Rigid but not infinitesimally rigid compact complex manifolds

joint work with I. Bauer (Bayreuth)

Roberto Pignatelli
University of Trento
Roberto.Pignatelli@unitn.it

Geometria in Bicocca
Milano, September $16^{\text {th }}, 2019$

Overview

(1) The Question

- Rigidities
- Morrow-Kodaira's question
(2) Our main results
- Answers in every dimension ≥ 2
(3) The proof
- Rigid manifolds
- Manifolds with obstructed deformations
- The strategy
- The construction
- The proof
(4) Open problems

Rigid compact complex manifolds

Definition

A compact complex manifold M is rigid if for each deformation of M, $f:(\mathfrak{X}, M) \rightarrow\left(B, b_{0}\right)$ there is an open neighbourhood $U \subset B$ of b_{0} such that $M_{t}:=f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.

Rigid compact complex manifolds

Definition

A compact complex manifold M is rigid if for each deformation of M, $f:(\mathfrak{X}, M) \rightarrow\left(B, b_{0}\right)$ there is an open neighbourhood $U \subset B$ of b_{0} such that $M_{t}:=f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.
It is wellknown that every compact complex manifold homeomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$ is biholomorphic to it, so $\mathbb{P}_{\mathbb{C}}^{1}$ is rigid.

Rigid compact complex manifolds

Definition

A compact complex manifold M is rigid if for each deformation of M, $f:(\mathfrak{X}, M) \rightarrow\left(B, b_{0}\right)$ there is an open neighbourhood $U \subset B$ of b_{0} such that $M_{t}:=f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.
It is wellknown that every compact complex manifold homeomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$ is biholomorphic to it, so $\mathbb{P}_{\mathbb{C}}^{1}$ is rigid.
On the contrary, every other compact complex manifold of dimension 1 is not rigid, their complex structures being described by the famous moduli spaces of curves \mathcal{M}_{g}.

Rigid compact complex manifolds

Definition

A compact complex manifold M is rigid if for each deformation of M, $f:(\mathfrak{X}, M) \rightarrow\left(B, b_{0}\right)$ there is an open neighbourhood $U \subset B$ of b_{0} such that $M_{t}:=f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.
It is wellknown that every compact complex manifold homeomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$ is biholomorphic to it, so $\mathbb{P}_{\mathbb{C}}^{1}$ is rigid.
On the contrary, every other compact complex manifold of dimension 1 is not rigid, their complex structures being described by the famous moduli spaces of curves $\mathcal{M g}_{\mathrm{g}}$.
The situation in higher dimension is much more complicated: for example the Hirzebruch surface \mathbb{F}_{2} is not rigid and homeomorphic to the rigid surface $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$.

Rigid compact complex manifolds

Definition

A compact complex manifold M is rigid if for each deformation of M, $f:(\mathfrak{X}, M) \rightarrow\left(B, b_{0}\right)$ there is an open neighbourhood $U \subset B$ of b_{0} such that $M_{t}:=f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.
It is wellknown that every compact complex manifold homeomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$ is biholomorphic to it, so $\mathbb{P}_{\mathbb{C}}^{1}$ is rigid.
On the contrary, every other compact complex manifold of dimension 1 is not rigid, their complex structures being described by the famous moduli spaces of curves $\mathcal{M g}_{\mathrm{g}}$.
The situation in higher dimension is much more complicated: for example the Hirzebruch surface \mathbb{F}_{2} is not rigid and homeomorphic to the rigid surface $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$.
How do we check the rigidity of a manifold?

The Kuranishi family

Let M be a compact complex manifold.
Kuranishi constructed a deformation $\pi:(\mathcal{X}, M) \rightarrow(\operatorname{Def}(M), 0)$ of M where $(\operatorname{Def}(M), 0)$ is a germ of analytic subspace of the vector space ${ }^{1}$ $H^{1}(M, \Theta)$, inverse image of the origin under a local holomorphic map $k: H^{1}(M, \Theta) \rightarrow H^{2}(M, \Theta)$ whose differential vanishes ${ }^{2}$ at the origin.

[^0]
The Kuranishi family

Let M be a compact complex manifold.
Kuranishi constructed a deformation $\pi:(\mathcal{X}, M) \rightarrow(\operatorname{Def}(M), 0)$ of M where $(\operatorname{Def}(M), 0)$ is a germ of analytic subspace of the vector space ${ }^{1}$ $H^{1}(M, \Theta)$, inverse image of the origin under a local holomorphic map $k: H^{1}(M, \Theta) \rightarrow H^{2}(M, \Theta)$ whose differential vanishes ${ }^{2}$ at the origin.

Theorem (Kuranishi)

The Kuranishi family is semiuniversal, and universal if $H^{0}(M, \Theta)=0$.

[^1]
The Kuranishi family

Let M be a compact complex manifold.
Kuranishi constructed a deformation $\pi:(\mathcal{X}, M) \rightarrow(\operatorname{Def}(M), 0)$ of M where $(\operatorname{Def}(M), 0)$ is a germ of analytic subspace of the vector space ${ }^{1}$ $H^{1}(M, \Theta)$, inverse image of the origin under a local holomorphic map $k: H^{1}(M, \Theta) \rightarrow H^{2}(M, \Theta)$ whose differential vanishes ${ }^{2}$ at the origin.

Theorem (Kuranishi)

The Kuranishi family is semiuniversal, and universal if $H^{0}(M, \Theta)=0$. The quadratic term in the Taylor development of k is given by the bilinear map $H^{1}(M, \Theta) \times H^{1}(M, \Theta) \rightarrow H^{2}(M, \Theta)$ called Schouten bracket, which is the composition of cup product followed by Lie bracket of vector fields.

[^2]
Infinitesimal rigidity

Definition

A compact complex manifold M is infinitesimally rigid if $H^{1}(M, \Theta)=0$.

Infinitesimal rigidity

Definition

A compact complex manifold M is infinitesimally rigid if $H^{1}(M, \Theta)=0$.

The word infinitesimally rigid comes by Kuranishi's Theorem. In fact it follows

Corollary (Kuranishi's criterion for rigidity)

M infinitesimally rigid $\Rightarrow M$ rigid

UNIVERSITY
OF TRENTO - Italy

Infinitesimal rigidity

Definition

A compact complex manifold M is infinitesimally rigid if $H^{1}(M, \Theta)=0$.

The word infinitesimally rigid comes by Kuranishi's Theorem. In fact it follows

Corollary (Kuranishi's criterion for rigidity)

M infinitesimally rigid $\Rightarrow M$ rigid

In particular $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ is (infinitesimally) rigid.

Morrow-Kodaira's Problem

Morrow and Kodaira asked if the converse implication also hold ${ }^{3}$:
Theorem 3.2. If $H^{1}(M, \Theta)=0$, then M is rigid. We will give a proof of this using elementary methods. We have the following:

PROBLEM. Find an example of an M which is rigid, but $H^{1}(M, \Theta) \neq 0$. (Not easy?)

Remark. \mathbb{P}^{n} is rigid. For $n \geq 2$ the only known proof is to show $H^{1}\left(\mathbb{P}^{n}, \Theta\right)$ $=0$ [Bott (1957)]. Let us proceed to the proof.

A solution of the $M-K$ Problem is a manifold M such that $\operatorname{Def}(M)$ is a fat point, a singular point.

[^3]
The main result

Theorem

For every even $n \geq 8$ such that $3 \nmid n$ there is a minimal regular surface S_{n} of general type with

$$
K_{S_{n}}^{2}=2(n-3)^{2}, \quad p_{g}\left(S_{n}\right)=\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right)
$$

such that S_{n} is rigid, but not infinitesimally rigid: $h^{1}\left(S_{n}, \Theta\right)=6$.

The main result

Theorem

For every even $n \geq 8$ such that $3 \nmid n$ there is a minimal regular surface S_{n} of general type with

$$
K_{S_{n}}^{2}=2(n-3)^{2}, \quad p_{g}\left(S_{n}\right)=\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right),
$$

such that S_{n} is rigid, but not infinitesimally rigid: $h^{1}\left(S_{n}, \Theta\right)=6$.

The canonical models of these surfaces have exactly 6 singular points, all nodes ${ }^{4}$. The hard part is proving their rigidity, since Kuranishi's rigidity criterium fails.

[^4]
Generalization to higher dimension

Lemma

Let M, N be compact complex manifolds, such that

$$
h^{0}(M, \Theta) h^{1}(N, \mathcal{O})=h^{0}(N, \Theta) h^{1}(M, \mathcal{O})=0
$$

Then $\operatorname{Def}(M \times N)=\operatorname{Def}(M) \times \operatorname{Def}(N)$.
Then, if M is a regular surface of general type solving the M-K Problem and N is a rigid manifold, by Künneth formula $M \times N$ is a solution too.

Generalization to higher dimension

Lemma

Let M, N be compact complex manifolds, such that

$$
h^{0}(M, \Theta) h^{1}(N, \mathcal{O})=h^{0}(N, \Theta) h^{1}(M, \mathcal{O})=0
$$

Then $\operatorname{Def}(M \times N)=\operatorname{Def}(M) \times \operatorname{Def}(N)$.
Then, if M is a regular surface of general type solving the M-K Problem and N is a rigid manifold, by Künneth formula $M \times N$ is a solution too. Using some known rigid manifolds ${ }^{5}$ we obtain

Theorem

There are rigid manifolds of dimension d and Kodaira dimension κ that are not infinitesimally rigid for all possible pairs (d, κ) with $d \geq 5$ and $\kappa \neq 0,1,3$ and for $(d, \kappa)=(3,-\infty),(4,-\infty),(4,4)$.
${ }^{5}$ listed in Ingrid Bauer and Fabrizio Catanese, On rigid compact complex surfaces - Italy and manifolds, Adv. Math. 333, 620-669 (2018).

We need M rigid: these are rare manifolds.

> Theorem (Ingrid Bauer and Fabrizio Catanese, On rigid compact complex surfaces and manifolds, Adv. Math. 333, 620-669 (2018).)

Let M be a smooth compact complex surface, which is rigid. Then either
(1) M is a minimal surface of general type, or
(2) M is a Del Pezzo surface of degree $d \geq 5$
(3) M is an Inoue surface of type S_{M} or $S_{N, p, q, r}^{-}$

Rigid Del Pezzo and Inoue surfaces are infinitesimally rigid, so every surface solving M-K Problem has Kodaira dimension 2.

The minimal model of any rigid surface of general type whose canonical model is singular does the job.

We need M with obstructed deformations

We need $\operatorname{dim} M \geq 2$. Several examples of manifolds M of dimension 2 with obstructed deformations are now known.

We need M with obstructed deformations

We need $\operatorname{dim} M \geq 2$. Several examples of manifolds M of dimension 2 with obstructed deformations are now known.

Burns and Wahl ${ }^{6}$ show how to associate to each smooth rational curve E with $E^{2}=-2$ in a complex surface M a 1 -dimensional subspace $H_{E}^{1}(M)$ of $H^{1}(M, \Theta)$.

[^5]
We need M with obstructed deformations

We need $\operatorname{dim} M \geq 2$. Several examples of manifolds M of dimension 2 with obstructed deformations are now known.

Burns and Wahl ${ }^{6}$ show how to associate to each smooth rational curve E with $E^{2}=-2$ in a complex surface M a 1 -dimensional subspace $H_{E}^{1}(M)$ of $H^{1}(M, \Theta)$.
Note that in particular if M is the minimal resolution of the singularities of a nodal surface ${ }^{7}, M$ can't be infinitesimally rigid.

[^6]
We need M with obstructed deformations

We need $\operatorname{dim} M \geq 2$. Several examples of manifolds M of dimension 2 with obstructed deformations are now known.

Burns and Wahl ${ }^{6}$ show how to associate to each smooth rational curve E with $E^{2}=-2$ in a complex surface M a 1 -dimensional subspace $H_{E}^{1}(M)$ of $H^{1}(M, \Theta)$.
Note that in particular if M is the minimal resolution of the singularities of a nodal surface ${ }^{7}, M$ can't be infinitesimally rigid.

A necessary condition for M to be rigid is that it is obstructed along this line: $H_{E}^{1}(M) \not \subset \operatorname{Def}(M)$. A way to check it has been provided by $K^{8}{ }^{8}$.

[^7]
The Kas maps

Let now X be a compact complex surface with a node $\nu, M \rightarrow X$ be the minimal resolution of singularities of M, let E be exceptional curve mapping to ν and let θ be a generator of $H_{E}^{1}(M) \subset H^{1}(M, \Theta)$.

The Kas maps

Let now X be a compact complex surface with a node $\nu, M \rightarrow X$ be the minimal resolution of singularities of M, let E be exceptional curve mapping to ν and let θ be a generator of $H_{E}^{1}(M) \subset H^{1}(M, \Theta)$.
Then we can write

$$
k(t \theta)=\alpha_{\nu} t^{2}+O(3) \in H^{2}(M, \Theta)
$$

where, by Serre duality we can see α_{ν} as a map $\alpha_{\nu}: H^{0}\left(M, \Omega^{1} \otimes \Omega^{2}\right) \rightarrow \mathbb{C}$. A neighbourhood of ν in X is the quotient of a disc $\Delta \subset \mathbb{C}^{2}$ by the involution $\left(z_{1}, z_{2}\right) \mapsto\left(-z_{1},-z_{2}\right)$.
Pulling-back we get an inclusion $H^{0}\left(M, \Omega^{1} \otimes \Omega^{2}\right) \subset H^{0}\left(\Delta, \Omega^{1} \otimes \Omega^{2}\right)^{+}$ allowing to write locally every $\eta \in H^{0}\left(M, \Omega^{1} \otimes \Omega^{2}\right)$ as

$$
\eta=\left(f_{1} d z_{1}+f_{2} d z_{2}\right) \otimes\left(d z_{1} \wedge d z_{2}\right)
$$

Then Kas shows

$$
\alpha_{\nu}(\eta)=\left(\frac{\partial f_{2}}{\partial z_{1}}-\frac{\partial f_{1}}{\partial z_{2}}\right)(0,0)
$$

Interesting examples with obstructed deformations

(1) Burns and Wahl construct ${ }^{9}$ many examples of smooth surfaces with obstructed deformations by resolving the singularities of certain nodal hypersurfaces in \mathbb{P}^{3}.
(2) Catanese ${ }^{10}$ constructs surfaces M whose Kuranishi family $\operatorname{Def}(M)$ is everywhere nonreduced by resolving the singularities of certain quotients $\left(C_{1} \times C_{2}\right) / G\left(C_{i}\right.$ curves, G finite group $)$ with rational double points.

Still, all these examples are not rigid.

[^8]
Strategy to the proof of the main theorem

Rigid manifolds are rare. I know a short list of examples of rigid surfaces of general type, all infinitesimally rigid: ball quotients, irreducible bi-disk quotients, Beauville surfaces, Mostow-Siu surfaces, some Kodaira fibrations constructed by Catanese and Rollenske.

Example (Beauville surfaces)

Consider two projective curves C_{1}, C_{2}, a finite group G and two injective homomorphisms $G \subset \operatorname{Aut}\left(C_{i}\right)$.
Assume that the induced action $g(x, y)=(g x, g y)$ of G on $C_{1} \times C_{2}$ is free. Then $M:=\left(C_{1} \times C_{2}\right) / G$ is smooth. If $\left(C_{i}, G\right)$ are triangle curves ${ }^{a}$, then M is a Beauville surface.
${ }^{\text {a }}$ i.e. $C_{i} / G \cong \mathbb{P}^{1}$ and $p_{i}: C_{i} \rightarrow C_{i} / G$ has exactly three branching points.

Catanese's lemma

Lemma (Fabrizio Catanese, Everywhere nonreduced moduli spaces, Invent. Math. 98 (2), 293 - 310 (1989))

Let Z be a smooth algebraic surface and G a finite group acting on it freely in codimension 1. Set $p: Z \rightarrow X:=Z / G$.
Then $H^{1}(X, \Theta) \cong H^{1}(Z, \Theta)^{G}$.

Catanese's lemma

Lemma (Fabrizio Catanese, Everywhere nonreduced moduli spaces, Invent. Math. 98 (2), 293 - 310 (1989))

Let Z be a smooth algebraic surface and G a finite group acting on it freely in codimension 1. Set $p: Z \rightarrow X:=Z / G$. Then $H^{1}(X, \Theta) \cong H^{1}(Z, \Theta)^{G}$.

Corollary

Consider two projective curves C_{1}, C_{2}, a finite group G and two injective homomorphisms $G \subset \operatorname{Aut}\left(C_{i}\right)$. Set $X:=\left(C_{1} \times C_{2}\right) / G$. If $\left(C_{i}, G\right)$ are triangle curves, then $H^{1}(X, \Theta)=0$.

Catanese's lemma

Lemma (Fabrizio Catanese, Everywhere nonreduced moduli spaces, Invent. Math. 98 (2), 293 - 310 (1989))

Let Z be a smooth algebraic surface and G a finite group acting on it freely in codimension 1. Set $p: Z \rightarrow X:=Z / G$. Then $H^{1}(X, \Theta) \cong H^{1}(Z, \Theta)^{G}$.

Corollary

Consider two projective curves C_{1}, C_{2}, a finite group G and two injective homomorphisms $G \subset \operatorname{Aut}\left(C_{i}\right)$. Set $X:=\left(C_{1} \times C_{2}\right) / G$. If $\left(C_{i}, G\right)$ are triangle curves, then $H^{1}(X, \Theta)=0$.

This implies that Beauville surfaces are infinitesimally rigid.

Catanese's lemma

```
Lemma (Fabrizio Catanese, Everywhere nonreduced moduli spaces,
Invent. Math. 98 (2), 293-310 (1989))
```

Let Z be a smooth algebraic surface and G a finite group acting on it freely in codimension 1. Set $p: Z \rightarrow X:=Z / G$. Then $H^{1}(X, \Theta) \cong H^{1}(Z, \Theta)^{G}$.

Corollary

Consider two projective curves C_{1}, C_{2}, a finite group G and two injective homomorphisms $G \subset \operatorname{Aut}\left(C_{i}\right)$. Set $X:=\left(C_{1} \times C_{2}\right) / G$. If $\left(C_{i}, G\right)$ are triangle curves, then $H^{1}(X, \Theta)=0$.

This implies that Beauville surfaces are infinitesimally rigid. Note however that here G may act not freely, and then X has isolated singularities. Then the minimal resolution M of the singularifies of $X_{\text {ss }}$ may still be neither rigid nor infinitesimally rigid.

A criterion to prove rigidity

Theorem

Let M be the minimal res. of the sing. of a nodal surface X. Assume that
(1) $H^{1}(X, \Theta)=0$;
(2) the maps $\alpha_{\nu_{i}}$ associated to the nodes ν_{i} of X locally described in (1) are linearly independent in $H^{0}\left(M, \Omega^{1} \otimes \Omega^{2}\right)^{\vee}$.
Then M is rigid and $h^{1}(M, \Theta)$ equals the number of nodes of X.

A criterion to prove rigidity

Theorem

Let M be the minimal res. of the sing. of a nodal surface X. Assume that
(1) $H^{1}(X, \Theta)=0$;
(2) the maps $\alpha_{\nu_{i}}$ associated to the nodes ν_{i} of X locally described in (1) are linearly independent in $H^{0}\left(M, \Omega^{1} \otimes \Omega^{2}\right)^{\vee}$.
Then M is rigid and $h^{1}(M, \Theta)$ equals the number of nodes of X.

Sketch of the proof.

By condition 1 and a remark of Pinkham ${ }^{a} H^{1}(M, \Theta) \cong \bigoplus H_{E_{i}}^{1}(M)$. Choose $0 \neq \theta_{i} \in H_{E_{i}}^{1}(M)$: they form a basis of $H^{1}(M, \Theta)$. Then $k\left(\sum t_{i} \theta_{i}\right)=\sum_{1}^{r} t_{i}^{2} \alpha_{\nu_{i}}+O(3)$. The rigidity follows now by condition 2 .
${ }^{2}$ Henry Pinkham, Some local obstructions to deforming global surfaces, Nova Acta Leopoldina (N.F.) 52 (1981), 173-178.

Strategy of the proof of the main theorem

Theorem

For every even $n \geq 8$ such that $3 \nmid n$ there is a minimal regular surface S_{n} of general type with $K_{S_{n}}^{2}=2(n-3)^{2}, \quad p_{g}\left(S_{n}\right)=\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right)$, such that S_{n} is rigid, but not infinitesimally rigid.

Strategy of the proof of the main theorem

Theorem

For every even $n \geq 8$ such that $3 \nmid n$ there is a minimal regular surface S_{n} of general type with $K_{S_{n}}^{2}=2(n-3)^{2}, \quad p_{g}\left(S_{n}\right)=\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right)$, such that S_{n} is rigid, but not infinitesimally rigid.

We pick two triangle curves $\left(C_{1}, G\right),\left(C_{2}, G\right)$ for the same finite group, we set $X:=\left(C_{1} \times C_{2}\right) / G$ the quotient by the diagonal action.

Strategy of the proof of the main theorem

Theorem

For every even $n \geq 8$ such that $3 \nmid n$ there is a minimal regular surface S_{n} of general type with $K_{S_{n}}^{2}=2(n-3)^{2}, \quad p_{g}\left(S_{n}\right)=\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right)$, such that S_{n} is rigid, but not infinitesimally rigid.

We pick two triangle curves $\left(C_{1}, G\right),\left(C_{2}, G\right)$ for the same finite group, we set $X:=\left(C_{1} \times C_{2}\right) / G$ the quotient by the diagonal action.

We need X to be nodal and have at least one node. In other words, there is at least one point of $C_{1} \times C_{2}$ whose stabilizer has order 2 , and no points whose stabilizer has a higher order.

Strategy of the proof of the main theorem

Theorem

For every even $n \geq 8$ such that $3 \nmid n$ there is a minimal regular surface S_{n} of general type with $K_{S_{n}}^{2}=2(n-3)^{2}, \quad p_{g}\left(S_{n}\right)=\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right)$, such that S_{n} is rigid, but not infinitesimally rigid.

We pick two triangle curves $\left(C_{1}, G\right),\left(C_{2}, G\right)$ for the same finite group, we set $X:=\left(C_{1} \times C_{2}\right) / G$ the quotient by the diagonal action.

We need X to be nodal and have at least one node. In other words, there is at least one point of $C_{1} \times C_{2}$ whose stabilizer has order 2 , and no points whose stabilizer has a higher order.

Then by Catanese's Lemma the first condition in the rigiditycriterion $H^{1}(X, \Theta)=0$ is fulfilled, and we only need to check the second UnernTo - laly

The Fermat curves

Which triangle curves do the job?
The Fermat curve of degree $n, C:=\left\{\sum_{j=0}^{2} x_{j}^{n}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ admits a natural action of the group $G \cong(\mathbb{Z} / n \mathbb{Z})^{2}$:

$$
\left(a_{1}, a_{2}\right)\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{0}: e^{a_{1} \frac{2 \pi i}{n}} x_{1}: e^{a_{2} \frac{2 \pi i}{n}} x_{2}\right) .
$$

The Fermat curves

Which triangle curves do the job?
The Fermat curve of degree $n, C:=\left\{\sum_{j=0}^{2} x_{j}^{n}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ admits a natural action of the group $G \cong(\mathbb{Z} / n \mathbb{Z})^{2}$:

$$
\left(a_{1}, a_{2}\right)\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{0}: e^{a_{1} \frac{2 \pi i}{n}} x_{1}: e^{a_{2} \frac{2 \pi i}{n}} x_{2}\right)
$$

This G-action has only three orbits of cardinality different by n^{2}, all of cardinality n :

- $C \cap\left\{x_{0}=0\right\}$ with stabilizer $\langle(1,1)\rangle \cong \mathbb{Z} / n \mathbb{Z}$
- $C \cap\left\{x_{1}=0\right\}$ with stabilizer $\langle(1,0)\rangle \cong \mathbb{Z} / n \mathbb{Z}$
- $C \cap\left\{x_{2}=0\right\}$ with stabilizer $\langle(0,1)\rangle \cong \mathbb{Z} / n \mathbb{Z}$

The Fermat curves

Which triangle curves do the job?
The Fermat curve of degree $n, C:=\left\{\sum_{j=0}^{2} x_{j}^{n}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ admits a natural action of the group $G \cong(\mathbb{Z} / n \mathbb{Z})^{2}$:

$$
\left(a_{1}, a_{2}\right)\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{0}: e^{a_{1} \frac{2 \pi i}{n}} x_{1}: e^{a_{2} \frac{2 \pi i}{n}} x_{2}\right) .
$$

This G-action has only three orbits of cardinality different by n^{2}, all of cardinality n :

- $C \cap\left\{x_{0}=0\right\}$ with stabilizer $\langle(1,1)\rangle \cong \mathbb{Z} / n \mathbb{Z}$
- $C \cap\left\{x_{1}=0\right\}$ with stabilizer $\langle(1,0)\rangle \cong \mathbb{Z} / n \mathbb{Z}$
- $C \cap\left\{x_{2}=0\right\}$ with stabilizer $\langle(0,1)\rangle \cong \mathbb{Z} / n \mathbb{Z}$

By Hurwitz formula $C / G \cong \mathbb{P}^{1}$ so (C, G) is a triangle curve.

The surfaces S_{n}

We choose as triangle curves $\left(C_{i}, G\right)$ two copies of the Fermat curve of degree n.

The surfaces S_{n}

We choose as triangle curves $\left(C_{i}, G\right)$ two copies of the Fermat curve of degree n.

For the first copy $\left(C_{1}, G\right)$ we take the action as described in the previous slide, whereas for the second copy $\left(C_{2}, G\right)$ we twist the action by the matrix

$$
A:=\left(\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right)
$$

that for all n not divisible by 3 defines an automorphism of G.

The surfaces S_{n}

We choose as triangle curves $\left(C_{i}, G\right)$ two copies of the Fermat curve of degree n.

For the first copy $\left(C_{1}, G\right)$ we take the action as described in the previous slide, whereas for the second copy $\left(C_{2}, G\right)$ we twist the action by the matrix

$$
A:=\left(\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right)
$$

that for all n not divisible by 3 defines an automorphism of G.
The surface S_{n} is the minimal resolution of the singularities of $\left(C_{1} \times C_{2}\right) / G$.

Some S_{n} are Beauville surfaces

The elements of G fixing some points of C_{1} form, as we have seen, the set $\langle(1,0)\rangle \cup\langle(0,1)\rangle \cup\langle(1,1)\rangle$.

Some S_{n} are Beauville surfaces

The elements of G fixing some points of C_{1} form, as we have seen, the set $\langle(1,0)\rangle \cup\langle(0,1)\rangle \cup\langle(1,1)\rangle$.

Acting with A we deduce that the elements of G fixing some points of C_{2} form the set $\langle(1,2)\rangle \cup\langle(-2,-1)\rangle \cup\langle(-1,1)\rangle$.

Some S_{n} are Beauville surfaces

The elements of G fixing some points of C_{1} form, as we have seen, the set $\langle(1,0)\rangle \cup\langle(0,1)\rangle \cup\langle(1,1)\rangle$.

Acting with A we deduce that the elements of G fixing some points of C_{2} form the set $\langle(1,2)\rangle \cup\langle(-2,-1)\rangle \cup\langle(-1,1)\rangle$.

For n odd, the intersection of these two sets is $\{(0,0)\}$. Then the induced action on $C_{1} \times C_{2}$ is free: S_{n} is a Beauville surface, infinitesimally rigid. Then we need to assume n even.

Some S_{n} are Beauville surfaces

The elements of G fixing some points of C_{1} form, as we have seen, the set $\langle(1,0)\rangle \cup\langle(0,1)\rangle \cup\langle(1,1)\rangle$.

Acting with A we deduce that the elements of G fixing some points of C_{2} form the set $\langle(1,2)\rangle \cup\langle(-2,-1)\rangle \cup\langle(-1,1)\rangle$.

For n odd, the intersection of these two sets is $\{(0,0)\}$. Then the induced action on $C_{1} \times C_{2}$ is free: S_{n} is a Beauville surface, infinitesimally rigid.
Then we need to assume n even.

For n even the non-trivial elements of G fixing some points of $C_{1} \times C_{2}$ are $(n / 2,0),(0, n / 2)$ and $(n / 2, n / 2)$, all of order 2 fixing n^{2} points: then X is a nodal surface with $3 \cdot 2 \cdot n^{2} / n^{2}=6$ nodes.

The proof

We skip the computation of the invariants of S_{n}, that is standard.
We need to check if the six maps

$$
\alpha_{\nu_{i}}: H^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right) \rightarrow \mathbb{C}
$$

associated to the nodes of X are linearly independent.
For this we need $h^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right) \geq 6$: indeed this excludes the case $n \leq 4$ giving $n \geq 8$.

The proof

We skip the computation of the invariants of S_{n}, that is standard.
We need to check if the six maps

$$
\alpha_{\nu_{i}}: H^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right) \rightarrow \mathbb{C}
$$

associated to the nodes of X are linearly independent.
For this we need $h^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right) \geq 6$: indeed this excludes the case $n \leq 4$ giving $n \geq 8$.

In fact S_{4} is a numerical Campedelli surface with fundamental group $(\mathbb{Z} / 2 \mathbb{Z})^{3}$: these are well known, their Kuranishi family has dimension 6.

The proof

We skip the computation of the invariants of S_{n}, that is standard.
We need to check if the six maps

$$
\alpha_{\nu_{i}}: H^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right) \rightarrow \mathbb{C}
$$

associated to the nodes of X are linearly independent.
For this we need $h^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right) \geq 6$: indeed this excludes the case $n \leq 4$ giving $n \geq 8$.

In fact S_{4} is a numerical Campedelli surface with fundamental group $(\mathbb{Z} / 2 \mathbb{Z})^{3}$: these are well known, their Kuranishi family has dimension 6.

When $h^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right) \geq 6$ may to check the idependence of the $\alpha{ }_{\nu / i \mathrm{~B}}$ by restricting to a suitable 6-dimensional subspace.

Decomposition of $H^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right)$

We need a basis of $H^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right)$ as explicit as possible, in order to be able to compute their image via the Kas map. By

$$
\begin{aligned}
& H^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right) \cong H^{0}\left(C_{1} \times C_{2}, \Omega^{1} \otimes \Omega^{2}\right)^{G} \cong \\
& \cong\left(H^{0}\left(C_{1}, \omega_{C_{1}}^{\otimes 2}\right) \otimes H^{0}\left(C_{2}, \omega_{C_{2}}\right)\right)^{G} \oplus\left(H^{0}\left(C_{1}, \omega_{C_{1}}\right) \otimes H^{0}\left(C_{2}, \omega_{C_{2}}^{\otimes 2}\right)\right)^{G} \cong \\
& \cong \bigoplus_{\chi \in G^{*}}\left(\left(H^{0}\left(\omega_{C_{1}}^{\otimes 2}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{2}}\right)^{-\chi}\right) \oplus\left(H^{0}\left(\omega_{C_{1}}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{2}}^{\otimes 2}\right)^{-\chi}\right)\right) \cong \\
& \quad \cong \bigoplus_{\chi \in G^{*}}\left(\left(H^{0}\left(\omega_{C_{1}}^{\otimes 2}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{1}}\right)^{\chi^{\prime}}\right) \oplus\left(H^{0}\left(\omega_{C_{1}}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{1}}^{\otimes 2}\right)^{\chi}\right)\right)
\end{aligned}
$$

where. writing χ, χ^{\prime} as a column, $\chi^{\prime}:=-{ }^{t} A^{-1} \chi$

Six good characters are enough

Lemma

Set $k_{0}=k_{1}=(1,0), k_{\infty}=(0,1) \in G$. Assume that there is a set of six characters $\mathcal{C}:=\left\{\chi_{0}, \chi_{0}^{\prime}, \chi_{1}, \chi_{1}^{\prime}, \chi_{\infty}, \chi_{\infty}^{\prime}\right\} \subset G^{*}$, such that
(1) $\chi_{0} \equiv \chi_{0}^{\prime} \equiv(0,1), \chi_{1} \equiv \chi_{1}^{\prime} \equiv(1,1), \chi_{\infty} \equiv \chi_{\infty}^{\prime} \equiv(1,0) \bmod 2$;
(2) $\forall p \in\{0,1, \infty\}, \chi_{p}\left(k_{p}\right) \neq \chi_{p}^{\prime}\left(k_{p}\right)$;
(3) if $\chi \in \mathcal{C}$, then $H^{0}\left(\omega_{C}\right)^{(\chi)} \neq\{0\}, H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(\chi^{\prime}\right)} \neq\{0\}$.

Then condition 2 in the rigidity criterion holds.

Six good characters are enough

Lemma

Set $k_{0}=k_{1}=(1,0), k_{\infty}=(0,1) \in G$. Assume that there is a set of six characters $\mathcal{C}:=\left\{\chi_{0}, \chi_{0}^{\prime}, \chi_{1}, \chi_{1}^{\prime}, \chi_{\infty}, \chi_{\infty}^{\prime}\right\} \subset G^{*}$, such that
(1) $\chi_{0} \equiv \chi_{0}^{\prime} \equiv(0,1), \chi_{1} \equiv \chi_{1}^{\prime} \equiv(1,1), \chi_{\infty} \equiv \chi_{\infty}^{\prime} \equiv(1,0) \bmod 2$;
(2) $\forall p \in\{0,1, \infty\}, \chi_{p}\left(k_{p}\right) \neq \chi_{p}^{\prime}\left(k_{p}\right)$;
(3) if $\chi \in \mathcal{C}$, then $H^{0}\left(\omega_{C}\right)^{(\chi)} \neq\{0\}, H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(\chi^{\prime}\right)} \neq\{0\}$.

Then condition 2 in the rigidity criterion holds.

Sketch of the proof - part 1

We need to check the linear independence of the six maps $\alpha_{\nu_{j}}$. We decomposed $H^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right)$ obtaing addenda of the form $H^{0}\left(\omega_{C_{1}}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{1}}^{\otimes 2}\right)^{\chi^{\prime}}$. When $\chi \in \mathcal{C}$, by condition 3 , the addendum is not trivial. Picking one general element in each of them, we get six different elements in $H^{0}\left(S_{n}, \Omega^{1} \otimes \Omega^{2}\right)$.

Six good characters are enough

Lemma

Set $k_{0}=k_{1}=(1,0), k_{\infty}=(0,1) \in G$. Assume that there is a set of six characters $\mathcal{C}:=\left\{\chi_{0}, \chi_{0}^{\prime}, \chi_{1}, \chi_{1}^{\prime}, \chi_{\infty}, \chi_{\infty}^{\prime}\right\} \subset G^{*}$, such that
(1) $\chi_{0} \equiv \chi_{0}^{\prime} \equiv(0,1), \chi_{1} \equiv \chi_{1}^{\prime} \equiv(1,1), \chi_{\infty} \equiv \chi_{\infty}^{\prime} \equiv(1,0) \bmod 2$;
(2) $\forall p \in\{0,1, \infty\}, \chi_{p}\left(k_{p}\right) \neq \chi_{p}^{\prime}\left(k_{p}\right)$;
(3) if $\chi \in \mathcal{C}$, then $H^{0}\left(\omega_{C}\right)^{(\chi)} \neq\{0\}, H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(-\chi^{\prime}\right)} \neq\{0\}$.

Then condition 2 in the rigidity criterion holds.

Sketch of the proof - part 2.

Computing explicitely the six Kas maps (1) in them we get the following

$$
\begin{array}{lll}
\left(\chi_{0}\left(k_{0}\right), 1,0,0,0,0\right) & \left(0,0, \chi_{1}\left(k_{1}\right), 1,0,0\right) & \left(0,0,0,0, \chi_{\infty}\left(k_{\infty}\right), 1\right) \\
\left(\chi_{0}^{\prime}\left(k_{0}\right), 1,0,0,0,0\right) & \left(0,0, \chi_{1}^{\prime}\left(k_{1}\right), 1,0,0\right) & \left(0,0,0,0, \chi_{\infty}^{\prime}\left(k_{\infty}\right), 1\right)
\end{array}
$$

Decomposition of $p_{*} \omega_{C}$

The Fermat triangle curve $p: C=C_{1} \rightarrow \mathbb{P}^{1}$ is an abelian cover, with group G. We compute the decomposition of $p_{*} \omega_{C}$ by Pardini's ${ }^{11}$ formula

$$
\begin{aligned}
& \text { n-1-1-1-1-1-1 *-1-1-1-1-1 } \\
& \text { n-2-1 } 0 \text {-1-1-1 *-1-1-1-1-1 } \\
& \text {-1 } 000-1-1 *-1-1-1-1-1 \\
& -10000-1 *-1-1-1-1-1 \\
& -1000000 *-1-1-1-1-1 \\
& \text { * * * * * * * * * * * } \\
& \begin{array}{rlllllll}
-1 & 0 & 0 & 0 & 0 & * & 0 & -1-1-1-1 \\
-1 & 0 & 0 & 0 & 0 & * & 0 & 0
\end{array} \\
& \text { 3-1 } 000000 * 00-1-1-1 \\
& 2-100000 * 000-1-1 \\
& 1-100000 * 0000-1 \\
& \text { 0-2-1-1-1-1*-1-1-1-1-1 } \\
& 0123 \\
& n-1
\end{aligned}
$$

Figure: The degrees of $\left(p_{*} \omega_{C}\right)^{(\alpha, \beta)}$
${ }^{11}$ Rita Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. ${ }^{\text {Tir }} 7^{\text {TO }}$ - Italy 191-213.

Decomposition of $p_{*} \omega_{C}^{\otimes 2}$

Similarly we compute the decomposition $p_{*} \omega_{C}^{\otimes 2}$.

$$
\left.\begin{array}{rrrrrrrrrrr}
n-1-1 & -1 & 0 & 0 & 0 & * & 0 & 0 & 0 & 0 & 0 \\
n-2 & 0 & -1 & 0 & 0 & 0 & * & 0 & 0 & 0 & 0 \\
n-3 & 0 & 0 & 0 & 0 & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & * & 0 & 0 & 0 & 0 & 0 \\
& * & * & * & * & * & * & * & * & * & * \\
& * \\
0 & 0 & 1 & 1 & 1 & * & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 1 & 1 & 1 & * & 1 & 0 & 0 & 0
\end{array}\right)
$$

Figure: The degrees of $\left(p_{*} \omega_{C}^{\otimes 2}\right)^{(\alpha, \beta)}$

Note that $\forall n \geq 4$ the degree is negative only for 10 characters.

End of the proof of the main theorem

We need then to find six characters such that
(1) $\chi_{0} \equiv \chi_{0}^{\prime} \equiv(0,1), \chi_{1} \equiv \chi_{1}^{\prime} \equiv(1,1), \chi_{\infty} \equiv \chi_{\infty}^{\prime} \equiv(1,0) \bmod 2$;
(2) $\forall p \in\{0,1, \infty\}, \chi_{p}\left(k_{p}\right) \neq \chi_{p}^{\prime}\left(k_{p}\right)$;
(3) if $\chi \in \mathcal{C}$, then $H^{0}\left(\omega_{C}\right)^{(\chi)} \neq\{0\}, H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(\chi^{\prime}\right)} \neq\{0\}$.

End of the proof of the main theorem

We need then to find six characters such that
(1) $\chi_{0} \equiv \chi_{0}^{\prime} \equiv(0,1), \chi_{1} \equiv \chi_{1}^{\prime} \equiv(1,1), \chi_{\infty} \equiv \chi_{\infty}^{\prime} \equiv(1,0) \bmod 2$;
(2) $\forall p \in\{0,1, \infty\}, \chi_{p}\left(k_{p}\right) \neq \chi_{p}^{\prime}\left(k_{p}\right)$;
(3) if $\chi \in \mathcal{C}$, then $H^{0}\left(\omega_{C}\right)^{(\chi)} \neq\{0\}, H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(\chi^{\prime}\right)} \neq\{0\}$.

End of the proof.

We pick the following six characters

$$
\begin{array}{lll}
\chi_{0}=(2,1) & \chi_{1}=(1,3) & \chi_{\infty}=(1,2) \\
\chi_{0}^{\prime}=(4,1) & \chi_{1}^{\prime}=(3,1) & \chi_{\infty}^{\prime}=(1,4)
\end{array}
$$

The only check that is not trivial is that $H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(\chi^{\prime}\right)} \neq\{0\}$: this indeed fails for $n=4$ but a tedious computation shows that it holds for $n \geq 8$.

Open problems

Problem (1)

Construct rigid manifolds M with $h^{1}(M, \Theta)=1$, resp. arbitrarily high.

Open problems

Problem (1)

Construct rigid manifolds M with $h^{1}(M, \Theta)=1$, resp. arbitrarily high.

Problem (2)

Construct simply connected rigid not infinitesimally rigid manifolds.
Note $\pi_{1}\left(S_{n}\right) \cong\left(\mathbb{Z} / \frac{n}{2} \mathbb{Z}\right)^{3}$.

Open problems

Problem (1)

Construct rigid manifolds M with $h^{1}(M, \Theta)=1$, resp. arbitrarily high.

Problem (2)

Construct simply connected rigid not infinitesimally rigid manifolds.
Note $\pi_{1}\left(S_{n}\right) \cong\left(\mathbb{Z}_{/ \frac{n}{2} \mathbb{Z}}\right)^{3}$.

Problem (3)

For every fixed natural numbers $\kappa, d \in \mathbb{N}$ with $\kappa \leq d \geq 3$ are there rigid not inf. rigid manifolds of dimension d and Kodaira dimension κ ? In particular for $\kappa=0,1$.

Open problems

Problem (1)

Construct rigid manifolds M with $h^{1}(M, \Theta)=1$, resp. arbitrarily high.

Problem (2)

Construct simply connected rigid not infinitesimally rigid manifolds.
Note $\pi_{1}\left(S_{n}\right) \cong\left(\mathbb{Z}_{/ \frac{n}{2} \mathbb{Z}}\right)^{3}$.

Problem (3)

For every fixed natural numbers $\kappa, d \in \mathbb{N}$ with $\kappa \leq d \geq 3$ are there rigid not inf. rigid manifolds of dimension d and Kodaira dimension κ ? In particular for $\kappa=0,1$.

Problem (4)

Construct rigid surfaces to which our criterion does not apply.

References, page 1

Tingrid Bauer and Roberto Pignatelli (2018)
Rigid but not infinitesimally rigid compact complex manifolds
arxiv: math/1805.02559
圄 Ingrid Bauer and Fabrizio Catanese(2018)
On rigid compact complex surfaces and manifolds
Adv. Math. 333, 620-669
國 D. M. Burns Jr. and Jonathan M. Wahl (1974)
Local contributions to global deformations of surfaces
Invent. Math 26, 67 - 88.
Fabrizio Catanese (1989)
Everywhere nonreduced moduli spaces
Invent. Math. 98(2), 293 - 310.
Arnold Kas (1977)
Ordinary double points and obstructed surfaces

Topology 16(1), 51 - 64.

References, page 2

James Morrow and Kunihiko Kodaira (1971)
Complex manifolds
Holt, Rinehart and Winston, Inc.
Rita Pardini (1991)
Abelian covers of algebraic varieties
J. Reine Angew. Math. 417, 191-213.

國 Henry Pinkham (1981)
Some local obstructions to deforming global surfaces
Nova Acta Leopoldina (N.F.) 52(240), 173-178.

[^0]: ${ }^{1}$ Here Θ is the sheaf of holomorphic vector fields on M.
 ${ }^{2}$ Then $H^{1}(M, \Theta)$ is the Zariski tangent space of $(\operatorname{Def}(M), 0)$. In particular $(\operatorname{Def}(M), 0)$ is smooth if and only if $k=0$, in which case we say ${ }^{F}$ that $\mathbb{t}^{\top} M^{-I t a l y}$ has unobstructed deformations.

[^1]: ${ }^{1}$ Here Θ is the sheaf of holomorphic vector fields on M.
 ${ }^{2}$ Then $H^{1}(M, \Theta)$ is the Zariski tangent space of $(\operatorname{Def}(M), 0)$. has unobstructed deformations.

[^2]: ${ }^{1}$ Here Θ is the sheaf of holomorphic vector fields on M.
 ${ }^{2}$ Then $H^{1}(M, \Theta)$ is the Zariski tangent space of $(\operatorname{Def}(M), 0)$.
 UNIVERSITY
 In particular $(\operatorname{Def}(M), 0)$ is smooth if and only if $k=0$, in which case we say ${ }^{F}$ that \mathbb{M}^{\top} - Italy has unobstructed deformations.

[^3]: ${ }^{3}$ This is a screenshot of the book Complex Manifolds by James Morrow and Kunnihikoly Kodaira (1971), Holt, Rinehart and Winston, Inc.

[^4]: ${ }^{4} \mathrm{~A}$ node is a singular point locally isomorphic to the quotient of a 2 dadensional - Italy disc by $p \mapsto-p$.

[^5]: ${ }^{6}$ D. M. Burns Jr. and Jonathan M. Wahl, Local contributions to global deformationsly of surfaces, Invent. Math 26, 67 - 88 (1974).

[^6]: ${ }^{6}$ D. M. Burns Jr. and Jonathan M. Wahl, Local contributions to global deformations of surfaces, Invent. Math 26, $67-88$ (1974).
 ${ }^{7}$ A nodal surface is a singular surface whose singular points are nodes.

[^7]: ${ }^{6}$ D. M. Burns Jr. and Jonathan M. Wahl, Local contributions to global deformations of surfaces, Invent. Math 26, 67 - 88 (1974).
 ${ }^{7}$ A nodal surface is a singular surface whose singular points are nodes.
 ${ }^{8}$ Arnold Kas, Ordinary double points and obstructed surfaces, Topology 16 (11), 51 Laly 64 (1977).

[^8]: ${ }^{9}$ D. M. Burns Jr. and Jonathan M. Wahl, Local contributions to global deformations of surfaces, Invent. Math 26, 67 - 88 (1974).
 ${ }^{10}$ Fabrizio Catanese, Everywhere nonreduced moduli spaces, Invent. Math $9 \mathbf{9 8}$ (2), - Italy 293 - 310 (1989).

