 187281t — 1728&7n7 — 1365(Co — G2)* +
— 226861 (Co — G2)* — 10&EF(Co — G2)* + £5(Co — ¢2)* +
+ 14£5(Go — G2)(Gs — Ca) + 246561 (Co — C2)(G3 — Ca) +
+ 24607 (Co — G2) (Gs — Ca) + 14€7(Co — C2) (3 — Cu) — & (G — Cu)® +
+ 106561 (G5 — Ca)? + 226067 (G — Ca)® + 1367 (G — Ca)*.

Afterwards we wrote a Macaulay2 script (available upon request) that ob-

tains the same result in characteristic 0.

We can therefore summarize the main result of the foregoing section in the
following

THEOREM 5.1.1. The bicanonical system of the Barlow surface has ex-
actly 4 distinct base points and contains two hyperelliptic fibres (counted with
multiplicity).



The same result was obtained independently by [Lee].

5.2. The Craighero Gattazzo surface

Let us now compute what happens for the Craighero Gattazzo surface. As
the Barlow surface, this is a numerical Godeaux surface with torsion {0} (and
indeed simply connected, as shown in [DW]).

The Craighero Gattazzo surface S is constructed in [CG] as the minimal
resolution of the quintic X € P* defined by the equation Fj

Fy = (x +my + az)*t® + [a®2® + zy(bz + cy) + m*y® + (ex® + foy + cy?)z +
+ (bx + ey)2® + 2°Jt% + [2ax’y + ex®y® + 2amay® +
+ (2ama® + f2*y + fry* + 2my’)z + (ca® + foy + by?)2® + 2(ma + ay) 2%t +
+ 23y? + a*2*y® + zy(2ma® + bry + 2ay®)z +
+ (m*2® + cx’y + exy® + y°)2* + (mx + ay)®2® = 0.

where r is a root of the polynomial #*+¢?—1 and where the various coefficients
are defined as follows :

a=r? b= —1(2r? — 13r — 18)
c= (T3 +75r+92) e=—1(r"—24r—9)
f=5(181r* +241r +163) m = 1(3r? +5r + 1).

In [CG] are given different expressions for the coefficients a,e, b, m, f,c,
expressed as rational functions of r; we have computed the equivalent expres-
sion as Q-linear combinations of 1,7, 72 in order to simplify the calculations
(we have done this both by hand and via a calculation using MAPLE).

This quintic surface X is invariant for the Z/4Z—action on P?® in-
duced by the cyclical permutation of the coordinates z — y —
z +— t; the singular locus of X is the set of coordinate points
{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}.

It is possible to show, as we shall do shortly, that in the neighbourhood of
every singular point the singularity can be represented as a double cover of the
plane branched on a curve with a singularity of type (3,3) (a triple point that
has an infinitely near ordinary triple point). Therefore our singular points are
simple elliptic (-1)-singularities (for which the exceptional curve in the minimal
resolution is a smooth elliptic curve with self-intersection —1).

It follows that the adjoint divisor on the resolution is precisely the elliptic
exceptional curve counted with multiplicity one, whence the bicanonical system



of S is cut by the quadrics in P> whose pull-back on S yields a divisor containing
the exceptional locus twice, and the tricanonical system is cut by the cubics
in P> whose pull-back on S contains the exceptional locus with multiplicity
three.

Craighero and Gattazzo compute explicitly both systems, but we found
that their computation is different (and non-equivalent) to ours. It is possible
that some misprint occurred, so let us sketch our calculation.

Let us look at the equation of X in a neighbourhood of (0,0,0,1). Setting
w = (z +my + az) we can write the Taylor development of the equation F in
affine coordinates as follows:

w? + m*y’ + wfo(w,y, 2) + fa(w,y,2) + f5(w,y,2) =0

with f; homogeneus of degree .

In local analytic coordinates (u,y, z), where u = w + 1/2f5(w, y, z), the
equation takes the form

u? +m2y® + gu(u,y,2) + ... = 0.

Whence y = 0 is the equation (in the plane of coordinates (y, z)) of the
direction of the tangent cone of the branching locus, and therefore the pull-
back on S of the divisor div(y) is easily shown to contain the exceptional curve
FE at least twice.

Of course the multiplicity in the exceptional curve of w and z is at least
one. But, since w? belongs to the cube of the maximal ideal, it follows that
div(w) > 2E.

Again, writing
f2(wa Y, Z) = 012'2 + UJFl(’LU, Y, Z) + yGl(w7 Y, Z)
f4(w7 Y, Z) = ﬁ24 + ’ng(’bU, Y, Z) + yG3(w: Y, Z)
we are able to rewrite our equation in a slightly different way as follows:
w? + m*y® + [awz? + w Fi(w,y, 2) + wyGL(w,y, 2)] +
+ [ﬂz4 + ng(w, Y, Z) + yG3(wa Y, Z)] + f5(wa Y, Z) =0.
From the above remarks follows that the function
w? + awz? + B!
has a divisor which is greater than 5FE.

But a tedious calculation shows that w? + awz® + Bz* = (w — 3(6r% +3r —
5)z%)2.



Whence the multiplicity of w — %(67"2 + 3r — 5)2% is at least 3.

It is in fact obvious that p,(S) = 0; moreover it is also clear that [2K|
contains the divisors corresponding to the quadrics Qg = xz and @ = yt:
on the other hand these two quadrics generate a fixed part free pencil on
X, therefore the corresponding pencil in |2Kg| has no rational curve in its
fixed part; whence S is minimal. Since K% = 1, it follows that the bigenus
P,(S) = 2, hence the bicanonical system is precisely the above pencil.

We can proceed further by using the Z/4Z—invariance of Fj, since then
|3Ks| is generated by the Z/4Z orbit of the cubic Cy = a(z + my + az)t? +
tey + a’yzt + £(6r* + 3r — b)xzt.

If o is the generator of the Z/4Z action such that o(z) = y, let us set
Cl - O'(C()), CQ = 0'2(00), 03 = 0'3(00).

In this way, also for the Craighero Gattazzo surface, we can calculate using
the computer algebra program Macaulay2 what is the minimal number m such
that the kernel of the map S™(H°(2K)) ® S*(H°(3K)) — H°((2m + 6)K) is
not trivial; and again the answer we get is m = 3.

At the moment we cannot yet determine whether there do exist numerical
Godeaux surfaces with bigger values of m =5 or 7.

The explicit equation of this polynomial is

— (3 + 57 + 1)Q3CoCy +
+ QQ1[=Tr(CE + C2) — 14(r +1)(CoCh + CoC3) — T(r + 1)(C2 + C2) +
+ (r? +4r — 9)CoCo — 7(r* + 1 + 1)(C,Cy + CyC3) — (1172 + 167 + 6)C,Cs] +
+ QoQI7(r + 1)(C3 + C3) + 7(r* + r 4+ 1)(CoCy + CyC3) + 7r(CE + C3) +
+ (1172 4+ 167 4 6)CoCy + 14(r + 1) (C1Cs + CoCs) — (r* 4 4r — 9)C1C5] +
+ (3r* + 57 + 1)Q3C,Cs

We can combine the results of our calculations above with the previous
results of Craighero and Gattazzo ([CG]) and Dolgachev and Werner ([DW]),

THEOREM 5.2.1. The Craighero Gattazzo surface is a simply connected
numerical Godeaux surface with ample canonical bundle. The bicanonical sys-
tem has exactly 4 distinct base points and contains exactly two hyperelliptic
fibres with multiplicity 1.

Proof.

We need only to verify the last two assertions.



Recall that by [DW], S does not contain (—2)—curves; so, by lemma 2.1.1,
2K has no fixed part.

Restricting to the line z = y = 0 the equation Fj, we get the polynomial
az’t® + 23t*. So the smooth point of X of coordinates (0,0, —a, 1) is a base
point of the bicanonical system of 2Kg; since its orbit by the Z/47Z action
consists of four distinct points, we have gotten 4 distinct base points. These
build up the whole base locus because (2Ks)? = 4.

We have shown before that the minimal m such that the kernel of the map
S™(H°(2K)) ® S*(H°(3K)) — H°((2m+6)K) is not trivial, is 3. This allows
us to conclude, by theorem 2.4.1, that there are two hyperelliptic bicanonical
divisors (counted with multiplicity).

But the Z /47 action on X induces a Z /27 action on the bicanonical system
(since the bicanonical sections are invariant by o?). So, if there were only one
hyperelliptic bicanonical divisor (with multiplicity two), it would be cut by a
o— invariant quadric in the pencil generated by Q¢ and )1, i.e. by Qo + Q1
or Qo — Q1.

But we have written down explicitly the tricanonical system, so we can
explicitly write the tricanonical images of these two divisors. We can prove
that neither of them is hyperelliptic, because otherwise we would find three
quadrics containing the image of one of them, whereas we have checked with
the program Macaulay2 that in both cases there is only one such a quadric.

O

5.3. The local moduli space of the Craighero Gattazzo surface

It is known that the local moduli space of the Barlow surface is smooth of
dimension 8 (cf. [CL], and also [Lee]). The main scope of this section is to
prove that the same holds for the Craighero Gattazzo surface:

THEOREM 5.3.1. The local moduli space of the Craighero Gattazzo surface
18 smooth of dimension 8.

Proof.

Let X be the quintic constructed by Craighero and Gattazzo, and 7 : S —
X its minimal resolution.

By Kodaira and Spencer’s first main result in deformation theory (cf. [KS],
also [KM]) our claim will be stablished if we show that h'(Og) = 8, h?(Og) =
0.



In fact, h°(©g) = 0, since S is of general type, and moreover h'(©g) —
h?*(©s) = —x(05) = 10x(0s) — 2K% = 8. Therefore, it suffices to prove that
h'(©g) = 8.

Applying to the standard exact sequence
0= Ox(=5) = Qpx = Ux =0
the functor Home, (-, Ox), we get the standard long exact sequence

H(Opsx) = H°(Ox(5)) =
— Extl, (2, Ox) = H' (Opsx) — H'(Ox(5)) —

— E.’L’téx (Q;—, 0)() — H2(6P3|X).

However, taking the restriction to X of the Euler exact sequence
0— Ox = Ox(1)* = Opsx — 0
we can easily compute that H'(Opsx) = H?(Ops x) = 0.
Therefore, keeping also in mind that H'(Ox(5)) = 0, we find that the map
H(Ox(5)) EN Eaxty (U, Ox) is surjective and that Ext}, (Q,Ox) = 0.

In turn, applying the Ext spectral sequence, we obtain the following exact
sequence:

0 — H'(Ox) — Exty, (2, Ox) 5 H (Extp, (2, Ox)) — H*(Ox) — 0.

We are now going to show the vanishing of H'(Ox).
Let us denote by p the natural projection H%(Ops(5)) — H°(Ox(5)), and
consider the map g o f op: H(Ops(5)) = H’(Extp, (2, Ox)).

The Z/4Z action on X allows us to choose a basis in H%(Ops(5)), say
vy, ... ,Use, S.t., if 0 is the generator of the action given in the previous section,

vj iftl <wv; <14

1, if 15 <w; <28
—v; i 29 <w; <42
—w; if 43 <wv; <56

o(vj) =

(notice in fact that o acts freely on the set of monomials of degree 5).

We observe that H°(Exty, (2, Ox)), as a representation of Z/4Z, is iso-
morphic to the direct sum of the quotients of Ox by the jacobian ideal in the



4 singular points of X, and these addenda are permuted by o, since the 4
singular points are an orbit for o.

Thus the map H%(Ops(5)) — H°(Exty, (U, Ox)) is given via a matrix of
the following form:

A B c D
A B -C —iD
A -B C -D

A —B -C D
where every block is a matrix of size 10 x 14. We observe immediately that
the above matrix has the same rank of the matrix
A 0 0 O
0 B 0 O
0 0 C O
0 0 0 D

We have explicitly checked with the program Macaulay2 that the matrices
A, B, C, D have maximal rank, so that g is a surjective map; since

dim Exty (U, Ox) = dim H°(Exty (Q, Ox)) = 40,
it follows that g is an isomorphism and therefore H'(Ox) = H*(Ox) = 0.

By [BW] m.(©s5) = Ox. So, by the Leray spectral sequence we get
H'(0s) &2 H°(R'7T.Og), and the last vector space equals, by the theorem
on formal functions ([H])

lim H' (Osjnp),

where D is the exceptional locus of 7.

Since D consists of the sum of the four elliptic curves D, ..., Dy, corre-
sponding to the 4 singular points of X, we can conclude that

h'(©g) = 4 dim limHl(@s‘nc),
—

where C is a smooth elliptic curve with C? = -1, KsC = 1.

So we are left with proving the following lemma:

LEMMA 5.3.2. Let S a smooth surface containing a smooth elliptic curve
with normal bundle of degree —1. Then

—



Proof.

Since a simple elliptic singularity is analytically isomorphic to the blow
down of the 0-section in the normal bundle to the exceptional curve (cf. [R1],
[Lau]), we can assume, w.l.o.g., that S the total space of a line bundle over C
of degree —1, that is, O¢(—p) for some p € C.

By the exact sequence
0— ®C — ®S|C’ — (’)(;(—p) — 0,
where C' is a smooth elliptic curve (thus ©¢ = O¢), we get h'(Og)c) = 2.

Tensoring this exact sequence by O¢(mp), we obtain, Ym > 0, that
h!'(©g1c(mp)) = B (Oc((m — 1)p)), whence we get 0 if m > 2, 1 for m = 1.

Applying this result to the exact sequence
0— @S\C(_(n — 1)0) — @S\nC’ — ®S|(n—1)C — 0

we get that for n > 3, the restriction map H'(Ogjnc) — H'(Os|m-1)c) is an
isomorphism, therefore

lim A 1(®|7LC) = H 1(®|20)
«—
and 2 < hl((")slzc) < 3.

Let us now consider the canonical projection g : S — C'; the fibre of ¢ on
every point is contractible, so for every line bundle L on S, h%(Rq,L) = 0,
then A'(g.L) = h'(L). Moreover, ¢.(Os) = @,,5, Oc(np).

Consider the exact sequence

(#) 0— q*OC(_p) — @5 — q*@c(%“ 05) —0

Tensoring this sequence by Og(—2C) = ¢*O¢(2p), since
H'(q¢'0¢ ® Os(—20)) = H'(¢.0s ® Oc(2p)) =

H' (D 0c(np) ® Oc(2p)) = @ H'(Oc(np)),

n>0 n>2
we get hl(eg)(—QC) = hz((’)s)(—QC) = 0, SO h1(65|20) = h,l(@,g)
Again by (#), since

h'(¢*©¢) = h'(g.Os) Zh (Oc(np))

n>0

W (q"Oc(=p)) = > h'(Oc(np))

n>—1



remembering that we have shown that 2 < h'(Ogpc) = h'(O5) < 3, we see
that we have to prove that the projection map

H°(©s) — H’(¢"O¢)
is not surjective.

We claim that we can write S = (C* x C)/ ~, where ~ is the equivalence
relation generated by (z,w) ~ (u?z, pwz). C C S is defined by the equation
w =0, s0 that C 2 C*/ < z ~ p?z >.

In fact we can assume the point p to be the origin of the elliptic curve
C, and we observe that every elliptic curve occurs as a quotient of C* as
above. Since the functional equation of the Riemann theta function is then
f(u?2) = =121 f(2), we obtain the desired assertion.

We shall prove now that the global holomorphic never vanishing section of
¢*O¢ defined by zai is not a projection of a global section of Og.

In fact, a global holomorphic vector field on S can be written as a(z, w)-2 5, T
b(z, w) 2 5o With a,b global holomorphic functions on C* x C satisfying the fol-
lowing functional equations: Vz,w € C* x C

a(z,w) = ua(;,u)

z
b(zaw):uwa’(ﬁvﬂ )+Mzb( 27# )

If there were a global holomorphic vector field on S whose projection on
q*O¢ is z%, then there would be a global holomorphic function b in C* x C
s.t.

b =t (=, ).
(2,w) = p~ wz + pz (uz,uz)

Let us write b as a power series

E bpiz"w".

neZ,ieN
Then our condition can be Written as :

ptwz = bz, w) — pzb( Z;M me 2w’ _“'Z(E) (u—) ) =

— § :bm(znwz o ,uz—|—172nzn+lfzwz);
n,i

looking at the coefficient of wz we get pu=! = by (1 — u°) = 0, a contradiction.






Bibliography

[Bal] Barlow, R., Some new surfaces with p, = 0, Duke Math. J., 51:4 (1984), 889-904.

[Ba2] Barlow, R., A simply connected surface of general type with p, = 0, Invent. Math., 79
(1985), 293-301.

[Ba3] Barlow, R., Rational equivalence of zero cycles for some more surfaces with p; = 0,
Invent. Math., 79 (1985), 303-308.

[BPV] Barth, W., Peters, C., Van de Ven, A., Compact complezx surfaces, Springer-Verlag,
1984.

[Blo] Bloch, S., Lectures on algebraic cycles, Duke University Mathematics Series IV,
Durham 1980.

[BKL] Bloch, S., Kas, A., Lieberman, D., Zero cycles on surfaces with p, = 0, Compositio
Math., 33 (1976), 135-145.

[Bo] Bombieri, E., Canonical models of surfaces of general type, Publ. Math. LH.E.S., 42
(1973), 173-219.

[BC] Bombieri, E., Catanese, F., The tricanonical map of a surface with K* =2, p, = 0., in
C.P. Ramanujam- A Tribute, Stud. in Math. n. 8, Tata Inst., Bombay (1978), 279-290.

[Bu] Burniat, P., Sur les surfaces de genre P12 > 0, Ann. Mat. Pura e Appl. (4), 71 (1966),
1-24.

[BW] Burns, D.M., Jr., Wahl, J.M., Local contributions to global deformations of surfaces,
Invent. Math., 26 (1974), 67-88.

[Cam] Campedelli, L., Sopra alcuni piani doppi notevoli con curve di diramazione del decimo
ordine, Atti Acc. Naz. dei Lincei, 15 (1932), 536-542.

[Cas] Castelnuovo, G., Sulle superficie di genere zero, Memorie Soc. Ital. Scienze (3), 10
(1896), 103-123.

[Catl] Catanese, F., Pluricanonical mappings of surfaces with K> = 1,2, ¢ = p, = 0, in
C.IM.E. Algebraic surfaces, Liguori Editore, Napoli (1981), 247-266.

[Cat2] Catanese, F., Pluricanonical Gorenstein curves, in Enumerative geometry and clas-
sical algebraic geometry, Proc. Nice 1981, Prog. Math. (Birkhduser), 24 (1982), 50-96.

[Cat3] Catanese, F., Commutative algebra methods and equations of regular surfaces, in
Algebraic Geometry Bucharest 1982, LNM 1056 (1984), 68-111.

[Cat4] Catanese, F., Homological algebra and algebraic surfaces, in Algebraic Geometry
Santa Cruz 1995, Proc. of AMS Symp. Pure Math. 62:1 (1997), 3-56.

[CD] Catanese F., Debarre, O., Surfaces with K* =2, p, =1, ¢ =0, J. reine angew. Math.
395 (1989), 1-55.

[CF] Catanese F., Franciosi, M., Divisors of small genus on algebraic surfaces and projective
embeddings, in Proc. of the 1993 Hirzebruch 65 Conference on Alg. Geom., Israel Math.
Conf. Proc. vol.9 (1996), Contemp. Math. (AMS), 109-140.

91



[CFHR] Catanese F., Franciosi, M., Hulek, K., Reid, M., Embedding of curves and surfaces,
to appear in Nagoya Math. Journal, 154 (June 1999).

[CL] Catanese, F., Le Brun, C., On the scalar curvature of Einstein manifolds., Math. Res.
Letters 4 (1997), 843-854.

[CP] Catanese, F., Pignatelli, R., On simply connected Godeauz surfaces, to appear in Com-
plex Analysis and Algebraic Geometry - Volume dedicated to the memory of Michael
Schneider, de Gruyter Proc. in Math., ed. Schreyer, F.-O. and Peternell, T..

[Ci] Ciliberto, C., Sul grado dei generatori dell’anello canonico di una superficie di tipo
generale, Rend. Sem. Mat. Univ. Polit. Torino, 41:3 (1983), 83-111.

[CG] Craighero, P., Gattazzo, R. Quintic surfaces of P> having a non singular model with
g =pg =0, P» #0, Rend. Sem. Mat. Univ. Padova, 91 (1994), 187-198.

[Doll] Dolgachev, I., On rational surfaces with a pencil of elliptic curves, Izv. Akad. Nauk
SSSR. (ser. math.), 30 (1966), 1073-1100 (in russian).

[Dol2] Dolgachev, I., On Severi’s conjecture on simply connected algebraic surfaces, Soviet
Math. Doklady, 7 (1966), 1169-1172.

[Dol3] Dolgachev, L., Algebraic surfaces with p, = ¢ = 0, in C.LM.E. Algebraic surfaces,
Liguori Editore, Napoli (1981), 97-215.

[DW] Dolgachev, I., Werner, C., A simply connected numerical Godeauz surface with ample
canonical class, to appear in Jour. Alg. Geom.

[E1] Enriques, F., Un’ osservazione relativa alle superficie di bigenere uno, Rend. Acad. Sci.
Bologna, 1908, 40—45.

[E2] Enriques, F., Le superficie algebriche, Zanichelli, Bologna, 1949.

[G1] Godeaux, L., Sur une surface algébriques de genre zero et de bigenre deuz, Atti Acad.
Naz. Lincei, 14 (1931), 479-481.

[G2] Godeaux, L., Les surfaces algébriques non rationelles de genres arithmétique et
géométriques nuls, Actulité Scientifiques et Industrielles 123, Exposés de Geométrie,
IV, Hermann Paris, 1934.

[GH] Griffiths, P., Harris, J., Principles of algebraic geometry, John Wiley & Sons, 1978.

[H] Hartshorne, R., Algebraic Geometry, G.T.M. 52, Springer-Verlag, 1977.

[KM] Kodaira, K., Morrow, J., Complez Manifolds, New York, Holt, Rinehart and Winston,
1974.

[KS] Kodaira, K., Spencer, D.C., On deformations of complex analytic structures I-II, Ann.
Math., 67 (1958), 328—466.

[Kot1] Kotschick, D., On manifolds homeomorphic to CP? #8@2, Invent. Math., 95:3
(1989), 591-600.

[Kot2] Kotschick, D., On the pluricanonical maps of Godeaux and Campedelli surfaces, Int.
J. Math., 5:1 (1994), 53-60.

[IM] Inose, H., Mizukami, M., Rational equivalence of 0-cycles on some surfaces of general
type with p, = 0, Math. Ann., 244 (1979), 205-217.

[Ino] Inoue, M., Some new surfaces of general type, Tokyo J. Math., 17:2 (1994), 295-319.

[Lan] Langer, A., Pluricanonical systems on surfaces with small K2, to appear in Int. J.
Math.

[Lau] Laufer, Henry B. On minimally elliptic singularities, Am. J. Math., 99 (1977), 1257—
1295.

[Lee] Lee, Y., Bicanonical pencil of a determinantal Barlow surface, to appear in Trans. of
the Amer. Math. Soc.



[L] Lipman, J., Dualizing sheaves, differentials and residues on algebraic varieties, Aster-
isque 117, 1984.

[ML] Mendes Lopes, M. The relative canonical algebra for genus three fibrations Thesis,
University of Warwick, 1989.

[Mil] Miyaoka, Y., Tricanonical maps of numerical Godeauz surfaces, Invent. Math., 34
(1976), 99-111.

[Mi2] Miyaoka, Y., On numerical Campedelli surfaces, in Complez analysis and algebraic
geometry, Cambridge Univ. Press (1977), 113-118.

[Mul] Mumford, D., The canonical ring of an algebraic surface, Ann. Math II, 76 (1962),
612-615.

[Mu2] Mumford, D. Lectures on curves on an algebraic surface, Ann. of Math. Stud., 59,
Princeton University Press, 1966.

[Mu3] Mumford, D., Rational equivalence of O-cycles on surfaces , J. Math. Kyoto Univ.,
9 (1969), 195-204.

[N] Naie, D., Surfaces d’Enriques et une construction de surfaces de type général avec
pg = 0, Math. Zeit., 215 (1994), 269-280.

[OVdV] Okonek, C., Van de Ven, A., ['-type-invariants associated to PU(2)-bundles and the
differentiable structure of Barlow’s surface, Invent. Math. 95:3 (1989), 601-614.

[OP] Oort, F., Peters, C., A Campedelli surface with torsiongroup 7 /2Z, Indag. Math., 43
(1981), 399-407.

[Pet] Peters, C., On two types of surfaces of general type with vanishing geometric genus,
Invent. Math. 32 (1976), 33-47.

[R1] Reid, M., Elliptic Gorenstein singularities of surfaces, manuscript ca. 1975.

[R2] Reid, M., Surfaces with p, = 0, K? = 1, Jour. Fac. Sc. Univ. Tokyo, IA , 25:1 (1978),
75-92.

[R3] Reid, M., A simply connected surface of general type with p, = 0, K? = 1 due to
Rebecca Barlow, manuscript ca. 1981.

[R4] Reid, M., Campedelli versus Godeauz, in Problems in the theory of surfaces and their
classification, Cortona 1988, Catanese, F. et al. ed., Symp. Math., 32 (1991), London:
Academic Press., 309-365.

[Se] Severi, F. Collogue de géométrie algébrique Liége 1949 , George Thome, Liege, Paris
1950, p.9.

[St] Stagnaro, E., On Campedelli Branch Loci, Ann. Univ. Ferrara sez. VII, 43 (1997), 1-26.

[V] Voisin, C. , Sur les zero-cycles de certaines hypersurfaces munies d’un automorphisme,
Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 19:4 (1992), 473-492.

[Werl] Werner, C., A surface of general type with p, = ¢ = 0, K? = 1, Manuscr. Math.,
84:3-4 (1994), 327-341.

[Wer2] Werner, C., A four-dimensional deformation of a numerical Godeauz surface, Trans.
Am. Math. Soc., 349:4 (1997), 1515-1525.



