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Rigid compact complex manifolds

Definition

A compact complex manifold M is rigid if for each deformation of M,
f : (X,M)→ (B, b0) there is an open neighbourhood U ⊂ B of b0 such
that Mt := f −1(t) ∼= M for all t ∈ U.

Roughly speaking, M is rigid if every small deformation of its complex
structure gives a complex manifold isomorphic to M.

It is wellknown that every compact complex manifold homeomorphic to P1
C

is biholomorphic to it, so P1
C is rigid.

On the contrary, every other compact complex manifold of dimension 1 is
not rigid, their complex structures being described by the famous moduli
spaces of curves Mg .
The situation in higher dimension is much more complicated: for example
the Hirzebruch surface F2 is not rigid and homeomorphic to the rigid
surface P1

C × P1
C.

How do we check the rigidity of a manifold?
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The Kuranishi family

Let M be a compact complex manifold.

Kuranishi constructed a deformation π : (X ,M)→ (Def(M), 0) of M
where (Def(M), 0) is a germ of analytic subspace of the vector space1

H1(M,Θ), inverse image of the origin under a local holomorphic map
k : H1(M,Θ)→ H2(M,Θ) whose differential vanishes2 at the origin.

Theorem (Kuranishi)

The Kuranishi family is semiuniversal, and universal if H0(M,Θ) = 0.
The quadratic term in the Taylor development of k is given by the bilinear
map H1(M,Θ)× H1(M,Θ)→ H2(M,Θ) called Schouten bracket, which
is the composition of cup product followed by Lie bracket of vector fields.

1Here Θ is the sheaf of holomorphic vector fields on M.
2Then H1(M,Θ) is the Zariski tangent space of (Def(M), 0).

In particular (Def(M), 0) is smooth if and only if k = 0, in which case we say that M
has unobstructed deformations.
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Infinitesimal rigidity

Definition

A compact complex manifold M is infinitesimally rigid if H1(M,Θ) = 0.

The word infinitesimally rigid comes by Kuranishi’s Theorem.
In fact it follows

Corollary (Kuranishi’s criterion for rigidity)

M infinitesimally rigid⇒ M rigid

In particular P1
C × P1

C is (infinitesimally) rigid.
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Morrow-Kodaira’s Problem

Morrow and Kodaira asked if the converse implication also hold3:

A solution of the M-K Problem is a manifold M such that Def(M) is a fat
point, a singular point.

3This is a screenshot of the book Complex Manifolds by James Morrow and Kunihiko
Kodaira (1971), Holt, Rinehart and Winston, Inc.
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The main result

Theorem

For every even n ≥ 8 such that 3 - n there is a minimal regular surface Sn
of general type with

K 2
Sn = 2(n − 3)2, pg (Sn) =

(n
2
− 2
)(n

2
− 1
)
,

such that Sn is rigid, but not infinitesimally rigid: h1(Sn,Θ) = 6.

The canonical models of these surfaces have exactly 6 singular points, all
nodes. The hard part is proving their rigidity, since Kuranishi’s rigidity
criterium fails.
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Generalization to higher dimension

Lemma

Let M, N be compact complex manifolds, such that

h0(M,Θ)h1(N,O) = h0(N,Θ)h1(M,O) = 0.

Then Def(M × N) = Def(M)× Def(N).

Then, if M is a regular surface of general type solving the M-K Problem
and N is a rigid manifold, by Künneth formula M × N is a solution too.

Using some known rigid manifolds we obtain

Theorem

There are rigid manifolds of dimension d and Kodaira dimension κ that
are not infinitesimally rigid for all possible pairs (d , κ) with d ≥ 5 and
κ 6= 0, 1, 3 and for (d , κ) = (3,−∞), (4,−∞), (4, 4).
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We need M rigid: these are rare manifolds.

Theorem (Ingrid Bauer and Fabrizio Catanese, On rigid compact
complex surfaces and manifolds, Adv. Math. 333, 620–669 (2018).)

Let M be a smooth compact complex surface, which is rigid. Then either

1 M is a minimal surface of general type, or

2 M is a Del Pezzo surface of degree d ≥ 5

3 M is an Inoue surface of type SM or S−N,p,q,r

Rigid Del Pezzo and Inoue surfaces are infinitesimally rigid, so every
surface solving M-K Problem has Kodaira dimension 2.

The minimal model of any rigid surface of general type whose canonical
model is singular does the job.
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We need M with obstructed deformations

We need dimM ≥ 2. Several examples of manifolds M of dimension 2
with obstructed deformations are now known.

Burns and Wahl show how to associate to each smooth rational curve E
with E 2 = −2 in a complex surface M a 1−dimensional subspace H1

E (M)
of H1(M,Θ).
Note that in particular if M is the minimal resolution of the singularities of
a nodal surface, M can’t be infinitesimally rigid.

A necessary condition for M to be rigid is that it is obstructed along this
line: H1

E (M) 6⊂ Def(M). A way to check it has been provided by Kas.
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6D. M. Burns Jr. and Jonathan M. Wahl, Local contributions to global deformations
of surfaces, Invent. Math 26, 67 – 88 (1974).
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The Kas maps

Let now X be a compact complex surface with a node ν, M → X be the
minimal resolution of singularities of M, let E be exceptional curve
mapping to ν and let θ be a generator of H1

E (M) ⊂ H1(M,Θ).

Then we can write

k(tθ) = ανt
2 + O(3) ∈ H2(M,Θ),

where, by Serre duality we can see αν as a map αν : H0(M,Ω1⊗Ω2)→ C.
A neighbourhood of ν in X is the quotient of a disc ∆ ⊂ C2 by the
involution (z1, z2) 7→ (−z1,−z2).
Pulling-back we get an inclusion H0(M,Ω1 ⊗ Ω2) ⊂ H0(∆,Ω1 ⊗ Ω2)+

allowing to write locally every η ∈ H0
(
M,Ω1 ⊗ Ω2

)
as

η = (f1dz1 + f2dz2)⊗ (dz1 ∧ dz2)

Then Kas shows

αν(η) =

(
∂f2
∂z1
− ∂f1
∂z2

)
(0, 0). (1)
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Interesting examples with obstructed deformations

1 Burns and Wahl construct9 many examples of smooth surfaces with
obstructed deformations by resolving the singularities of certain nodal
hypersurfaces in P3.

2 Catanese10 constructs surfaces M whose Kuranishi family Def(M) is
everywhere nonreduced by resolving the singularities of certain
quotients (C1 × C2)/G (Ci curves, G finite group) with rational
double points.

Still, all these examples are not rigid.

9D. M. Burns Jr. and Jonathan M. Wahl, Local contributions to global deformations
of surfaces, Invent. Math 26, 67 – 88 (1974).

10Fabrizio Catanese, Everywhere nonreduced moduli spaces, Invent. Math. 98 (2),
293 – 310 (1989).
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Strategy to the proof of the main theorem

Rigid manifolds are rare. I know a short list of examples of rigid surfaces
of general type, all infinitesimally rigid: ball quotients, irreducible bi-disk
quotients, Beauville surfaces, Mostow-Siu surfaces, some Kodaira
fibrations constructed by Catanese and Rollenske.

Example (Beauville surfaces)

Consider two projective curves C1, C2, a finite group G and two injective
homomorphisms G ⊂ Aut(Ci ).
Assume that the induced action g(x , y) = (gx , gy) of G on C1 × C2 is
free. Then M := (C1 × C2) /G is smooth.
If (Ci ,G ) are triangle curvesa, then M is a Beauville surface.

ai.e. Ci/G ∼= P1 and pi : Ci → Ci/G has exactly three branching points.
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Catanese’s lemma

Lemma (Fabrizio Catanese, Everywhere nonreduced moduli spaces,
Invent. Math. 98 (2), 293 – 310 (1989))

Let Z be a smooth algebraic surface and G a finite group acting on it
freely in codimension 1. Set p : Z → X := Z/G .
Then H1(X ,Θ) ∼= H1(Z ,Θ)G .

Corollary

Consider two projective curves C1, C2, a finite group G and two injective
homomorphisms G ⊂ Aut(Ci ). Set X := (C1 × C2) /G .
If (Ci ,G ) are triangle curves, then H1(X ,Θ) = 0.

This implies that Beauville surfaces are infinitesimally rigid.
Note however that here G may act not freely, and then X has isolated
singularities. Then the minimal resolution M of the singularities of X may
still be neither rigid nor infinitesimally rigid.
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A criterion to prove rigidity

Theorem

Let M be the minimal res. of the sing. of a nodal surface X . Assume that

1 H1(X ,Θ) = 0;

2 the maps ανi associated to the nodes νi of X locally described in (1)
are linearly independent in H0(M,Ω1 ⊗ Ω2)∨.

Then M is rigid and h1(M,Θ) equals the number of nodes of X .

Sketch of the proof.

By condition 1 and a remark of Pinkhama H1(M,Θ) ∼=
⊕

H1
Ei

(M).

Choose 0 6= θi ∈ H1
Ei

(M): they form a basis of H1(M,Θ) . Then

k(
∑

tiθi ) =
∑r

1 t
2
i ανi +O(3). The rigidity follows now by condition 2.

aHenry Pinkham, Some local obstructions to deforming global surfaces,
Nova Acta Leopoldina (N.F.) 52 (1981), 173-178.
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(M).

Choose 0 6= θi ∈ H1
Ei

(M): they form a basis of H1(M,Θ) . Then

k(
∑

tiθi ) =
∑r

1 t
2
i ανi +O(3). The rigidity follows now by condition 2.

aHenry Pinkham, Some local obstructions to deforming global surfaces,
Nova Acta Leopoldina (N.F.) 52 (1981), 173-178.
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Strategy of the proof of the main theorem

Theorem

For every even n ≥ 8 such that 3 - n there is a minimal regular surface Sn
of general type with K 2

Sn
= 2(n − 3)2, pg (Sn) =

(
n
2 − 2

) (
n
2 − 1

)
, such

that Sn is rigid, but not infinitesimally rigid.

We pick two triangle curves (C1,G ), (C2,G ) for the same finite group, we
set X := (C1 × C2)/G the quotient by the diagonal action.

We need X to be nodal and have at least one node. In other words, there
is at least one point of C1 × C2 whose stabilizer has order 2, and no points
whose stabilizer has a higher order.

Then by Catanese’s Lemma the first condition in the rigidity criterion
H1(X ,Θ) = 0 is fulfilled, and we only need to check the second one.
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The Fermat curves

Which triangle curves do the job?

The Fermat curve of degree n, C := {
∑2

j=0 x
n
j = 0} ⊂ P2

C admits a

natural action of the group G ∼= (Z/nZ)2:

(a1, a2)(x0 : x1 : x2) = (x0 : ea1
2πi
n x1 : ea2

2πi
n x2).

This G−action has only three orbits of cardinality different by n2, all of
cardinality n:

C ∩ {x0 = 0} with stabilizer 〈(1, 1)〉 ∼= Z/nZ
C ∩ {x1 = 0} with stabilizer 〈(1, 0)〉 ∼= Z/nZ
C ∩ {x2 = 0} with stabilizer 〈(0, 1)〉 ∼= Z/nZ

By Hurwitz formula C/G ∼= P1 so (C ,G ) is a triangle curve.
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The surfaces Sn

We choose as triangle curves (Ci ,G ) two copies of the Fermat curve of
degree n.

For the first copy (C1,G ) we take the action as described in the previous
slide, whereas for the second copy (C2,G ) we twist the action by the
matrix

A :=

(
1 −2
2 −1

)
that for all n not divisible by 3 defines an automorphism of G .

The surface Sn is the minimal resolution of the singularities of
(C1 × C2)/G .
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Some Sn are Beauville surfaces

The elements of G fixing some points of C1 form, as we have seen, the set
〈(1, 0)〉 ∪ 〈(0, 1)〉 ∪ 〈(1, 1)〉.

Acting with A we deduce that the elements of G fixing some points of C2

form the set 〈(1, 2)〉 ∪ 〈(−2,−1)〉 ∪ 〈(−1, 1)〉.

For n odd, the intersection of these two sets is {(0, 0)}. Then the induced
action on C1 × C2 is free: Sn is a Beauville surface, infinitesimally rigid.
Then we need to assume n even.

For n even the non-trivial elements of G fixing some points of C1 × C2 are
(n/2, 0), (0, n/2) and (n/2, n/2), all of order 2 fixing n2 points: then X is
a nodal surface with 3 · 2 · n2/n2 = 6 nodes.
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The proof

We skip the computation of the invariants of Sn, that is standard.

We need to check if the six maps

ανi : H0(Sn,Ω
1 ⊗ Ω2)→ C

associated to the nodes of X are linearly independent.

For this we need h0(Sn,Ω
1 ⊗ Ω2) ≥ 6: indeed this excludes the case n ≤ 4

giving n ≥ 8.

In fact S4 is a numerical Campedelli surface with fundamental group
(Z/2Z)3: these are well known, their Kuranishi family has dimension 6.

When h0(Sn,Ω
1 ⊗ Ω2) ≥ 6 may to check the idependence of the ανj by

restricting to a suitable 6−dimensional subspace.
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Decomposition of H0(Sn,Ω1 ⊗ Ω2)

We need a basis of H0(Sn,Ω
1 ⊗ Ω2) as explicit as possible, in order to be

able to compute their image via the Kas map. By

H0(Sn,Ω
1 ⊗ Ω2) ∼= H0(C1 × C2,Ω

1 ⊗ Ω2)G ∼=

∼=
(
H0(C1, ω

⊗2
C1

)⊗ H0(C2, ωC2)
)G
⊕
(
H0(C1, ωC1)⊗ H0(C2, ω

⊗2
C2

)
)G ∼=

∼=
⊕
χ∈G∗

((
H0(ω⊗2

C1
)χ ⊗ H0(ωC2)−χ

)
⊕
(
H0(ωC1)χ ⊗ H0(ω⊗2

C2
)−χ
))
∼=

∼=
⊕
χ∈G∗

((
H0(ω⊗2

C1
)χ ⊗ H0(ωC1)χ

′
)
⊕
(
H0(ωC1)χ ⊗ H0(ω⊗2

C1
)χ
′
))

where. writing χ, χ′ as a column, χ′ := −tA−1χ
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Six good characters are enough

Lemma

Set k0 = k1 = (1, 0), k∞ = (0, 1) ∈ G . Assume that there is a set of six
characters C := {χ0, χ

′
0, χ1, χ

′
1, χ∞, χ

′
∞} ⊂ G ∗, such that

1 χ0 ≡ χ′0 ≡ (0, 1), χ1 ≡ χ′1 ≡ (1, 1), χ∞ ≡ χ′∞ ≡ (1, 0) mod 2;

2 ∀p ∈ {0, 1,∞}, χp(kp) 6= χ′p(kp);

3 if χ ∈ C, then H0(ωC )(χ) 6= {0}, H0(ω⊗2
C )(χ′) 6= {0}.

Then condition 2 in the rigidity criterion holds.

Sketch of the proof - part 1

We need to check the linear independence of the six maps ανj .
We decomposed H0(Sn,Ω

1 ⊗ Ω2) obtaing addenda of the form
H0(ωC1)χ ⊗H0(ω⊗2

C1
)χ
′
. When χ ∈ C, by condition 3, the addendum is not

trivial. Picking one general element in each of them, we get six different
elements in H0(Sn,Ω

1 ⊗ Ω2).
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2 ∀p ∈ {0, 1,∞}, χp(kp) 6= χ′p(kp);

3 if χ ∈ C, then H0(ωC )(χ) 6= {0}, H0(ω⊗2
C )(−χ′) 6= {0}.

Then condition 2 in the rigidity criterion holds.

Sketch of the proof - part 2.

Computing explicitely the six Kas maps (1) in them we get the following

(χ0(k0), 1, 0, 0, 0, 0)
(χ′0(k0), 1, 0, 0, 0, 0)

(0, 0, χ1(k1), 1, 0, 0)
(0, 0, χ′1(k1), 1, 0, 0)

(0, 0, 0, 0, χ∞(k∞), 1)
(0, 0, 0, 0, χ′∞(k∞), 1)
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Decomposition of p∗ωC

The Fermat triangle curve p : C = C1 → P1 is an abelian cover, with
group G . We compute the decomposition of p∗ωC by Pardini’s11 formula

0
1
2
3

n-1
n-2

0 1 2 3 n-1
-2 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1
-1
-1
-1

-1
-1
-1
-1
-1

0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 -1 -1
0 0 0 0 0 0 -1 -1 -1
0 0 0 0 0 -1 -1 -1 -1

* * * * * * * * * * *

*
*
*
*
*

*
*
*
*
*

0 0 0 0 -1 -1 -1 -1 -1
0 0 0 -1 -1 -1 -1 -1 -1
0 0 -1 -1 -1 -1 -1 -1 -1
0 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1

Figure: The degrees of (p∗ωC )(α,β)

11Rita Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417,
191-213.

Roberto Pignatelli (Trento) Rigid but not infinitesimally
Geometria in Bicocca Milano, September 16th , 2019 24

/ 29



Decomposition of p∗ω
⊗2
C

Similarly we compute the decomposition p∗ω
⊗2
C .

0
1
2
3

n-1
n-2
n-3

0 1 2 3 n-1

* * * * * * * ** * *

*
*

*
*
*
*
*

*
*
*

-1
-1

-1
-1

0 0 0 0 0 0 0 -1

0
0
0

0
0
0
0
-1

0 0 0 0 0 0 -1 -1
0
0
0

0
0
0
-1
-1

1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure: The degrees of (p∗ω
⊗2
C )(α,β)

Note that ∀n ≥ 4 the degree is negative only for 10 characters.
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End of the proof of the main theorem

We need then to find six characters such that

1 χ0 ≡ χ′0 ≡ (0, 1), χ1 ≡ χ′1 ≡ (1, 1), χ∞ ≡ χ′∞ ≡ (1, 0) mod 2;

2 ∀p ∈ {0, 1,∞}, χp(kp) 6= χ′p(kp);

3 if χ ∈ C, then H0(ωC )(χ) 6= {0}, H0(ω⊗2
C )(χ′) 6= {0}.

End of the proof.

We pick the following six characters

χ0 = (2, 1) χ1 = (1, 3) χ∞ = (1, 2)

χ′0 = (4, 1) χ′1 = (3, 1) χ′∞ = (1, 4)

The only check that is not trivial is that H0(ω⊗2
C )(χ′) 6= {0}: this indeed

fails for n = 4 but a tedious computation shows that it holds for n ≥ 8.
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Open problems

Problem (1)

Construct rigid manifolds M with h1(M,Θ) = 1, resp. arbitrarily high.

Problem (2)

Construct simply connected rigid not infinitesimally rigid manifolds.

Note π1(Sn) ∼= (Z/ n
2
Z)3.

Problem (3)

For every fixed natural numbers κ, d ∈ N with κ ≤ d ≥ 3 are there rigid
not inf. rigid manifolds of dimension d and Kodaira dimension κ?
In particular for κ = 0, 1.

Problem (4)

Construct rigid surfaces to which our criterion does not apply.
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