Fibrations of low genus and surfaces with $q = p_g = 1$

Roberto Pignatelli, Trento

joint work with F. Catanese

International Mediterranean Congress of Mathematics Almería 2005

Outline

Introduction

- Situation and motivation
- The geometrical interpretation
- The structure theorems
 - The relative canonical model
 - *g* = 2
 - *g* = 3
- 3 Minimal surfaces of general type with $p_g = q = 1$
 - Known results
 - The classification of the case $K^2 = 3$

<□> < E> < E> < E > E| = のへ⊙

Introduction

The structure theorems Minimal surfaces of general type with $p_q = q = 1$

Outline

Situation and motivation The geometrical interpretation

Introduction

- Situation and motivation
- The geometrical interpretation
- 2) The structure theorems
 - The relative canonical model
 - *g* = 2
 - *g* = 3
- 3 Minimal surfaces of general type with $p_g=q=1$
 - Known results
 - The classification of the case $K^2 = 3$

Fibrations

Situation and motivation The geometrical interpretation

Definition

In this talk a genus *g* fibration is a surjective morphism $f: S \rightarrow B$ of a smooth compact complex surface onto a smooth curve

- with connected fibres of genus g
- relatively minimal
- g = 0: $S = \mathbb{P}(V)$ for V rank 2 vector bundle over B
- g = 1: elliptic fibrations, central in classification theory
- $g \ge 2$: the case we are interested in.

Fibrations

Situation and motivation The geometrical interpretation

Definition

In this talk a genus *g* fibration is a surjective morphism $f: S \rightarrow B$ of a smooth compact complex surface onto a smooth curve

- with connected fibres of genus g
- relatively minimal
- g = 0: $S = \mathbb{P}(V)$ for V rank 2 vector bundle over B
- g = 1: elliptic fibrations, central in classification theory
- $g \ge 2$: the case we are interested in.

Fibrations

Situation and motivation The geometrical interpretation

Definition

In this talk a genus *g* fibration is a surjective morphism $f: S \rightarrow B$ of a smooth compact complex surface onto a smooth curve

- with connected fibres of genus g
- relatively minimal
- g = 0: $S = \mathbb{P}(V)$ for V rank 2 vector bundle over B
- g = 1: elliptic fibrations, central in classification theory
- $g \ge 2$: the case we are interested in.

Fibrations

Definition

In this talk a genus *g* fibration is a surjective morphism $f: S \rightarrow B$ of a smooth compact complex surface onto a smooth curve

- with connected fibres of genus g
- relatively minimal
- g = 0: $S = \mathbb{P}(V)$ for V rank 2 vector bundle over B
- g = 1: elliptic fibrations, central in classification theory
- $g \ge 2$: the case we are interested in.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Situation and motivation

Fibrations

Definition

In this talk a genus *g* fibration is a surjective morphism $f: S \rightarrow B$ of a smooth compact complex surface onto a smooth curve

- with connected fibres of genus g
- relatively minimal
- g = 0: $S = \mathbb{P}(V)$ for V rank 2 vector bundle over B
- g = 1: elliptic fibrations, central in classification theory
- $g \ge 2$: the case we are interested in.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Situation and motivation

Fibrations

Situation and motivation The geometrical interpretation

Definition

In this talk a genus *g* fibration is a surjective morphism $f: S \rightarrow B$ of a smooth compact complex surface onto a smooth curve

- with connected fibres of genus g
- relatively minimal
- g = 0: $S = \mathbb{P}(V)$ for V rank 2 vector bundle over B
- g = 1: elliptic fibrations, central in classification theory
- $g \ge 2$: the case we are interested in.

Situation and motivation The geometrical interpretation

- Find numerical conditions for the existence of genus *g* fibrations (cf. Horikawa, Xiao, ...)
- Develop constructive methods to classify minimal surfaces of general type with low values of the invariants

•
$$K^2$$
,
• $q = h^1(\mathcal{O}_S)$,
• $p_g = h^2(\mathcal{O}_S)$,
• $\chi := \chi(\mathcal{O}_S) = 1 - q + p_g$
(cf. Persson, ...)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ⊨ ◆ ○ へ ○ ▶

Situation and motivation The geometrical interpretation

- Find numerical conditions for the existence of genus *g* fibrations (cf. Horikawa, Xiao, ...)
- Develop constructive methods to classify minimal surfaces of general type with low values of the invariants

•
$$K^2$$
,
• $q = h^1(\mathcal{O}_S)$,
• $p_g = h^2(\mathcal{O}_S)$,
• $\chi := \chi(\mathcal{O}_S) = 1 - q + p_g$
(cf. Persson, ...)

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Situation and motivation The geometrical interpretation

Outline

Introduction

- Situation and motivation
- The geometrical interpretation
- 2 The structure theorems
 - The relative canonical model
 - *g* = 2
 - *g* = 3
- 3 Minimal surfaces of general type with $p_g = q = 1$
 - Known results
 - The classification of the case $K^2 = 3$

q = 2: classical approach

Situation and motivation The geometrical interpretation

Every smooth genus 2 curve is hyperelliptic: its canonical map is a double cover of \mathbb{P}^1 branched on 6 points

Glueing these maps one gets a double cover of a ruled surface

More precisely we get a rational map of degree 2

$$S \dashrightarrow \mathbb{P}(V_1)$$

where $V_1 = f_* \omega_{S|B}$ with $\omega_{S|B} := \omega_S \otimes f^* \omega_B^{-1}$

q = 2: classical approach

Situation and motivation The geometrical interpretation

Every smooth genus 2 curve is hyperelliptic: its canonical map is a double cover of \mathbb{P}^1 branched on 6 points

Glueing these maps one gets a double cover of a ruled surface

More precisely we get a rational map of degree 2

 $S \dashrightarrow \mathbb{P}(V_1)$

where $V_1 = f_* \omega_{S|B}$ with $\omega_{S|B} := \omega_S \otimes f^* \omega_B^{-1}$

q = 2: classical approach

Situation and motivation The geometrical interpretation

Every smooth genus 2 curve is hyperelliptic: its canonical map is a double cover of \mathbb{P}^1 branched on 6 points

Glueing these maps one gets a double cover of a ruled surface

More precisely we get a rational map of degree 2

 $S \dashrightarrow \mathbb{P}(V_1)$

where $V_1=\mathit{f}_*\omega_{S|B}$ with $\omega_{S|B}:=\omega_S\otimes \mathit{f}^*\omega_B^{-1}$

(ロ) (同) (三) (三) (三) (三) (○)

q = 2: classical approach

Situation and motivation The geometrical interpretation

Every smooth genus 2 curve is hyperelliptic: its canonical map is a double cover of \mathbb{P}^1 branched on 6 points

Glueing these maps one gets a double cover of a ruled surface

More precisely we get a rational map of degree 2

$$S \dashrightarrow \mathbb{P}(V_1)$$

where $V_1 = f_* \omega_{S|B}$ with $\omega_{S|B} := \omega_S \otimes f^* \omega_B^{-1}$

(ロ) (同) (三) (三) (三) (三) (○)

Situation and motivation The geometrical interpretation

The relative canonical map in genus 2

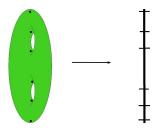


Figure: The canonical map of a genus 2 curve

Classical costruction: first construct the ruled surface $\mathbb{P}(V_1)$ (easy) and then a relative sextic with prescribed singularities are not

Situation and motivation The geometrical interpretation

The relative canonical map in genus 2

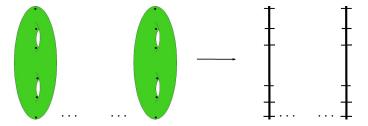


Figure: The relative canonical map of a genus 2 fibration

Classical costruction: first construct the ruled surface $\mathbb{P}(V_1)$ (easy) and then a relative sextic with prescribed singularities

Situation and motivation The geometrical interpretation

The relative canonical map in genus 2

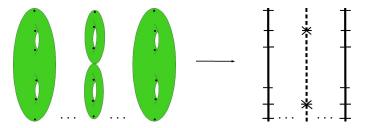


Figure: The relative canonical map of a genus 2 fibration near a special fibre

Classical costruction: first construct the ruled surface $\mathbb{P}(V_1)$ (easy) and then a relative sextic with prescribed singularities

Situation and motivation The geometrical interpretation

The relative canonical map in genus 2

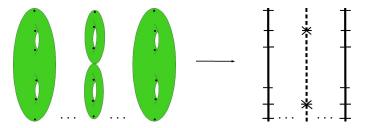


Figure: The relative canonical map of a genus 2 fibration near a special fibre

Classical costruction: first construct the ruled surface $\mathbb{P}(V_1)$ (easy) and then a relative sextic with prescribed singularities

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Situation and motivation The geometrical interpretation

g = 2: alternative approach

Geometric idea: the bicanonical map is nicer

The bicanonical map of a smooth genus 2 curve is a double cover of a conic in \mathbb{P}^2 branched on 6 points: it is simply the canonical map composed with the Segre embedding $\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$

Glueing these maps we get a morphism of degree 2

$$S o \mathcal{Q} \subset \mathbb{P}(V_2)$$

where Q is a conic subbundle of $\mathbb{P}(V_2)$, and $V_2 = f_* \omega_{S|B}^{\otimes 2}$

Situation and motivation The geometrical interpretation

g = 2: alternative approach

Geometric idea: the bicanonical map is nicer

The bicanonical map of a smooth genus 2 curve is a double cover of a conic in \mathbb{P}^2 branched on 6 points: it is simply the canonical map composed with the Segre embedding $\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$

Glueing these maps we get a morphism of degree 2

 $S o \mathcal{Q} \subset \mathbb{P}(V_2)$

where Q is a conic subbundle of $\mathbb{P}(V_2)$, and $V_2 = f_* \omega_{S|B}^{\otimes 2}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Situation and motivation The geometrical interpretation

g = 2: alternative approach

Geometric idea: the bicanonical map is nicer

The bicanonical map of a smooth genus 2 curve is a double cover of a conic in \mathbb{P}^2 branched on 6 points: it is simply the canonical map composed with the Segre embedding $\mathbb{P}^1 \hookrightarrow \mathbb{P}^2$

Glueing these maps we get a morphism of degree 2

$$S
ightarrow \mathcal{Q} \subset \mathbb{P}(V_2)$$

where Q is a conic subbundle of $\mathbb{P}(V_2)$, and $V_2 = f_* \omega_{S|B}^{\otimes 2}$

Situation and motivation The geometrical interpretation

The relative bicanonical map in genus 2

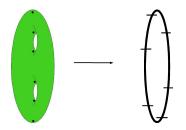


Figure: The bicanonical map of a genus 2 curve

Alternative costruction: first construct the (singular) conic bundle and then a relative cubic section without essential singularities

Situation and motivation The geometrical interpretation

The relative bicanonical map in genus 2

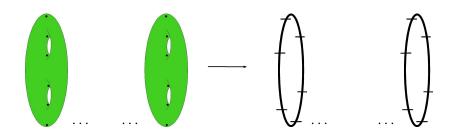


Figure: The relative bicanonical map of a genus 2 fibration

Alternative costruction: first construct the (singular) conic bundle and then a relative cubic section without essential singularities

Situation and motivation The geometrical interpretation

The relative bicanonical map in genus 2

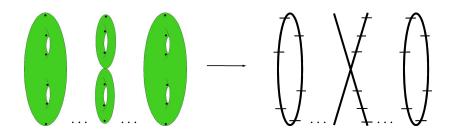


Figure: The relative bicanonical map of a genus 2 fibration near a special fibre

Alternative costruction: first construct the (singular) conic bundle and then a relative cubic section without essential singularities

Situation and motivation The geometrical interpretation

The relative bicanonical map in genus 2

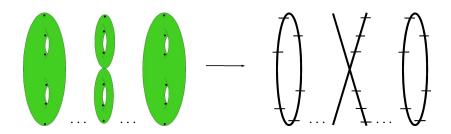


Figure: The relative bicanonical map of a genus 2 fibration near a special fibre

Alternative costruction: first construct the (singular) conic bundle and then a relative cubic section without essential singularities

1= nac

Situation and motivation The geometrical interpretation

g = 3 and nonhyperelliptic general fibre

The canonical map of a smooth genus 3 curve is

- either an embedding as a plane quartic
- or a double cover of a plane conic

The relative canonical map is a birational map

$$S \dashrightarrow \Sigma_1 \subset \mathbb{P}(V_1)$$

where $V_1 = f_* \omega_{S|B}$ and Σ_1 is a relative quartic singular along double conics corresponding to the hyperelliptic fibres

Situation and motivation The geometrical interpretation

g = 3 and nonhyperelliptic general fibre

The canonical map of a smooth genus 3 curve is

- either an embedding as a plane quartic
- or a double cover of a plane conic

The relative canonical map is a birational map

 $S \dashrightarrow \Sigma_1 \subset \mathbb{P}(V_1)$

where $V_1 = f_* \omega_{S|B}$ and Σ_1 is a relative quartic singular along double conics corresponding to the hyperelliptic fibres

(ロ) (同) (三) (三) (三) (三) (○)

Situation and motivation The geometrical interpretation

g = 3 and nonhyperelliptic general fibre

The canonical map of a smooth genus 3 curve is

- either an embedding as a plane quartic
- or a double cover of a plane conic

The relative canonical map is a birational map

$$S \dashrightarrow \Sigma_1 \subset \mathbb{P}(V_1)$$

where $V_1 = f_* \omega_{S|B}$ and Σ_1 is a relative quartic singular along double conics corresponding to the hyperelliptic fibres

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{The structure theorems} \\ \mbox{Minimal surfaces of general type with } p_g = q = 1 \end{array}$

g = 3 and nonhyperelliptic general fibre

The bicanonical map of a smooth genus 3 curve is an embedding in \mathbb{P}^5 as a quadric section

- of the Veronese surface in the nonhyperelliptic case
- of the cone over the rational normal quartic in the hyperelliptic case

The relative bicanonical map is a birational map

 $S \dashrightarrow \Sigma_2 \subset W \subset \mathbb{P}(V_2)$

where

- W is a 3-fold birational to P(V₁) whose gen. fibre is a Veronese
- Σ_2 is a relative quadric section of *W*

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{The structure theorems} \\ \mbox{Minimal surfaces of general type with } p_g = q = 1 \end{array}$

g = 3 and nonhyperelliptic general fibre

The bicanonical map of a smooth genus 3 curve is an embedding in \mathbb{P}^5 as a quadric section

- of the Veronese surface in the nonhyperelliptic case
- of the cone over the rational normal quartic in the hyperelliptic case

The relative bicanonical map is a birational map

 $S \dashrightarrow \Sigma_2 \subset W \subset \mathbb{P}(V_2)$

where

- W is a 3-fold birational to P(V₁) whose gen. fibre is a Veronese
- Σ_2 is a relative quadric section of *W*

 $\label{eq:hardward} \begin{array}{l} \mbox{Introduction} \\ \mbox{The structure theorems} \\ \mbox{Minimal surfaces of general type with } p_g = q = 1 \end{array}$

g = 3 and nonhyperelliptic general fibre

The bicanonical map of a smooth genus 3 curve is an embedding in \mathbb{P}^5 as a quadric section

- of the Veronese surface in the nonhyperelliptic case
- of the cone over the rational normal quartic in the hyperelliptic case

The relative bicanonical map is a birational map

$$S \dashrightarrow \Sigma_2 \subset W \subset \mathbb{P}(V_2)$$

where

- W is a 3-fold birational to P(V₁) whose gen. fibre is a Veronese
- Σ_2 is a relative quadric section of W

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{The structure theorems} \\ \mbox{Minimal surfaces of general type with } p_g = q = 1 \end{array}$

g = 3 and nonhyperelliptic general fibre

The bicanonical map of a smooth genus 3 curve is an embedding in \mathbb{P}^5 as a quadric section

- of the Veronese surface in the nonhyperelliptic case
- of the cone over the rational normal quartic in the hyperelliptic case

The relative bicanonical map is a birational map

$$S \dashrightarrow \Sigma_2 \subset W \subset \mathbb{P}(V_2)$$

where

- W is a 3-fold birational to P(V₁) whose gen. fibre is a Veronese
- Σ_2 is a relative quadric section of W

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{The structure theorems} \\ \mbox{Minimal surfaces of general type with } p_g = q = 1 \end{array}$

g = 3 and nonhyperelliptic general fibre

The bicanonical map of a smooth genus 3 curve is an embedding in \mathbb{P}^5 as a quadric section

- of the Veronese surface in the nonhyperelliptic case
- of the cone over the rational normal quartic in the hyperelliptic case

The relative bicanonical map is a birational map

$$S \dashrightarrow \Sigma_2 \subset W \subset \mathbb{P}(V_2)$$

where

- W is a 3-fold birational to P(V₁) whose gen. fibre is a Veronese
- Σ_2 is a relative quadric section of *W*

|--|

Outline

Introduction

- Situation and motivation
- The geometrical interpretation
- The structure theorems
 - The relative canonical model
 - *g* = 2
 - *g* = 3
- 3 Minimal surfaces of general type with $p_g = q = 1$
 - Known results
 - The classification of the case $K^2 = 3$

The relative canonical algebra

The relative canonical algebra of a fibration *f* is the sheaf of \mathcal{O}_B -algebras $\mathcal{R}(f) := \bigoplus_{i=0}^{\infty} V_i$, where $V_i = f_* \omega_{S|B}^i$

The fibre of $\mathcal{R}(f)$ over a point *p* is the canonical ring $R(f^{-1}(p), K_{f^{-1}(p)})$

 $\mathcal{R}(f)$ determines *f* since there is a birational morphism $S \rightarrow \mathbf{Proj}(\mathcal{R})$ commuting with the projections on *B*

The algebra structure induces a map σ_2 : $Sym^2V_1 \rightarrow V_2$

The relative canonical algebra

The relative canonical algebra of a fibration *f* is the sheaf of \mathcal{O}_B -algebras $\mathcal{R}(f) := \bigoplus_{i=0}^{\infty} V_i$, where $V_i = f_* \omega_{S|B}^i$

The fibre of $\mathcal{R}(f)$ over a point p is the canonical ring $R(f^{-1}(p), \mathcal{K}_{f^{-1}(p)})$

 $\mathcal{R}(f)$ determines *f* since there is a birational morphism $S \rightarrow \mathbf{Proj}(\mathcal{R})$ commuting with the projections on *B*

The algebra structure induces a map σ_2 : $Sym^2V_1 \rightarrow V_2$

The relative canonical algebra

The relative canonical algebra of a fibration *f* is the sheaf of \mathcal{O}_B -algebras $\mathcal{R}(f) := \bigoplus_{i=0}^{\infty} V_i$, where $V_i = f_* \omega_{S|B}^i$

The fibre of $\mathcal{R}(f)$ over a point *p* is the canonical ring $R(f^{-1}(p), \mathcal{K}_{f^{-1}(p)})$

 $\mathcal{R}(f)$ determines *f* since there is a birational morphism $S \rightarrow \mathbf{Proj}(\mathcal{R})$ commuting with the projections on *B*

The algebra structure induces a map σ_2 : $\mathit{Sym}^2V_1 o V_2$

The relative canonical algebra

The relative canonical algebra of a fibration *f* is the sheaf of \mathcal{O}_B -algebras $\mathcal{R}(f) := \bigoplus_{i=0}^{\infty} V_i$, where $V_i = f_* \omega_{S|B}^i$

The fibre of $\mathcal{R}(f)$ over a point p is the canonical ring $R(f^{-1}(p), \mathcal{K}_{f^{-1}(p)})$

 $\mathcal{R}(f)$ determines *f* since there is a birational morphism $S \rightarrow \mathbf{Proj}(\mathcal{R})$ commuting with the projections on *B*

The algebra structure induces a map $\sigma_2 : Sym^2 V_1 \rightarrow V_2$

Introduction The structure theorems Minimal surfaces of general type with $p_g=q=1$	The relative canonical model g = 2 g = 3

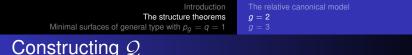
Introduction

- Situation and motivation
- The geometrical interpretation
- 2

Outline

The structure theorems

- The relative canonical model
- *g* = 2
- *g* = 3
- 3 Minimal surfaces of general type with $p_g = q = 1$
 - Known results
 - The classification of the case $K^2 = 3$



There is a divisor τ on B such that there is an exact sequence

$$0
ightarrow \textit{Sym}^2(\textit{V}_1) \stackrel{\sigma_2}{
ightarrow} \textit{V}_2
ightarrow \mathcal{O}_{ au}
ightarrow 0$$

The above exact sequence induces a

$$\xi \in Ext^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau}, Sym^{2}V_{1})/Aut_{\mathcal{O}_{B}}(\mathcal{O}_{\tau})$$

B, V_1 , τ , ξ determine the conic bundle $\mathcal{Q} \subset \mathbb{P}(V_2)$ In fact, if \mathcal{A} is the sheaf of algebras generated by V_1 , V_2 and σ_2 then $\mathcal{Q} \cong \operatorname{Proj}(\mathcal{A})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

There is a divisor τ on B such that there is an exact sequence

$$0 \to \textit{Sym}^2(\textit{V}_1) \stackrel{\sigma_2}{\to} \textit{V}_2 \to \mathcal{O}_\tau \to 0$$

The above exact sequence induces a

$$\xi \in \textit{Ext}^1_{\mathcal{O}_B}(\mathcal{O}_{ au},\textit{Sym}^2V_1)/\textit{Aut}_{\mathcal{O}_B}(\mathcal{O}_{ au})$$

B, V_1 , τ , ξ determine the conic bundle $\mathcal{Q} \subset \mathbb{P}(V_2)$ In fact, if \mathcal{A} is the sheaf of algebras generated by V_1 , V_2 and σ_2 then $\mathcal{Q} \cong \mathbf{Proj}(\mathcal{A})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

There is a divisor τ on B such that there is an exact sequence

$$0 \to \textit{Sym}^2(\textit{V}_1) \stackrel{\sigma_2}{\to} \textit{V}_2 \to \mathcal{O}_\tau \to 0$$

The above exact sequence induces a

$$\xi \in \textit{Ext}^1_{\mathcal{O}_B}(\mathcal{O}_{ au},\textit{Sym}^2V_1)/\textit{Aut}_{\mathcal{O}_B}(\mathcal{O}_{ au})$$

B, V_1 , τ , ξ determine the conic bundle $Q \subset \mathbb{P}(V_2)$ In fact, if A is the sheaf of algebras generated by V_1 , V_2 and σ_2 then $Q \cong \operatorname{Proj}(A)$

Introduction
The structure theorems
Minimal surfaces of general type with $p_g = q = 1$ The relative canonical model
g = 2
g = 3Constructing \mathcal{Q}

Lemma

There is a divisor τ on B such that there is an exact sequence

$$0 \to \textit{Sym}^2(\textit{V}_1) \stackrel{\sigma_2}{\to} \textit{V}_2 \to \mathcal{O}_\tau \to 0$$

The above exact sequence induces a

$$\xi \in \textit{Ext}^1_{\mathcal{O}_{\mathcal{B}}}(\mathcal{O}_{ au},\textit{Sym}^2V_1)/\textit{Aut}_{\mathcal{O}_{\mathcal{B}}}(\mathcal{O}_{ au})$$

B, V_1 , τ , ξ determine the conic bundle $Q \subset \mathbb{P}(V_2)$ In fact, if A is the sheaf of algebras generated by V_1 , V_2 and σ_2 then $Q \cong \mathbf{Proj}(A)$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Introduction The structure theorems Minimal surfaces of general type with $p_g = q = 1$	The relative canonical model $g=2$ g=3
Splitting $\mathcal{R}(f)$	

$\mathcal{R}(f) \cong \mathcal{A} \oplus \left(\mathcal{A}[-3] \otimes V_3^+\right) \textit{ where } V_3^+ \cong \text{det } V_1 \otimes \mathcal{O}_B(\tau)$

Roberto Pignatelli, Trento Fibrations of low genus and surfaces with $q = p_g = 1$

Introduction
The structure theorems
Minimal surfaces of general type with $p_g = q = 1$ The relative canonical model
g = 2
g = 3Splitting $\mathcal{R}(f)$

Lemma

$$\mathcal{R}(f) \cong \mathcal{A} \oplus \left(\mathcal{A}[-3] \otimes V_3^+\right)$$
 where $V_3^+ \cong \text{det } V_1 \otimes \mathcal{O}_B(\tau)$

In particular the algebra structure of ${\mathcal R}$ is determined by a map $(\mathit{V}_3^+)^2 \to {\mathcal A}_6$

Introduction The structure theorems Minimal surfaces of general type with $p_g = q = 1$ Splitting $\mathcal{R}(f)$

Lemma

$$\mathcal{R}(f) \cong \mathcal{A} \oplus \left(\mathcal{A}[-3] \otimes V_3^+\right)$$
 where $V_3^+ \cong \text{det } V_1 \otimes \mathcal{O}_B(\tau)$

In particular the algebra structure of \mathcal{R} is determined by a map $(V_3^+)^2 \to \mathcal{A}_6$ that is (up to automorphisms) by a section

$$w \in \mathbb{P}(H^0(ilde{\mathcal{A}}_6))$$

where $\tilde{\mathcal{A}}_{6}$ is a vector bundle determined by ξ

Splitting $\mathcal{R}(f)$

Lemma

$$\mathcal{R}(f) \cong \mathcal{A} \oplus \left(\mathcal{A}[-3] \otimes V_3^+\right) \textit{ where } V_3^+ \cong \text{det } V_1 \otimes \mathcal{O}_B(\tau)$$

In particular the algebra structure of \mathcal{R} is determined by a map $(V_3^+)^2 \rightarrow \mathcal{A}_6$ that is (up to automorphisms) by a section

 $w\in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$

where $\tilde{\mathcal{A}}_6 = (S^3(V_2)/(\det V_1)^2 \otimes V_2) \otimes (\det V_1 \otimes \mathcal{O}_B(\tau))^{-2}$ is a vector bundle determined by ξ

Splitting
$$\mathcal{R}(f)$$

Lemma

$$\mathcal{R}(f) \cong \mathcal{A} \oplus \left(\mathcal{A}[-3] \otimes V_3^+\right) \textit{ where } V_3^+ \cong \text{det } V_1 \otimes \mathcal{O}_B(\tau)$$

In particular the algebra structure of \mathcal{R} is determined by a map $(V_3^+)^2 \rightarrow \mathcal{A}_6$ that is (up to automorphisms) by a section

 $w\in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$

where $\tilde{\mathcal{A}}_6 = (S^3(V_2)/(\det V_1)^2 \otimes V_2) \otimes (\det V_1 \otimes \mathcal{O}_B(\tau))^{-2}$ is a vector bundle determined by ξ We say that (B, V_1, τ, ξ, w) is the 5-tuple associated to f

Minimal surfaces of general type with $p_q = q = 1$

The relative canonical model g = 2

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5-tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$ $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples Moreover $\chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1),$ $K_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1)$

Minimal surfaces of general type with $p_q = q = 1$

The relative canonical model g = 2

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5–tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples Moreover $\chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1),$ $K_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1)$

Minimal surfaces of general type with $p_q = q = 1$

The relative canonical model g = 2

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5-tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples Moreover $\chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1),$ $K_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1)$

Minimal surfaces of general type with $p_q = q = 1$

The relative canonical model g = 2a = 3

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5-tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples Moreover $\chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1),$ $K_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1)$

Introduction **The structure theorems** <u>Minimal surfaces of general type with</u> $p_q = q = 1$ The relative canonical model g = 2q = 3

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5-tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples Moreover $\chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1),$ $K_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1)$

Introduction The structure theorems Minimal surfaces of general type with $p_q = q = 1$ The relative canonical model g = 2a = 3

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5-tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples Moreover $\chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1),$ $K_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1)$

 Introduction
 The religion

 The structure theorems
 g = 2

 Minimal surfaces of general type with $p_g = q = 1$ g = 3

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5-tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples Moreover $\chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1),$ $K_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1)$

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5-tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples

 $\begin{array}{l} \textit{Moreover } \chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1), \\ \textit{K}_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1) \end{array}$

・ロト ・ 理ト ・ ヨト ・ ヨート ・ シック

Introduction The relation The structure theorems g = 2Minimal surfaces of general type with $p_{q} = q = 1$ q = 3

genus 2 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 2 5-tuple if *B* is a smooth curve, V_1 is a rank 2 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in \mathbb{P}(H^0(\tilde{\mathcal{A}}_6))$ and they verify three (easy to check) open conditions

Theorem

Associating to every genus 2 fibration its associated 5-tuple gives a bijection between genus 2 fibrations and admissible genus 2 5-tuples Moreover $\chi(\mathcal{O}_S) = \deg V_1 + (g(B) - 1),$ $K_S^2 = 2 \deg V_1 + \deg \tau + 8(g(B) - 1)$

・ロト ・ 理ト ・ ヨト ・ ヨート ・ シック

Introduction The re	elative canonical model
The structure theorems $g = 2$ linimal surfaces of general type with $p_g = q = 1$ $g = 3$	

Outline

Introduction

- Situation and motivation
- The geometrical interpretation
- 2

The structure theorems

- The relative canonical model
- *g* = 2
- *g* = 3
- 3 Minimal surfaces of general type with $p_g = q = 1$
 - Known results
 - The classification of the case $K^2 = 3$

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{The structure theorems} \\ \mbox{Minimal surfaces of general type with } \rho_g = q = 1 \\ \end{array} \begin{array}{c} \mbox{The relative canonical model} \\ \mbox{g = 2} \\ \mbox{g = 3} \end{array} \end{array}$

The associated 5–tuple of a genus 3 fibration

In this case we assume that every fibre of $f\colon S\to B$ is 2–connected

_emma

There is a divisor τ on B such that there is an exact sequence

$$0 \to Sym^2(V_1) \xrightarrow{\sigma_2} V_2 \to \mathcal{O}_{\tau} \to 0$$

It induces $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ determing at the same time V_2 and a 3–fold $W \subset \mathbb{P}(V_2)$ birational to $\mathbb{P}(V_1)$

The relative bicanonical model $\Sigma_2 \subset W$ is a relative quadric induced by a $w \in \mathbb{P}(H^0(\tilde{V}_4))$ for a v.b. \tilde{V}_4 determined by ξ

We associate to f the 5-tuple (B, V_1, τ, ξ, w)

The associated 5–tuple of a genus 3 fibration

In this case we assume that every fibre of $f: S \to B$ is 2–connected

Lemma

There is a divisor τ on B such that there is an exact sequence

$$0 \to \textit{Sym}^2(\textit{V}_1) \xrightarrow{\sigma_2} \textit{V}_2 \to \mathcal{O}_\tau \to 0$$

It induces $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ determing at the same time V_2 and a 3–fold $W \subset \mathbb{P}(V_2)$ birational to $\mathbb{P}(V_1)$

The relative bicanonical model $\Sigma_2 \subset W$ is a relative quadric induced by a $w \in \mathbb{P}(H^0(\tilde{V}_4))$ for a v.b. \tilde{V}_4 determined by ξ

We associate to f the 5-tuple (B, V_1, τ, ξ, w)

The associated 5–tuple of a genus 3 fibration

In this case we assume that every fibre of $f: S \to B$ is 2–connected

Lemma

There is a divisor τ on B such that there is an exact sequence

$$0 \rightarrow \textit{Sym}^2(\textit{V}_1) \stackrel{\sigma_2}{\rightarrow} \textit{V}_2 \rightarrow \mathcal{O}_{\tau} \rightarrow 0$$

It induces $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ determing at the same time V_2 and a 3–fold $W \subset \mathbb{P}(V_2)$ birational to $\mathbb{P}(V_1)$

The relative bicanonical model $\Sigma_2 \subset W$ is a relative quadric induced by a $w \in \mathbb{P}(H^0(\tilde{V}_4))$ for a v.b. \tilde{V}_4 determined by ξ

We associate to f the 5-tuple (B, V_1, τ, ξ, w)

The associated 5–tuple of a genus 3 fibration

In this case we assume that every fibre of $f: S \to B$ is 2–connected

Lemma

There is a divisor τ on B such that there is an exact sequence

$$0 \rightarrow \textit{Sym}^2(\textit{V}_1) \stackrel{\sigma_2}{\rightarrow} \textit{V}_2 \rightarrow \mathcal{O}_{\tau} \rightarrow 0$$

It induces $\xi \in Ext^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau}, Sym^{2}V_{1})/Aut_{\mathcal{O}_{B}}(\mathcal{O}_{\tau})$ determing at the same time V_{2} and a 3-fold $W \subset \mathbb{P}(V_{2})$ birational to $\mathbb{P}(V_{1})$

The relative bicanonical model $\Sigma_2 \subset W$ is a relative quadric induced by a $w \in \mathbb{P}(H^0(\tilde{V}_4))$ for a v.b. \tilde{V}_4 determined by ξ

We associate to f the 5-tuple (B, V_1, τ, ξ, w)

The associated 5–tuple of a genus 3 fibration

In this case we assume that every fibre of $f: S \to B$ is 2–connected

Lemma

There is a divisor τ on B such that there is an exact sequence

$$0 \rightarrow \textit{Sym}^2(\textit{V}_1) \stackrel{\sigma_2}{\rightarrow} \textit{V}_2 \rightarrow \mathcal{O}_{\tau} \rightarrow 0$$

It induces $\xi \in Ext^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau}, Sym^{2}V_{1})/Aut_{\mathcal{O}_{B}}(\mathcal{O}_{\tau})$ determing at the same time V_{2} and a 3-fold $W \subset \mathbb{P}(V_{2})$ birational to $\mathbb{P}(V_{1})$

The relative bicanonical model $\Sigma_2 \subset W$ is a relative quadric induced by a $w \in \mathbb{P}(H^0(\tilde{V}_4))$ for a v.b. \tilde{V}_4 determined by ξ

We associate to f the 5-tuple (B, V_1, τ, ξ, w)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The associated 5–tuple of a genus 3 fibration

In this case we assume that every fibre of $f: S \to B$ is 2–connected

Lemma

There is a divisor τ on B such that there is an exact sequence

$$0 \rightarrow \textit{Sym}^2(\textit{V}_1) \stackrel{\sigma_2}{\rightarrow} \textit{V}_2 \rightarrow \mathcal{O}_{\tau} \rightarrow 0$$

It induces $\xi \in Ext^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau}, Sym^{2}V_{1})/Aut_{\mathcal{O}_{B}}(\mathcal{O}_{\tau})$ determing at the same time V_{2} and a 3-fold $W \subset \mathbb{P}(V_{2})$ birational to $\mathbb{P}(V_{1})$

The relative bicanonical model $\Sigma_2 \subset W$ is a relative quadric induced by a $w \in \mathbb{P}(H^0(\tilde{V}_4))$ for a v.b. \tilde{V}_4 determined by ξ

We associate to *f* the 5-tuple (B, V_1, τ, ξ, w)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The relative canonical model g = 2q = 3

genus 3 5-tuples

Minimal surfaces of general type with $p_q = q = 1$

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(\tilde{V}_4)$ and they verify some open conditions

Theorem

Associating its 5-tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2-connected gives a bijection between those fibrations and admissible genus 3 5-tuple Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

The relative canonical model g = 2q = 3

genus 3 5-tuples

Minimal surfaces of general type with $p_q = q = 1$

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(\tilde{V}_4)$ and they verify some open conditions

Theorem

Associating its 5-tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2-connected gives a bijection between those fibrations and admissible genus 3 5-tuple Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

The relative canonical model g = 2q = 3

genus 3 5-tuples

Minimal surfaces of general type with $p_q = q = 1$

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(\tilde{V}_4)$ and they verify some open conditions

Theorem

Associating its 5-tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2-connected gives a bijection between those fibrations and admissible genus 3 5-tuple Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

The relative canonical model g = 2q = 3

genus 3 5-tuples

Minimal surfaces of general type with $p_q = q = 1$

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(\tilde{V}_4)$ and they verify some open conditions

Theorem

Associating its 5-tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2-connected gives a bijection between those fibrations and admissible genus 3 5-tuple Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

The relative canonical mode g = 2q = 3

Minimal surfaces of general type with $p_g = q = 1$ **genus 3 5-tuples**

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(V_4)$ and they verify some open conditions

Theorem

Associating its 5-tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2-connected gives a bijection between those fibrations and admissible genus 3 5-tuple Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

Minimal surfaces of general type with $p_q = q = 1$

The relative canonical model g = 2q = 3

genus 3 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(\tilde{V}_4)$ and they verify some open conditions

Theorem

Associating its 5-tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2-connected gives a bijection between those fibrations and admissible genus 3 5-tuple Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

Minimal surfaces of general type with $p_q = q = 1$

The relative canonical model g = 2q = 3

genus 3 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(\tilde{V}_4)$ and they verify some open conditions

Theorem

Associating its 5-tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2-connected gives a bijection between those fibrations and admissible genus 3 5-tuple Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

Minimal surfaces of general type with $p_q = q = 1$

The relative canonical model g = 2q = 3

genus 3 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(\tilde{V}_4)$ and they verify some open conditions

Theorem

Associating its 5–tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2–connected gives a bijection between those fibrations and admissible genus 3 5–tuple

Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

시니가 시OP가 시문가 시문가 관계적

SAR

Minimal surfaces of general type with $p_q = q = 1$

The relative canonical model g = 2q = 3

genus 3 5-tuples

Definition

 (B, V_1, τ, ξ, w) is an admissible genus 3 5-tuple if *B* is a smooth curve, V_1 is a rank 3 vector bundle on $B, \tau \in Div_+(B)$, $\xi \in Ext^1_{\mathcal{O}_B}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_B}(\mathcal{O}_{\tau})$ yielding a v.b. (V_2) , $w \in H^0(\tilde{V}_4)$ and they verify some open conditions

Theorem

Associating its 5-tuple to every genus 3 fibration with general fibre nonhyperelliptic and every fibre 2-connected gives a bijection between those fibrations and admissible genus 3 5-tuple Moreover $\chi(\mathcal{O}_S) = \deg V_1 + 2(g(B) - 1),$ $K_S^2 = 3 \deg V_1 + \deg \tau + 16(g(B) - 1)$

5000

Known results The classification of the case $K^2 = 3$

Minimal surfaces of general type with $p_g = q = 1$

Outline

Introduction

- Situation and motivation
- The geometrical interpretation
- 2 The structure theorems
 - The relative canonical model
 - *g* = 2
 - *g* = 3

③ Minimal surfaces of general type with $p_g=q=$ 1

- Known results
- The classification of the case $K^2 = 3$

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

 $p_g = q = 1$

Minimal surfaces of general type with $p_g = q = 1$ have $\chi(\mathcal{O}_S) = 1$, the minimal possible value

- By standard inequalities $2 \le K_S^2 \le 9$
- The case $K_S^2 = 2$ is classified indipendently by Horikawa and Bombieri-Catanese
- Existence is known also for $K^2 = 3, 4, 5, 8$ (Catanese, Ciliberto, Polizzi)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

 $p_g = q = 1$

Minimal surfaces of general type with $p_g = q = 1$ have $\chi(\mathcal{O}_S) = 1$, the minimal possible value

- By standard inequalities $2 \le K_S^2 \le 9$
- The case $K_S^2 = 2$ is classified indipendently by Horikawa and Bombieri-Catanese
- Existence is known also for $K^2 = 3, 4, 5, 8$ (Catanese, Ciliberto, Polizzi)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■ ● ● ●

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

 $p_g = q = 1$

Minimal surfaces of general type with $p_g = q = 1$ have $\chi(\mathcal{O}_S) = 1$, the minimal possible value

- By standard inequalities $2 \le K_S^2 \le 9$
- The case $K_S^2 = 2$ is classified indipendently by Horikawa and Bombieri-Catanese
- Existence is known also for $K^2 = 3, 4, 5, 8$ (Catanese, Ciliberto, Polizzi)

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

 $p_g = q = 1$

Minimal surfaces of general type with $p_g = q = 1$ have $\chi(\mathcal{O}_S) = 1$, the minimal possible value

- By standard inequalities $2 \le K_S^2 \le 9$
- The case $K_S^2 = 2$ is classified indipendently by Horikawa and Bombieri-Catanese
- Existence is known also for $K^2 = 3, 4, 5, 8$ (Catanese, Ciliberto, Polizzi)

Known results The classification of the case $K^2 = 3$

The case $K^2 = 3$

Minimal surfaces of general type with $p_q = q = 1$

The following theorem summarizes part of the results of Catanese and Ciliberto on surfaces with $K^2 = 3$, $p_g = q = 1$

Theorem

The Albanese of a minimal surface of general type with $K^2 = 3$, $p_g = q = 1$, is a genus g fibration with g = 2 or g = 3The case g = 3 gives an unirational component of dimension 5 of the moduli space of these surfaces The case g = 2 exists

They conjectured that this moduli space has two irreducible components, distinguished by the genus of the Albanese

Known results The classification of the case $K^2 = 3$

The case $K^2 = 3$

Minimal surfaces of general type with $p_q = q = 1$

The following theorem summarizes part of the results of Catanese and Ciliberto on surfaces with $K^2 = 3$, $p_g = q = 1$

Theorem

The Albanese of a minimal surface of general type with $K^2 = 3$, $p_g = q = 1$, is a genus g fibration with g = 2 or g = 3The case g = 3 gives an unirational component of dimension 5 of the moduli space of these surfaces The case g = 2 exists

They conjectured that this moduli space has two irreducible components, distinguished by the genus of the Albanese

Known results The classification of the case $K^2 = 3$

The case $K^2 = 3$

Minimal surfaces of general type with $p_q = q = 1$

The following theorem summarizes part of the results of Catanese and Ciliberto on surfaces with $K^2 = 3$, $p_g = q = 1$

Theorem

The Albanese of a minimal surface of general type with $K^2 = 3$, $p_g = q = 1$, is a genus g fibration with g = 2 or g = 3The case g = 3 gives an unirational component of dimension 5 of the moduli space of these surfaces The case g = 2 exists

They conjectured that this moduli space has two irreducible components, distinguished by the genus of the Albanese

Known results The classification of the case $K^2 = 3$

The case $K^2 = 3$

Minimal surfaces of general type with $p_q = q = 1$

The following theorem summarizes part of the results of Catanese and Ciliberto on surfaces with $K^2 = 3$, $p_g = q = 1$

Theorem

The Albanese of a minimal surface of general type with $K^2 = 3$, $p_g = q = 1$, is a genus g fibration with g = 2 or g = 3The case g = 3 gives an unirational component of dimension 5 of the moduli space of these surfaces The case g = 2 exists

They conjectured that this moduli space has two irreducible components, distinguished by the genus of the Albanese

Known results The classification of the case $K^2 = 3$

Minimal surfaces of general type with $p_g = q = 1$

Outline

Introduction

- Situation and motivation
- The geometrical interpretation
- 2 The structure theorems
 - The relative canonical model
 - *g* = 2
 - *g* = 3
- Minimal surfaces of general type with p_g = q = 1
 Known results
 - The classification of the case $K^2 = 3$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Known results The classification of the case $K^2 = 3$

The classification

Minimal surfaces of general type with $p_q = q = 1$

We proved

Theorem

The moduli space of minimal surface of general type with $K^2 = 3$, $p_g = q = 1$ has 4 connected components, all unirational of dimension 5

In particular, the case g = 2 gives three families

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Known results The classification of the case $K^2 = 3$

The classification

Minimal surfaces of general type with $p_q = q = 1$

We proved

Theorem

The moduli space of minimal surface of general type with $K^2 = 3$, $p_g = q = 1$ has 4 connected components, all unirational of dimension 5

In particular, the case g = 2 gives three families

Known results The classification of the case $K^2 = 3$

Minimal surfaces of general type with $p_g = q = 1$

 B, V_1, τ

We assume $f: S \to B$ genus 2 fibration with *B* elliptic, $K_S^2 = 3$, $p_g = q = 1$, and look for the 5 – *tuple* (*B*, V_1, τ, ξ, w): it follows deg $V_1 = \deg \tau = 1$

- *B* is any elliptic curve
- By Catanese and Ciliberto's results, V₁ is undecomposable, so we can assume up to translations V₁ ≅ E_[0](2, 1)
- $\tau \in B$ is a point

Known results The classification of the case $K^2 = 3$

Minimal surfaces of general type with $p_g = q = 1$

 B, V_1, τ

We assume $f: S \to B$ genus 2 fibration with *B* elliptic, $K_S^2 = 3$, $p_g = q = 1$, and look for the 5 – *tuple* (*B*, V_1, τ, ξ, w): it follows deg $V_1 = \deg \tau = 1$

- B is any elliptic curve
- By Catanese and Ciliberto's results, V₁ is undecomposable, so we can assume up to translations V₁ ≅ E_[0](2, 1)
- $\tau \in B$ is a point

Known results The classification of the case $K^2 = 3$

Minimal surfaces of general type with $p_g = q = 1$

 B, V_1, τ

We assume $f: S \to B$ genus 2 fibration with *B* elliptic, $K_S^2 = 3$, $p_g = q = 1$, and look for the 5 – *tuple* (*B*, V_1, τ, ξ, w): it follows deg $V_1 = \deg \tau = 1$

- *B* is any elliptic curve
- By Catanese and Ciliberto's results, V₁ is undecomposable, so we can assume up to translations V₁ ≅ E_[0](2, 1)
- $\tau \in B$ is a point

Known results The classification of the case $K^2 = 3$

Minimal surfaces of general type with $p_g = q = 1$

 B, V_1, τ

We assume $f: S \to B$ genus 2 fibration with *B* elliptic, $K_S^2 = 3$, $p_g = q = 1$, and look for the 5 – *tuple* (*B*, V_1, τ, ξ, w): it follows deg $V_1 = \deg \tau = 1$

- *B* is any elliptic curve
- By Catanese and Ciliberto's results, V₁ is undecomposable, so we can assume up to translations V₁ ≅ E_[0](2, 1)
- $\tau \in B$ is a point

Introduction The structure theorems <u>Minimal surfaces of general type with $p_q = q = 1$ </u>

Known results The classification of the case $K^2 = 3$

 $\xi \in Ext^1_{\mathcal{O}_{\mathcal{P}}}(\mathcal{O}_{ au}, Sym^2V_1)/Aut^{\mathcal{O}_{\mathcal{B}}}(\mathcal{O}_{ au})$

$Sym^2(E_{[0]}(2,1)) \cong \bigoplus_{i=1}^{3} L_i([0])$ where L_i are the nontrivial torsion 2 line bundles

 $Ext^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau}, Sym^{2}V_{1}) \cong H^{0}(L_{i}(\tau)) \cong \mathbb{C}^{3}$

and we can write $\xi\in\mathbb{P}^2$ as $\xi=(\mathit{f}_1:\mathit{f}_2:\mathit{f}_3),$ with $\mathit{f}_i\in H^0(\mathit{L}_i(au))$

Lemma

The number of f_i equal to zero is one more than the number fo indecomposable factors of V_2 .

We stratify our moduli space as $\mathcal{M}_I \cup \mathcal{M}_{II} \cup \mathcal{M}_{II}$ according to the number of indecomposable factors of V_2 : B, V_1, τ, ξ give respectively 4, 3 and 2 parameters in each case

Known results The classification of the case $K^2 = 3$

Minimal surfaces of general type with $p_g = q = 1$

 $\xi \in Ext^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau}, Sym^{2}V_{1})/\overline{A}ut_{\mathcal{O}_{B}}(\mathcal{O}_{\tau})$

 $Sym^2(E_{[0]}(2,1)) \cong \bigoplus_{i=1}^{3} L_i([0])$ where L_i are the nontrivial torsion 2 line bundles

$$\textit{Ext}^1_{\mathcal{O}_B}(\mathcal{O}_{\tau},\textit{Sym}^2V_1)\cong \textit{H}^0(\textit{L}_i(\tau))\cong\mathbb{C}^3$$

and we can write $\xi\in\mathbb{P}^2$ as $\xi=(\mathit{f}_1:\mathit{f}_2:\mathit{f}_3)$, with $\mathit{f}_i\in H^0(L_i(au))$

Lemma

The number of f_i equal to zero is one more than the number fo indecomposable factors of V_2 .

We stratify our moduli space as $\mathcal{M}_I \cup \mathcal{M}_{II} \cup \mathcal{M}_{II}$ according to the number of indecomposable factors of V_2 : B, V_1, τ, ξ give respectively 4, 3 and 2 parameters in each case

ロト (四) (王) (王) (王) (日) (の)

Introduction The structure theorems <u>Minimal surfaces of general type with $p_q = q = 1$ </u>

Known results The classification of the case $K^2 = 3$

 $\xi \in \textit{Ext}^1_{\mathcal{O}_{\mathcal{P}}}(\mathcal{O}_{ au},\textit{Sym}^2V_1)/\textit{Aut}_{\mathcal{O}_{\mathcal{B}}}(\mathcal{O}_{ au})$

 $Sym^2(E_{[0]}(2,1)) \cong \bigoplus_{i=1}^{3} L_i([0])$ where L_i are the nontrivial torsion 2 line bundles

$$\textit{Ext}^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau},\textit{Sym}^{2}\textit{V}_{1})\cong\textit{H}^{0}(\textit{L}_{i}(\tau))\cong\mathbb{C}^{3}$$

and we can write $\xi \in \mathbb{P}^2$ as $\xi = (f_1 : f_2 : f_3)$, with $f_i \in H^0(L_i(\tau))$

Lemma

The number of f_i equal to zero is one more than the number fo indecomposable factors of V_2 .

We stratify our moduli space as $\mathcal{M}_I \cup \mathcal{M}_{II} \cup \mathcal{M}_{II}$ according to the number of indecomposable factors of V_2 : B, V_1, τ, ξ give respectively 4, 3 and 2 parameters in each case

ロト (周) (ヨト (ヨト 三日) のへで

Introduction The structure theorems <u>Minimal surfaces of general type with $p_q = q = 1$ </u>

Known results The classification of the case $K^2 = 3$

 $\xi \in Ext^1_{\mathcal{O}_{\mathcal{P}}}(\mathcal{O}_{\tau}, Sym^2V_1)/Aut_{\mathcal{O}_{\mathcal{P}}}(\mathcal{O}_{\tau})$

 $Sym^2(E_{[0]}(2,1)) \cong \bigoplus_{i=1}^{3} L_i([0])$ where L_i are the nontrivial torsion 2 line bundles

$$\textit{Ext}^1_{\mathcal{O}_{\mathcal{B}}}(\mathcal{O}_{\tau},\textit{Sym}^2V_1)\cong \textit{H}^0(L_i(\tau))\cong\mathbb{C}^3$$

and we can write $\xi \in \mathbb{P}^2$ as $\xi = (f_1 : f_2 : f_3)$, with $f_i \in H^0(L_i(\tau))$

Lemma

The number of f_i equal to zero is one more than the number fo indecomposable factors of V_2 .

We stratify our moduli space as $\mathcal{M}_I \cup \mathcal{M}_{II} \cup \mathcal{M}_{II}$ according to the number of indecomposable factors of V_2 : B, V_1, τ, ξ give respectively 4, 3 and 2 parameters in each case

ロト (周) (ヨト (ヨト 三日) のへで

Introduction The structure theorems Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

 $\xi \in Ext^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau}, Sym^{2}V_{1})/Aut_{\mathcal{O}_{B}}(\mathcal{O}_{\tau})$

 $Sym^2(E_{[0]}(2,1)) \cong \bigoplus_{i=1}^{3} L_i([0])$ where L_i are the nontrivial torsion 2 line bundles

$$\textit{Ext}^{1}_{\mathcal{O}_{B}}(\mathcal{O}_{\tau},\textit{Sym}^{2}\textit{V}_{1})\cong\textit{H}^{0}(\textit{L}_{i}(\tau))\cong\mathbb{C}^{3}$$

and we can write $\xi \in \mathbb{P}^2$ as $\xi = (f_1 : f_2 : f_3)$, with $f_i \in H^0(L_i(\tau))$

Lemma

The number of f_i equal to zero is one more than the number fo indecomposable factors of V_2 .

We stratify our moduli space as $\mathcal{M}_I \cup \mathcal{M}_{II} \cup \mathcal{M}_{II}$ according to the number of indecomposable factors of V_2 : B, V_1 , τ , ξ give respectively 4, 3 and 2 parameters in each case

<□> < □> < □> < □> = □ = のへの

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

$w \in \mathbb{P}(H^0(ilde{\mathcal{A}}_6))$

By a result of Clemens the expected dimension is 5

- For M₁ we get H⁰(Ã₆) = 2: a family of dimension
 4 + 1 = 5. This family exists and that its general element is a double cover of Q with irreducible branch divisor
- For \mathcal{M}_{II} we get $H^0(\tilde{\mathcal{A}}_6) = 2$: a family of dimension 3 + 1 = 4, too small
- For \mathcal{M}_{III} we get $H^0(\tilde{\mathcal{A}}_6) = 4$ unless
 - $\tau = [0]$ and $H^0(\tilde{\mathcal{A}}_6) = 5$
 - τ is a nontrivial 2-torsion and $H^0(\tilde{A}_6) = 5$

three families of dimension 5. The first case (τ general) do not fullfil our conditions. The other two cases exist, double covers of Q with disconnected branch divisor

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

$w \in \mathbb{P}(H^0(ilde{\mathcal{A}}_6))$

By a result of Clemens the expected dimension is 5

- For M₁ we get H⁰(Ã₆) = 2: a family of dimension 4 + 1 = 5. This family exists and that its general element is a double cover of Q with irreducible branch divisor
- For \mathcal{M}_{II} we get $H^0(\tilde{\mathcal{A}}_6) = 2$: a family of dimension 3 + 1 = 4, too small
- For \mathcal{M}_{III} we get $H^0(\tilde{\mathcal{A}}_6) = 4$ unless
 - $\tau = [0]$ and $H^0(\tilde{A}_6) = 5$
 - τ is a nontrivial 2-torsion and $H^0(\tilde{\mathcal{A}}_6) = 5$

three families of dimension 5. The first case (τ general) do not fullfil our conditions. The other two cases exist, double covers of Q with disconnected branch divisor

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

$w \in \mathbb{P}(H^0(ilde{\mathcal{A}}_6))$

By a result of Clemens the expected dimension is 5

- For M₁ we get H⁰(Ã₆) = 2: a family of dimension 4 + 1 = 5. This family exists and that its general element is a double cover of Q with irreducible branch divisor
- For \mathcal{M}_{II} we get $H^0(\tilde{\mathcal{A}}_6) = 2$: a family of dimension 3 + 1 = 4, too small
- For \mathcal{M}_{III} we get $H^0(\tilde{\mathcal{A}}_6) = 4$ unless
 - $\tau = [0]$ and $H^0(\tilde{\mathcal{A}}_6) = 5$

• τ is a nontrivial 2-torsion and $H^0(\tilde{\mathcal{A}}_6) = 5$

three families of dimension 5. The first case (τ general) do not fullfil our conditions. The other two cases exist, double covers of Q with disconnected branch divisor

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

$w \in \mathbb{P}(H^0(ilde{\mathcal{A}}_6))$

By a result of Clemens the expected dimension is 5

- For M₁ we get H⁰(Ã₆) = 2: a family of dimension 4 + 1 = 5. This family exists and that its general element is a double cover of Q with irreducible branch divisor
- For \mathcal{M}_{II} we get $H^0(\tilde{\mathcal{A}}_6) = 2$: a family of dimension 3 + 1 = 4, too small
- For \mathcal{M}_{III} we get $H^0(\tilde{\mathcal{A}}_6) = 4$ unless
 - $\tau = [0]$ and $H^0(\tilde{\mathcal{A}}_6) = 5$
 - τ is a nontrivial 2-torsion and $H^0(\tilde{\mathcal{A}}_6) = 5$

three families of dimension 5. The first case (τ general) do not fullfil our conditions. The other two cases exist, double covers of Q with disconnected branch divisor

Minimal surfaces of general type with $p_q = q = 1$

Known results The classification of the case $K^2 = 3$

$w \in \mathbb{P}(H^0(ilde{\mathcal{A}}_6))$

By a result of Clemens the expected dimension is 5

- For M₁ we get H⁰(Ã₆) = 2: a family of dimension 4 + 1 = 5. This family exists and that its general element is a double cover of Q with irreducible branch divisor
- For \mathcal{M}_{II} we get $H^0(\tilde{\mathcal{A}}_6) = 2$: a family of dimension 3 + 1 = 4, too small
- For \mathcal{M}_{III} we get $H^0(\tilde{\mathcal{A}}_6) = 4$ unless
 - $\tau = [0]$ and $H^0(\tilde{\mathcal{A}}_6) = 5$
 - τ is a nontrivial 2-torsion and $H^0(\tilde{A}_6) = 5$

three families of dimension 5. The first case (τ general) do not fullfil our conditions. The other two cases exist, double covers of Q with disconnected branch divisor

For Further Reading I

F. Catanese, R. Pignatelli, Fibrations of low genus, I at http://xxx.lanl.gov as math.AG/0503294 or at http://www.science.unitn.it/ pignatel/papers.html

Thanks for your attention