Simple fibrations in (1,2) surfaces and 3-folds near the Noether line

Explicit Algebraic Geometry April 19th, 2023 Roberto Pignatelli University & Trento

$$vol(X) = n!$$
 lim sup $\frac{h^{o}(X, m K_{X})}{m \rightarrow \infty}$ $n = \dim X$

...

M=1
If X is a smooth curve of genus
$$g > 2$$

 $2N \ge vol(X) = 2(g-1)$
From now on: $p_g(X) = h^{\bullet}(X, K_X)$
n=2 Classical Noether Inequality
If X is a surface
 $N \ge vol(X) \ge 2p_g - 4$
since the canonical model of a surface is Governstein
n=3 3-dimensional Noether inequality
After a long work with contributions of several scholars we have
 $[T. Chen, H. Chen, C. Jiang '20]$
Theorem 1. Let X be a projective 3-fold of general type and either
 $p_g(X) \le 4$ or $p_g(X) \ge 11$. Then
 $Q_{+} \ge vol(X) \ge \frac{4}{3}p_g(X) - \frac{10}{3}$.
because the canonical model of a 3-fold is Q -forenstein

To my knowledge, the inequality vol (X) > 4 pg - 14 was first conjudined by 11. Reid.

One interpretation of the Noether inequality in dim 2

X canonical surface that is
"canonical model of a surface S of general type": Proj (
$$\oplus$$
 H^(S, m, K_j))
ils unique birational model with at most canonical singularities and Kxample
then $K_X^2 \ge 2pg-4$
WLOG $p_g \ge 2 \Longrightarrow$ the canonical image Σ of X is a nondegenerate subvariety
of H^{pg-1} of dimension 1 or 2
If $\dim \Sigma = 1 \implies K_X^2 \ge 4p_g-6$ Xiso's inequality
If $\dim \Sigma = 2 \implies K_X^2 \ge deg(\varphi_R)$. $deg \Sigma$ Q_R is the canonical map
If $\deg q_R = s$, then Σ is of general type and then $\deg \Sigma \ge 3p_g-2$ so $K^2 \ge 3p_g-7$
Otherwise $\deg \Sigma \ge p_g-2 \Longrightarrow K_Z^2 \ge 2p_g-4$

Surfaces " on the Noether line"

M. Noether - Envigues - Hovikawa

Annals of Mathematics, 104 (1976), 357-387

Algebraic surfaces of general type with small c_1^2 , I

By Eiji Horikawa*

In Section 1 we shall prove that the canonical map Φ_{κ} induces a holomorphic map of degree 2 onto a surface of degree n - 1 in \mathbf{P}^{n} , $n = p_{g} - 1$. We shall classify our surfaces according to their canonical images.

In Sections 3 and 5 we shall prove that minimal algebraic surfaces with given p_g and c_1^2 satisfying $c_1^2 = 2p_g - 4$ and $p_g \ge 3$ have one and the same deformation type provided that c_1^2 is not divisible by 8.

In Section 7 we shall study the case in which c_1^2 is divisible by 8. If we fix c_1^2 , these surfaces are divided into two deformation types. They are homotopically equivalent or not according to whether c_1^2 is divisible by 16 or not. It is not known whether these two deformation types are diffeomorphic or not when c_1^2 is divisible by 16.

Recently Rana-Rollensue proved that the interaction of the closures of these two components in the KSBA moduli space is not empty.

Horikawa proves that, if
$$K^{\frac{2}{2}} 2p_{g}-4$$
 and $p_{g} = 7$, then E is a
size-leffered-Hirzebruch surface life embedded in $lp^{p_{g}-1}$
 $b_{r} | \Delta_{0}^{+} \frac{(e+p_{g}-2)}{2} \Gamma | p_{g} \ge 2(e-1)$
Hue Δ_{0} is the section with $\Delta_{0}^{\pm} - e$
 Γ is the class of the values $\Gamma^{\frac{2}{2}}$
X is a double cover of life branched on $B \in 16 \Delta_{0} + (se+p_{g}+2)\Gamma l$
 $(B - \Delta_{0}) \cdot \Delta_{0} = 5(-e) + 3e+p_{g}+2 = p_{g}+2-2e \ge 0$
The exceptional family happens when $(B - \Delta_{0}) \cdot \Delta_{0} = 0$. Then $p_{g}=2(e-1)$
Then $p_{g_{1}}e+p_{g}-2$ are even $\Longrightarrow e$ is even
 $K^{\frac{2}{2}} \ge p_{g}-4 = 4e-8$ is divisible by B

Double cover description of the general surface in each family

Main famly

Fe

Exceptional family with K'die by 8

The ruling induces a genus 2 Exbration on X If X -> P' is a relatively minimal genus & Fibration then (see [Honikawa 127 / Xino jang 185-/ Catawse, - '06]] $K_{x}^{2} = 2 \chi(O_{x}) - 6 + deg T = 2p_{g} - 4 + deg t - 2q$ for z effective divisor on 11s supported on the image of the 2-disconnected fibers : F = A+B with A · B = 1 The z-disconnected fibres are those with special canonical rings. The genual fibre are hypersurfaces C6 C IP (1,1,3) The 2-disconnected fibres are complete intersections C2,6 C IP (1,1,2,3)

So the surfaces on the Norther line with pg = 7 are genus 2 fibritions with all fibres of type (c c IP(1,1,3) and pase 1P'

Toric description Calso in Rana-Rollenske 1221

$$\begin{bmatrix}
t_{0} t_{1} & x_{0} & x_{1} & 2 \\
(1 & 1 & 0 & e & b \\
0 & 0 & 1 & 1 & 3
\end{bmatrix}$$
and inclevant the I = $(t_{0}, t_{1}) \land (x_{0}, x_{1}, z)$
So we get $C^{5} \lor \lor (I) / (a^{*})^{2}$
 $(\lambda, \mu) (t_{0}, t_{1}, x_{0}, x_{1}, z) \rightarrow (\lambda t_{0}, \lambda t_{1}, \mu x_{0}, \lambda \mu x_{1}, \lambda \mu x_{2}, \lambda \mu x_{2}, z)$
IF
$$\int_{1}^{1} 1s a \text{ fibration in } P(1, 1, 3) \text{ singular along a section so}$$
IP

$$\begin{bmatrix} 0_{t_0} \end{bmatrix} = \begin{bmatrix} 0_{t_1} \end{bmatrix} = H \qquad \begin{bmatrix} 0_{x_1} \end{bmatrix} = H + eF \qquad \begin{bmatrix} 0_{t_2} \end{bmatrix} = 3H + bF$$
Take X $\in [6H + 2bF]$. X is defined by a polynomial of the form
$$\underbrace{2^2 + x_0^c} f_{2b} (t_0, t_1) + \ldots + x_0 \underbrace{x_1^c} f_{2b-5e} (t_0, t_1) + \underbrace{x_2^c} f_{2b-6e} (t_0, t_2)$$
with $f_1 (t_0, t_1)$ homogeneous of degree d. Note X as $y = y$

$$K_x = [H + (b - e^{-2})F] \qquad H^0(X, K_x) = cf_{b-e-2}x_0, f_{b-2e-2}x_1 > p_1 = 2b - 3e - 2 \qquad K^2 = 2p_2 - 4 \qquad \text{and the canonical sinage is IFe}$$

$$\frac{2^{2} + x_{0}^{\ell}}{f_{2b}(t_{0}, t_{s}) + \dots + x_{0}x_{1}^{s}f_{2b-5e}(t_{0}, t_{s}) + x_{s}^{\ell}f_{2b-\elle}(t_{0}, t_{s})}$$
Note that if 5 e z th both the coefficients of x_{1}^{ℓ} and $x_{0}x_{1}^{s}$ vanish
so X is not normal having a double line on $x_{1} = t = 0$.
So $5e \leq zb \iff$ Honinawa's $p_{g} \geq ze - 2$
The exceptional family comes then when $5e = zb$ and X is
 $\frac{2^{2} + x_{0}}{z_{1}^{5} + f_{e}(t_{0}, t_{1}) \times x_{0}x_{1}^{\ell} + f_{2e}(t_{0}, t_{1}) \times x_{0}^{s}x_{1}^{\ell} + \dots + f_{5e}x_{0}^{5})}$

Threefolds

This is the best result that I know on the Noether inequality of 3-folds

Theorem 1. Let X be a projective 3-fold of general type and either $p_g(X) \leq 4$ or $p_g(X) \geq 11$. Then

$$\operatorname{vol}(X) \ge \frac{4}{3}p_g(X) - \frac{10}{3}$$

In all these proofs it appears evident that the threefolds "war the Nöther live" admet a fibration X ----> IP' with general fibre a "(1,2) - surface".

All Govenstein stable surfaces with K=1 and pg=2 are hypersurfaces of degue 10 in P(1,1,2,5)

Our idea [Coughlan, -]

Then we decided to study fibrations such that ALL fibres are hypersurfices of Legree 10 in 18(1,1,2,5)

Definition 4.1. A simple fibration in (1, 2)-surfaces is a morphism $\pi: X \to B$ between compact varieties of respective dimension 3 and 1 such that

- (1) B is smooth;
- (2) X has canonical singularities;
- (3) K_X is π -ample;
- (4) for all $p \in B$, the canonical ring $R(X_p, K_{X_p}) := \bigoplus_d H^0(X_p, K_{X_p})$ of the surface $X_p := \pi^{-1}p$ is generated by four elements of respective degree 1, 1, 2 and 5 and related by a single equation of degree 10.

Definition 3.1. Let *B* be an algebraic variety, a_i positive integers. A weighted symmetric algebra S on *B* with weights (a_1, \ldots, a_n) is a sheaf of graded \mathcal{O}_B -algebras $S := \bigoplus_{d \ge 0} S_d$ such that $S_0 \cong \mathcal{O}_B$ and *B* is covered by open sets *U* with the property

(8)
$$\mathcal{S}_{|U} \cong \mathcal{O}_U[x_1, \dots, x_n]$$

where $\mathcal{O}_U[x_1,\ldots,x_n]$ is graded by deg $x_i = a_i$.

We consider, for all 14, the truncation S[K] cS to be the subalgebra generated in degree K

Definition 3.9. Let \mathcal{S} be a weighted symmetric algebra with weights $(a_1^{r_1}, \ldots, a_n^{r_n})$ where $a_1 < \cdots < a_n$. For every $1 \leq j \leq n$, the *character*istic sheaf of degree a_j is the cokernel $\mathcal{E}_{a_j}(\mathcal{S})$ of the natural inclusion

$$\sigma_{a_j} \colon \mathcal{S}[a_j - 1]_{a_j} \hookrightarrow \mathcal{S}_{a_j}.$$

Since $\mathcal{S}_{|U} \cong \mathcal{O}_U[x_1, \ldots, x_r]$, this is a locally free sheaf of rank r_j . We denote the projection maps by $\epsilon_{a_j} \colon \mathcal{S}_{a_j} \to \mathcal{E}_{a_j}(\mathcal{S})$.

Definition 3.12. Let S be a weighted symmetric algebra with weights (a_1, \ldots, a_n) . Then $\mathbb{F} := \operatorname{Proj}_B(S)$ is called a $\mathbb{P}(a_1, \ldots, a_n)$ -bundle over B.

The following is a generalization of a famous result of Grothendrick

Proposition 3.19. Let $\mathbb{F} = \operatorname{Proj}_B(\mathcal{S})$ be a well-formed $\mathbb{P}(a_1^{r_1}, \ldots, a_n^{r_n})$ bundle, $a_1 < a_2 < \cdots < a_n$.

The relative dualising sheaf of \mathbb{F} is

$$\omega_{\mathbb{F}/B} \cong \pi^* \left(\bigotimes_k \det \mathcal{E}_{a_k} \right) \left(-\sum_k r_k a_k \right),$$

where \mathcal{E}_{a_k} is the characteristic sheaf of \mathcal{S} in degree a_k .

Whe first proved the following natural result

Theorem 4.6. Let $\pi: X \to B$ be a simple fibration in (1, 2)-surfaces. Then there is a weighted symmetric algebra $\mathcal{S}(X)$ with weights $(1^2, 2, 5)$ such that X is isomorphic to a hypersurface of relative degree 10 in the $\mathbb{P}(1, 1, 2, 5)$ -bundle $\mathbb{F}(X) := \operatorname{Proj}_B(\mathcal{S}) \to B$.

Then we started studying these hypersurfaces

Definition 4.8. The singular locus of a $\mathbb{P}(1, 1, 2, 5)$ -bundle over B is the disjoint union of two sections \mathfrak{s}_2 and \mathfrak{s}_5 , where \mathfrak{s}_k has Gorenstein index k.

Proposition 4.9. Let $\pi: X \to B$ be a simple fibration in (1, 2)-surfaces and suppose that $X \subset \mathbb{F}(X)$ where $\mathbb{F}(X)$ is the $\mathbb{P}(1, 1, 2, 5)$ -bundle constructed in Thm 4.6. Then

(1)
$$X \cap \mathfrak{s}_5 = \emptyset;$$

(2) $\mathfrak{s}_2 \not\subset X$.

In particular X is 2-Gorenstein, and Govenstein iff Xns2 = Ø

Proposition 4.21. Let $\pi: X \to B$ be a simple fibration in (1,2)surfaces. Then

$$K_X^3 = \frac{4}{3}\chi(\omega_X) - 2\chi(\mathcal{O}_B) + \frac{N}{6} = \frac{4}{3}(p_g - q_2) + \frac{10}{3}(q_1 - 1) + \frac{N}{6}$$

Here $q_7 = h^7(X, \mathcal{O}_X)$ and N is the degree of the coefficient of y^5 .
Geometrically N is the expected cardinality of $X \cap s_2$.
So N, $q_1, q_2 \ge 0$. In fact q_4 equals the genus of B, and we proved $q_2 \le 2$

Corollary 4.22. Let $\pi: X \to B$ be a simple fibration in (1, 2)-surfaces. Then $K_X^3 \ge \frac{1}{3}(4(p_g - q_2) - 10(1 - q_1))$ with equality holding if and only if X is Gorenstein.

Finally
$$K^{3} = \frac{4}{3} P_{3} - \frac{10}{3} \iff N = q_{1} = q_{2} = 0$$

The classification

1.1. Toric bundles. Choose integers d, d_0 and define $\mathbb{F} = \mathbb{F}(d; d_0)$ to be the toric 4-fold with weight matrix

(1)
$$\begin{pmatrix} t_0 & t_1 & x_0 & x_1 & y & z \\ 1 & 1 & d - d_0 & d_0 - 2d & 0 & 0 \\ 0 & 0 & 1 & 1 & 2 & 5 \end{pmatrix}$$

and irrelevant ideal $I = (t_0, t_1) \cap (x_0, x_1, y, z)$. In other words $(\mathbb{C}^*)^2$ acts on \mathbb{C}^6 with coordinates t_0, t_1, x_0, x_1, y, z via (1):

$$(\lambda,\mu) \cdot (t_0, t_1, x_0, x_1, y, z) = (\lambda t_0, \lambda t_1, \lambda^{d-d_0} \mu x_0, \lambda^{d_0-2d} \mu x_1, \mu^2 y, \mu^5 z)$$

and \mathbb{F} is the quotient $(\mathbb{C}^6 \smallsetminus V(I))/(\mathbb{C}^*)^2$.

Up to exchanging the x_j we may and do assume without loss of generality any of the following equivalent conditions:

$$d - d_0 \ge d_0 - 2d \iff d_0 \le \frac{3}{2}d \iff e := 3d - 2d_0 \ge 0.$$

and let X(d; Lo) be a Cartin divisor with canonical singularities of the

form

$$z^{2} + y^{5} + \sum_{\substack{a_{0} + a_{1} + 2a_{2} = 10 \\ a_{2} \neq 5}} c_{a_{0}, a_{1}, a_{2}}(t_{0}, t_{1}) x_{0}^{a_{0}} x_{1}^{a_{1}} y^{a_{2}}$$

Theoren Every Govenstein simple Sibration in (1,2) surfaces is a X (d;do)

Proposition 1.6. Gorenstein regular simple fibrations in (1, 2)-surfaces of type (d, d_0) exist if and only if $d_0 \ge \frac{1}{4}d$. The singular locus of the general $X(d; d_0)$ is contained in the torus invariant section $\mathfrak{s}_0 :=$ $D_{x_1} \cap D_y \cap D_z$. More precisely

- (a) X is nonsingular iff $d \le d_0 \le \frac{3}{2}d$ or $d_0 = \frac{7}{8}d$;
- (b) X has $8d_0 7d$ terminal singularities iff $\frac{7}{8}d < d_0 < d$;
- (c) X has canonical singularities along \mathfrak{s}_0 iff $\frac{1}{4}d \leq d_0 < \frac{7}{8}d$.

Those with do = 7 d have equation of the form

 $z^{2} + y^{5} + x_{1}(x_{0}^{9} + g(t_{0}, t_{1}, x_{0}, x_{1}, y))$

Canonical models

Theorem 1.11. Gorenstein regular simple fibrations in (1, 2)-surfaces of type (d, d_0) are canonical 3-folds if and only if $\min(d, d_0) \ge 3$. In these cases

$$p_g = 3d - 2, \quad q_1 = q_2 = 0, \quad K_X^3 = 4d - 6 = \frac{4p_g - 10}{3}.$$

Their canonical image is the Hirzebruch surface \mathbb{F}_e , $e = 3d - 2d_0$.

X(3;2) and X(2;d), 2:d:s, have K_X big and nef but not ample. Their canonical models have the same invariants as above and then they lie on the Noethen line.

Theorem 5.4. For every $p_g \ge 7$ of the form 3d-2 let $\mathcal{N}_{p_g}^0$ be the subset of the moduli space of canonical threefolds with geometric genus p_g and $K^3 = \frac{4}{3}p_g - \frac{10}{3}$ given by smooth simple fibrations in (1, 2)-surfaces. Then $\mathcal{N}_{p_g}^0$ has

> one connected component if d is not divisible by 8 two connected components if d is divisible by 8.

All these components are unirational.

One component is formed by those 3-folds with canonical image \mathbb{F}_e , $0 \leq e \leq d$. This is an open subset of the moduli space of canonical 3-folds.

When d is divisible by 8 there is a second component of the moduli space of canonical 3-folds including smooth 3-folds whose canonical image is $\mathbb{F}_{\frac{5}{4}d}$. The intersection of the closures of the components in the moduli space of canonical 3-folds is not empty.

In particular the moduli space of canonical 3-folds with given $p_g = 3d - 2$, $K^3 = \frac{4}{3}p_g - \frac{10}{3}$ is reducible when d is divisible by 8.

Yong Hu and Tong they proved the following (2022)

Theorem 1.5. Let X be a minimal 3-fold of general type with $p_g(X) \ge 11$. (1) Suppose that $K_X^3 > \frac{4}{3}p_g(X) - \frac{10}{3}$. Then we have the optimal inequality

(1.3)
$$K_X^3 \ge \frac{4}{3}p_g(X) - \frac{19}{6}.$$

If the equality holds, then $p_g(X) \equiv 2 \pmod{3}$. Moreover, X has only one non-Gorenstein terminal singularity, and it is of type $\frac{1}{2}(1, -1, 1)$. (2) Suppose that $K_X^3 > \frac{4}{3}p_g(X) - \frac{19}{6}$. Then we have the optimal inequality

(1.4)
$$K_X^3 \ge \frac{4}{3}p_g(X) - 3.$$

If the equality holds, then $p_g(X) \equiv 0 \pmod{3}$. Moreover, one of the following two cases occurs:

- (i) X has two non-Gorenstein terminal singularities, and they are of the same type ½(1,−1,1);
- (ii) X has only one non-Gorenstein terminal singularity, and it is of type cA_1/μ_2 .

A similar analysis can be done for non Gorenstein simple fibrations in

$$(1,2)$$
-surfaces producing lots of 2-Gorenstein 3-felds with

$$K^{3} = \frac{4}{3}P_{9} - \frac{10}{3} + \frac{N}{6} \qquad NGN \qquad N \ge 1$$

For N=1,2 we are exactly in the situation of Hu and thang

This motivates the following

Conjecting [Coughlan, P] There exist a Exosuch that all canonical 3-felds with K³ & 4 pg - 10 + E are simple Fibrations in (1,2) surfaces.

Theorem [loughlan, Hu, P, Zhang]
The conjecture is true for
$$\varepsilon = \frac{1}{6}$$
.
All canonical 3-folds with $\kappa^3 \leq \frac{4}{3}p_3 - \frac{10}{3} + \frac{1}{2}$ with $p_3 \gg 22$ are X(d;d_0)

What is the maximel E? We know E<2

Here are not govenstan 3- Govenstan canonical 3-folds (so not simple fibrations.)
with
$$K^3 = \frac{4}{3}p_9 - \frac{8}{3}$$

Take IF Covic with weight matrix $\begin{pmatrix} 1 & 1 & -a & -a & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 2 & 3 & 5 \end{pmatrix}$
and a general c.i of
 $2^2 + y^5 + \dots$
then $p_g = 6a$ $K^3 = 8a - \frac{8}{3} = \frac{4}{3}p_9 - \frac{8}{3}$

We are working on
- complete description of the moduli space of canonial
3-folds with
$$K^3 = \frac{4}{3}p_3 - \frac{10}{3}$$
 and $p_3 > \text{ something}$
- find the optimal E for which the conjutant is true
In the "best" case $E = \frac{2}{3}$ the canonical 3-folds with $K^3 \neq 4P_3 - \frac{9}{3}$ would form
4 lines in the geography: $K^3 = \frac{4}{3}p_3 - \frac{10}{3} + \frac{N}{6}$ $N = 0, 1, 2, 3$
Rilling all points (K^3, p_3)
with $K^3 + \frac{N}{2} \in N$ Canonical 3-folds M Noothe line
of Gouestin index 2