Rigid but not infinitesimally rigid compact complex manifolds

joint work with I. Bauer (Bayreuth)

Roberto Pignatelli

University of Trento

Roberto.Pignatelli@unitn.it
Differential, Algebraic and Topological Methods in Complex Algebraic Geometry
Cetraro, September 13, 2018

Overview

(1) The Question

- Rigidities
- Morrow-Kodaira's question
- Difficulties
(2) Our main results
- Answers in every dimension ≥ 2
- The strategy
- The construction

Two rigidities

Our title involves two different notions of rigidity of a compact complex manifold.
(1) A compact complex manifold M is rigid if for each deformation of M, $f:(\mathfrak{X}, M) \rightarrow\left(B, b_{0}\right)$ there is an open neighbourhood $U \subset B$ of b_{0} such that $M_{t}:=f^{-1}(t) \cong M$ for all $t \in U$.
(2) A compact complex manifold M is infinitesimally rigid if $H^{1}(M, \Theta)=0$, where Θ is the sheaf of holomorphic vector fields on M.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.

Morrow-Kodaira's question

By Kuranishi theory
M infinitesimally rigid $\Rightarrow M$ rigid
so that infinitesimal rigidity provides a useful criterion for rigidity.
It is natural to ask if the converse implication also hold.

M-K Problem ([Morrow and Kodaira, 1971, page 45])

Find an example of a (compact complex manifold) M, which is rigid, but $H^{1}(M, \Theta) \neq 0$. (Not easy?)

Interpretation of the M-K Problem in terms of Kuranishi family

By the work of Kuranishi, the base $\operatorname{Def}(M)$ of the semiuniversal deformation of M is the germ at 0 of the fibre over 0 of a holomorphic map

$$
K: H^{1}(M, \Theta) \rightarrow H^{2}(M, \Theta)
$$

called the Kuranishi map. $\operatorname{Def}(M)$ is the Kuranishi family of M. If $\operatorname{Def}(M)$ is a point, i.e. $K^{-1}(0)=\{0\}$, then M is rigid.

The components of the Kuranishi map (once chosen a basis of $H^{2}(M, \Theta)$) are holomorphic functions whose Taylor expansion starts in degree 2. In particular $H^{1}(M, \Theta)$ is isomorphic to the Zariski tangent space of $\operatorname{Def}(M)$.

A solution of the $\mathrm{M}-\mathrm{K}$ Problem is a manifold M such that $\operatorname{Def}(M)$ is a fat point, a singular point.

Nobody did it in almost 50 years. Why? Where is the difficulty?

M needs obstructed deformations: this is (now) easy.

We obviously need $\operatorname{dim} M \geq 2$.
Several examples of manifolds M of dimension 2 with obstructed deformations are known. Two important examples:
(1) [Burns and Wahl, 1974] shows how to associate to each smooth rational curve E with $E^{2}=-2$ in a complex surface M a 1-dimensional subspace $H_{E}^{1}(M)$ of $H^{1}(M, \Theta)$: in particular M can't be infinitesimally rigid. [Burns and Wahl, 1974] constructs many examples of smooth surfaces with obstructed deformations by resolving the singularities of certain hypersurfaces in \mathbb{P}^{3} with rational double points.
(2) [Catanese, 1989] constructs surfaces M whose Kuranishi family $\operatorname{Def}(M)$ is everywhere nonreduced by resolving the singularities of certain quotients $\left(C_{1} \times C_{2}\right) / G\left(C_{i}\right.$ curves, G finite group $)$ with rational double points.

M needs to be rigid: this is (still) difficult.

Theorem ([Bauer and Catanese, 2018])

Let S be a smooth compact complex surface, which is rigid. Then either
(1) S is a minimal surface of general type, or
(2) S is a Del Pezzo surface of degree $d \geq 5$
(3) S is an Inoue surface of type S_{M} or $S_{N, p, q, r}^{-}$

Rigid Del Pezzo and Inoue surfaces are infinitesimally rigid, so every surface solving M-K Problem is of general type.

Rigid surfaces are rare. And it is hard to prove that a surface is rigid, unless you can prove that it is infinitesimally rigid.

The main result

Then a solution of the $\mathrm{M}-\mathrm{K}$ Problem is provided by any rigid surface of general type whose canonical model is singular.
We did it:

Theorem

For every even $n \geq 8$ such that $3 \nmid n$ there is a minimal regular surface S_{n} of general type with

$$
K_{S_{n}}^{2}=2(n-3)^{2}, \quad p_{g}\left(S_{n}\right)=\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right),
$$

such that S_{n} is rigid, but not infinitesimally rigid.
The canonical models of these surfaces have exactly 6 singular points, all of type A_{1} (nodes). The hard part is proving their rigidity.

Generalization to higher dimension

Lemma

Let M, N be compact complex manifolds, such that

$$
H^{1}\left(\Theta_{M \times N}\right)=H^{1}\left(\Theta_{M}\right) \oplus H^{1}\left(\Theta_{N}\right)
$$

Then $\operatorname{Def}(M \times N)=\operatorname{Def}(M) \times \operatorname{Def}(N)$.
Then, if M is a regular surface of general type solving the M-K Problem and N is a rigid manifold, by Künneth formula $M \times N$ is a solution too. Using some rigid manifolds in [Bauer and Catanese, 2018]

Theorem

There are rigid manifolds of dimension d and Kodaira dimension κ that are not infinitesimally rigid for all possible pairs (d, κ) with $d \geq 5$ and $\kappa \neq 0,1,3$ and for $(d, \kappa)=(3,-\infty),(4,-\infty),(4,4)$.

Strategy to the proof of the main theorem

Rigid surfaces are rare. I know a short list of examples of rigid surfaces of general type, all infinitesimally rigid: ball quotients, irreducible bi-disk quotients, Beauville surfaces, Mostow-Siu surfaces, some Kodaira fibrations constructed by Catanese and Rollenske.

Example

Consider two projective curves C_{1}, C_{2}, a finite group G and two injective homomorphisms $G \subset \operatorname{Aut}\left(C_{i}\right)$.
Assume that the induced action $g(x, y)=(g x, g y)$ of G on $C_{1} \times C_{2}$ is free. Then $X:=\left(C_{1} \times C_{2}\right) / G$ is smooth.
If $\left(C_{i}, G\right)$ are triangle curves, i.e. $C_{i} / G \cong \mathbb{P}^{1}$ and $p_{i}: C_{i} \rightarrow C_{i} / G$ has exactly three branching points, then X is a Beauville surface.

Fabrizio's lemma

Lemma ([Catanese, 1989])

Let Z be a smooth algebraic surface and G a finite group acting on it freely in codimension 1. Set $p: Z \rightarrow X:=X / G$. Then $\Theta_{X} \cong\left(p_{*} \Theta_{Z}\right)^{G}$ and then $H^{1}\left(X, \Theta_{X}\right) \cong H^{1}\left(Z, \Theta_{Z}\right)^{G}$.

This implies that Beauville surfaces are infinitesimally rigid. Note however that here G may act not freely, and then X have isolated singularities.

Corollary

Consider two projective curves C_{1}, C_{2}, a finite group G and two injective homomorphisms $G \subset \operatorname{Aut}\left(C_{i}\right)$. Set $X:=\left(C_{1} \times C_{2}\right) / G$. If $\left(C_{i}, G\right)$ are triangle curves, then $H^{1}\left(X, \Theta_{X}\right)=0$.

The minimal resolution of the singularities $S \rightarrow X$ has no nontrivial deformations coming from the construction. S may still be neither rigid nor infinitesimally rigid.

(-2)-curves obstruct infinitesimal rigidity

If a point $p \in C_{1} \times C_{2}$ to has stabilizer of order 2 , then X has a singular point of type A_{1} (a node) at [p], whose preimage in S is a smooth rational curve E with $E^{2}=-2$.

Then, by the mentioned result in [Burns and Wahl, 1974] E produces a 1-dimensional subspace $H_{E}^{1}(S)$ of $H^{1}\left(S, \Theta_{S}\right)$ and then S is not infinitesimally rigid.

We need S to be rigid. First, we need to understand if $H_{E}^{1}(S)$ produces a true family of deformations (smoothing the node).
[Kas, 1977] gives a very explicit solution to this problem.

UNIVERSITY
OF TRENTO - Italy

The Kas map

Let now X be a compact complex surface with a node ν.
Let $S \rightarrow X$ be the minimal resolution of singularities of X and let E be exceptional curve mapping to ν.
Let θ be a generator of $H_{E}^{1}\left(\Theta_{S}\right) \subset H^{1}\left(S, \Theta_{S}\right)$.
Then $K(t \theta)=\alpha_{\nu} t^{2}+O(3) \in H^{2}\left(S, \Theta_{S}\right)$.
By Serre duality we can see α_{ν} as a map $\alpha_{\nu}: H^{0}\left(S, \Omega_{S}^{1} \otimes \Omega_{S}^{2}\right) \rightarrow \mathbb{C}$.
A small neighbourhood U of ν in X is isomorphic to the quotient of a small disc $\Delta \subset \mathbb{C}^{2}$, with coordinates $\left(z_{1}, z_{2}\right)$, by the involution $\left(z_{1}, z_{2}\right) \mapsto\left(-z_{1},-z_{2}\right)$.
This gives an inclusion $H^{0}\left(U, \Omega_{U}^{1} \otimes \Omega_{U}^{2}\right) \subset H^{0}\left(\Delta, \Omega_{\Delta}^{1} \otimes \Omega_{\Delta}^{2}\right)^{+}$.
Then every $\eta \in H^{0}\left(S, \Omega_{S}^{1} \otimes \Omega_{S}^{2}\right)$ can be locally written as

$$
\eta=\left(f_{1} d z_{1}+f_{2} d z_{2}\right) \otimes\left(d z_{1} \wedge d z_{2}\right)
$$

Then [Kas, 1977] shows

$$
\alpha_{\nu}(\eta)=\left(\frac{\partial f_{2}}{\partial z_{1}}-\frac{\partial f_{1}}{\partial z_{2}}\right)(0,0)
$$

A criterion to prove rigidity

Theorem

Let $S \rightarrow X$ be the minimal resolution of the singularities of a nodal surface X. Assume that
(1) $H^{1}\left(X, \Theta_{X}\right)=0$;
(2) the maps $\alpha_{\nu_{i}}$ associated to the nodes ν_{i} of X locally described in (1) are linearly independent in $H^{0}\left(\Omega_{S}^{1} \otimes \Omega_{S}^{2}\right)^{V}$.
Then S is rigid and $h^{1}\left(\Theta_{S}\right)$ equals the number of nodes of X.

Sketch of the proof.

By [Pinkham, 1981] $H^{1}\left(\Theta_{S}\right)=H^{1}\left(\Theta_{X}\right) \oplus\left(\bigoplus H_{E_{i}}^{1}\left(\Theta_{S}\right)\right)$ so, by condition $1, H^{1}\left(\Theta_{S}\right) \cong \bigoplus H_{E_{i}}^{1}\left(\Theta_{S}\right)$. Choose $0 \neq \theta_{i} \in H_{E_{i}}^{1}\left(\Theta_{S}\right)$.
Write every $\theta \in H^{1}\left(\Theta_{S}\right)$ as $\theta=\sum_{1}^{r} t_{i} \theta_{i}$.
Then $[\theta, \theta]=\sum_{1}^{r} t_{i}^{2}\left[\theta_{i}, \theta_{i}\right]$, implies $K(\theta)=\sum_{1}^{r} t_{i}^{2} \alpha_{\nu_{i}}+O(3)$.
The rigidity follows now by condition 2.

Strategy of the proof of the main theorem

Theorem

For every even $n \geq 8$ such that $3 \nmid n$ there is a minimal regular surface S_{n} of general type with $K_{S_{n}}^{2}=2(n-3)^{2}, \quad p_{g}\left(S_{n}\right)=\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right)$, such that S_{n} is rigid, but not infinitesimally rigid.

We pick two triangle curves $\left(C_{1}, G\right),\left(C_{2}, G\right)$ for the same finite group, we set $X:=\left(C_{1} \times C_{2}\right) / G$ the quotient by the diagonal action.
We need X to be nodal and have at least one nodes. In other words, there is at least one point of $C_{1} \times C_{2}$ whose stabilizer has order 2 , and no points whose stabilizer has a higher order.
Then by Fabrizio's Lemma the first condition in the rigidity criterion $H^{1}\left(X, \Theta_{X}\right)=0$ is fulfilled, and we only need to check the second one.
We check it using the Kas maps.

The Fermat curve

We enter now in the details of the construction.
The Fermat curve of degree $n, C:=\left\{\sum_{j=0}^{2} x_{j}^{n}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ admits a natural action of the group $G \cong(\mathbb{Z} / n \mathbb{Z})^{2}$:

$$
\left(a_{1}, a_{2}\right)\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{0}: e^{a_{1} \frac{2 \pi i}{n}} x_{1}: e^{a_{2} \frac{2 \pi i}{n}} x_{2}\right)
$$

This G-action has only three orbits of cardinality different by n^{2}, all of cardinality n :

- $C \cap\left\{x_{0}=0\right\}$ with stabilizer $\langle(1,1)\rangle \cong \mathbb{Z} / n \mathbb{Z}$
- $C \cap\left\{x_{1}=0\right\}$ with stabilizer $\langle(1,0)\rangle \cong \mathbb{Z} / n \mathbb{Z}$
- $C \cap\left\{x_{2}=0\right\}$ with stabilizer $\langle(0,1)\rangle \cong \mathbb{Z} / n \mathbb{Z}$

By Hurwitz formula $C / G \cong \mathbb{P}^{1}$ so (C, G) is a triangle curve.

The surfaces S_{n}

Fix $n \in \mathbb{N}$.

We choose as triangle curves $\left(C_{i}, G\right)$ two copies of the Fermat curve of degree n.

For the first copy $\left(C_{1}, G\right)$ we take the action as described in the previous slide, whereas for the second copy $\left(C_{2}, G\right)$ we twist the action by the matrix

$$
A:=\left(\begin{array}{ll}
1 & -2 \\
2 & -1
\end{array}\right)
$$

that for all n not divisible by 3 defines an automorphism of G.

So we get, for every n not divisible by 3 , a surface S_{n}, the minimal resolution of the singularities of $\left(C_{1} \times C_{2}\right) / G$.

Some S_{n} are Beauville surfaces

The elements of G fixing some points of C_{1} form, as we have seen, the set $\langle(1,0)\rangle \cup\langle(0,1)\rangle \cup\langle(1,1)\rangle$.

Acting with A we deduce that the elements of G fixing some points of C_{2} form the set $\langle(1,2)\rangle \cup\langle(-2,-1)\rangle \cup\langle(-1,1)\rangle$.

For n odd, the intersection of these two sets is $\{(0,0)\}$. Then the induced action on $C_{1} \times C_{2}$ is free: S_{n} is a Beauville surface, infinitesimally rigid.
Then we need to assume n even.

For n even the non-trivial elements of G fixing some points of $C_{1} \times C_{2}$ are $(n / 2,0),(0, n / 2)$ and $(n / 2, n / 2)$, all of order 2 fixing n^{2} points: then X is a nodal surface with $3 \cdot 2 \cdot n^{2} / n^{2}=6$ nodes.

Decomposition of $H^{0}\left(S, \Omega_{S_{n}}^{1} \otimes \Omega_{S_{n}}^{2}\right)$

We skip the computation of the invariants of S_{n}, that is standard.
We need to check if the six maps

$$
\alpha_{\nu_{i}}: H^{0}\left(S, \Omega_{S_{n}}^{1} \otimes \Omega_{S_{n}}^{2}\right) \rightarrow \mathbb{C}
$$

associated to the nodes of X are linearly independent.
We need a basis of $H^{0}\left(S, \Omega_{S_{n}}^{1} \otimes \Omega_{S_{n}}^{2}\right)$ as explicit as possible, in order to be able to compute their image via the Kas map. By

$$
\begin{aligned}
& H^{0}\left(S, \Omega_{S_{n}}^{1} \otimes \Omega_{S_{n}}^{2}\right) \cong H^{0}\left(S, \Omega_{C_{1} \times C_{2}}^{1} \otimes \Omega_{C_{1} \times C_{2}}^{2}\right)^{G} \cong \\
& \quad \cong\left(H^{0}\left(\omega_{C_{1}}^{\otimes 2}\right) \otimes H^{0}\left(\omega_{C_{2}}\right)\right)^{G} \oplus\left(H^{0}\left(\omega_{C_{1}}\right) \otimes H^{0}\left(\omega_{C_{2}}^{\otimes 2}\right)\right)^{G} \cong \\
& \cong \bigoplus_{\chi \in G^{*}}\left(\left(H^{0}\left(\omega_{C_{1}}^{\otimes 2}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{2}}\right)^{-\chi}\right) \oplus\left(H^{0}\left(\omega_{C_{1}}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{2}}^{\otimes 2}\right)^{-\chi}\right)\right) \cong \\
& \cong \bigoplus_{\chi \in G^{*}}\left(\left(H^{0}\left(\omega_{C_{1}}^{\otimes 2}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{1}}\right)^{-\chi^{\prime}}\right) \oplus\left(H^{0}\left(\omega_{C_{1}}\right)^{\chi} \otimes H^{0}\left(\omega_{\omega_{C_{1}}}^{\otimes 2}\right)^{-\chi^{\prime}}\right)\right)
\end{aligned}
$$

where. writing χ, χ^{\prime} as a column, $\chi^{\prime}:={ }^{t} A^{-1} \chi$

Decomposition of $p_{*} \omega_{C}$

The Fermat triangle curve $p: C=C_{1} \rightarrow \mathbb{P}^{1}$ is an abelian cover, with group G. We compute then the decomposition of $p_{*} \omega_{C}$ by the formulas in [Pardini, 1991].

$$
\begin{aligned}
& \text { n-1-1-1-1-1-1 * -1-1-1-1-1 } \\
& \text { n-2-1 } 0 \text {-1-1-1 * -1-1-1-1-1 } \\
& \text {-1 0 0 -1-1 * - 1-1-1-1-1 } \\
& \text {-1 } 0000-1 \text { * - 1-1-1-1-1 } \\
& \begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & *-1-1-1-1-1 \\
* & * & * & * & * & * \\
* & * & * \\
\end{array} \\
& -10000 \text { * 0-1-1-1-1 } \\
& \text { 3-1 } 00000 \text { * } 00 \text {-1-1-1 } \\
& \text { 2-1 } 00000 \text { * } 000 \text {-1-1 } \\
& \text { 1-1 } 00000 \text { * } 0000-1 \\
& 0-2-1-1-1-1 \text { * -1-1-1-1-1 } \\
& 0123 \\
& n-1
\end{aligned}
$$

Figure: The degrees of $\left(p_{*} \omega_{C}\right)^{(\alpha, \beta)}$

Decomposition of $p_{*} \omega_{C}^{\otimes 2}$

Similarly we compute the decomposition $p_{*} \omega_{C}^{\otimes 2}$.

$$
\left.\begin{array}{rrrrrrrrrrr}
n-1-1 & -1 & 0 & 0 & 0 & * & 0 & 0 & 0 & 0 & 0 \\
n-2 & 0 & -1 & 0 & 0 & 0 & * & 0 & 0 & 0 & 0 \\
n-3 & 0 & 0 & 0 & 0 & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & * & 0 & 0 & 0 & 0 & 0 \\
& * & * & * & * & * & * & * & * & * & * \\
& * \\
0 & 0 & 1 & 1 & 1 & * & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 1 & 1 & 1 & * & 1 & 0 & 0 & 0
\end{array}\right)
$$

Figure: The degrees of $\left(p_{*} \omega_{C}^{\otimes 2}\right)^{(\alpha, \beta)}$

Note that $\forall n \geq 4$ the degree is negative only for 10 characters.

Six good characters are enough

Lemma

Set $k_{0}=k_{1}=(1,0), k_{\infty}=(0,1) \in G$. Assume that there is a set of six characters $\mathcal{C}:=\left\{\chi_{0}, \chi_{0}^{\prime}, \chi_{1}, \chi_{1}^{\prime}, \chi_{\infty}, \chi_{\infty}^{\prime}\right\} \subset G^{*}$, such that
(1) $\chi_{0} \equiv \chi_{0}^{\prime} \equiv(0,1), \chi_{1} \equiv \chi_{1}^{\prime} \equiv(1,1), \chi_{\infty} \equiv \chi_{\infty}^{\prime} \equiv(1,0) \bmod 2$;
(2) $\forall p \in\{0,1, \infty\}, \chi_{p}\left(k_{p}\right) \neq \chi_{p}^{\prime}\left(k_{p}\right)$;
(3) if $\chi \in \mathcal{C}$, then $H^{0}\left(\omega_{C}\right)^{(\chi)} \neq\{0\}, H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(-\chi^{\prime}\right)} \neq\{0\}$.

Then condition 2 in the rigidity criterion holds.

Sketch of the proof - part 1

We need to check the linear independence of the six maps $\alpha_{\nu_{j}}$. We decomposed $H^{0}\left(S, \Omega_{S_{n}}^{1} \otimes \Omega_{S_{n}}^{2}\right)$ obtaing addenda of the form $H^{0}\left(\omega_{C_{1}}\right)^{\chi} \otimes H^{0}\left(\omega_{C_{1}}^{\otimes 2}\right)^{-\chi^{\prime}}$. When $\chi \in \mathcal{C}$, by condition 3 , the addendum is not trivial. Picking one general element in each of them, we get six different elements in $H^{0}\left(S, \Omega_{S_{n}}^{1} \otimes \Omega_{S_{n}}^{2}\right)$.

Six good characters are enough

Lemma

Set $k_{0}=k_{1}=(1,0), k_{\infty}=(0,1) \in G$. Assume that there is a set of six characters $\mathcal{C}:=\left\{\chi_{0}, \chi_{0}^{\prime}, \chi_{1}, \chi_{1}^{\prime}, \chi_{\infty}, \chi_{\infty}^{\prime}\right\} \subset G^{*}$, such that
(1) $\chi_{0} \equiv \chi_{0}^{\prime} \equiv(0,1), \chi_{1} \equiv \chi_{1}^{\prime} \equiv(1,1), \chi_{\infty} \equiv \chi_{\infty}^{\prime} \equiv(1,0) \bmod 2$;
(2) $\forall p \in\{0,1, \infty\}, \chi_{p}\left(k_{p}\right) \neq \chi_{p}^{\prime}\left(k_{p}\right)$;
(3) if $\chi \in \mathcal{C}$, then $H^{0}\left(\omega_{C}\right)^{(\chi)} \neq\{0\}, H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(-\chi^{\prime}\right)} \neq\{0\}$.

Then condition 2 in the rigidity criterion holds.

Sketch of the proof - part 2.

Computing explicitely the six Kas maps (1) in them we get the following

$$
\begin{array}{lll}
\left(\chi_{0}\left(k_{0}\right), 1,0,0,0,0\right) & \left(0,0, \chi_{1}\left(k_{1}\right), 1,0,0\right) & \left(0,0,0,0, \chi_{\infty}\left(k_{\infty}\right), 1\right) \\
\left(\chi_{0}^{\prime}\left(k_{0}\right), 1,0,0,0,0\right) & \left(0,0, \chi_{1}^{\prime}\left(k_{1}\right), 1,0,0\right) & \left(0,0,0,0, \chi_{\infty}^{\prime}\left(k_{\infty}\right), 1\right)
\end{array}
$$

End of the proof of the main theorem

We need then to find six characters such that
(1) $\chi_{0} \equiv \chi_{0}^{\prime} \equiv(0,1), \chi_{1} \equiv \chi_{1}^{\prime} \equiv(1,1), \chi_{\infty} \equiv \chi_{\infty}^{\prime} \equiv(1,0) \bmod 2$;
(2) $\forall p \in\{0,1, \infty\}, \chi_{p}\left(k_{p}\right) \neq \chi_{p}^{\prime}\left(k_{p}\right)$;
(3) if $\chi \in \mathcal{C}$, then $H^{0}\left(\omega_{C}\right)^{(\chi)} \neq\{0\}, H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(-\chi^{\prime}\right)} \neq\{0\}$.
S_{4} is a numerical Campedelli surface with fundamental group $(\mathbb{Z} / 2 \mathbb{Z})^{3}$: its Kuranishi family has dimension 6 . So we need $n \geq 8$.

End of the proof.

We pick the following six characters

$$
\begin{array}{lll}
\chi_{0}=(2,1) & \chi_{1}=(1,3) & \chi_{\infty}=(1,2) \\
\chi_{0}^{\prime}=(4,1) & \chi_{1}^{\prime}=(3,1) & \chi_{\infty}^{\prime}=(1,4)
\end{array}
$$

The only check that is not trivial is that $H^{0}\left(\omega_{C}^{\otimes 2}\right)^{\left(-\chi^{\prime}\right)} \neq\{0\}$: this indeed fails for $n=4$ but a tedious computation shows that it holds for $n \geq 8$.

References, page 1

Tingrid Bauer and Roberto Pignatelli (2018)
Rigid but not infinitesimally rigid compact complex manifolds
arxiv: math/1805.02559
圄 Ingrid Bauer and Fabrizio Catanese(2018)
On rigid compact complex surfaces and manifolds
Adv. Math. 333, 620-669
國 D. M. Burns Jr. and Jonathan M. Wahl (1974)
Local contributions to global deformations of surfaces
Invent. Math 26, 67 - 88.

- Fabrizio Catanese (1989)

Everywhere nonreduced moduli spaces
Invent. Math. 98(2), 293 - 310.

- Arnold Kas (1977)

Ordinary double points and obstructed surfaces
Topology 16(1), 51 - 64.

References, page 2

James Morrow and Kunihiko Kodaira (1971)
Complex manifolds
Holt, Rinehart and Winston, Inc.
Rita Pardini (1991)
Abelian covers of algebraic varieties
J. Reine Angew. Math. 417, 191-213.

國 Henry Pinkham (1981)
Some local obstructions to deforming global surfaces
Nova Acta Leopoldina (N.F.) 52(240), 173-178.

