Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems
Rational curves
Work in progress

# Quasi-étale quotients of products of two curves 

Roberto Pignatelli

Department of Mathematics
University of Trento
8 June 2012

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves
Work in progress

## Definition

A surface is a projective compact complex manifold of dimension 2.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Deilintions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves
Work in progress

## Definition

A surface is a projective compact complex manifold of dimension 2.

## The goal

Our goal is to construct surfaces.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Deilintions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves
Work in progress

## Definition

A surface is a projective compact complex manifold of dimension 2.

## The goal

Our goal is to construct interesting surfaces.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Deilintions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Resuits

Open
Problems
Rational curves Work in progress

## Definition

A surface is a projective compact complex manifold of dimension 2.

## The goal

Our goal is to construct interesting surfaces.

How do we decide that a surface is "interesting"?

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Deilintions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves Work in progress

## Definition

A surface is a projective compact complex manifold of dimension 2.

## The goal

Our goal is to construct new interesting surfaces.

How do we decide that a surface is "interesting"?

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Resultrs

Open
Problems
Rational curves
Work in progress

## Definition

A surface is a projective compact complex manifold of dimension 2.

## The goal

Our goal is to construct new interesting surfaces.

How do we decide that a surface is "interesting"?
How do we check that a surface is "new"?

## Birational Invariants

Quasi-étale quotients...
R. Pignatelli

## The Goal

Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer

## Calculations

The Algorithms
Classification Resulits

Open

## Problems

Rational curves
Work in progress

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

## Birational Invariants

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants.
Computer
Calculations
The Algorithms
Classiltcation Results

Open

## Problems

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

## Birational Invariants

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants.
Computer
Calculations
The Algoritims
Classiltcation Resulits

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.


## Birational Invariants

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants.
Computer
Calculations
The Algorithms
Classilication Resulis

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.
- the Euler characteristic $\chi=\chi\left(\mathcal{O}_{S}\right)=1-q+p_{g}$.


## Birational Invariants

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants.
Computer
Calculations
The Algorithms
Classilication Resulits

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.
- the Euler characteristic $\chi=\chi\left(\mathcal{O}_{S}\right)=1-q+p_{g}$.
- The plurigenera $P_{n}(S)=h^{0}\left(\mathcal{O}_{S}\left(n K_{S}\right)\right)$.


## Birational Invariants

Quasi-étale quotients...
R. Pignatelli

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.
- the Euler characteristic $\chi=\chi\left(\mathcal{O}_{S}\right)=1-q+p_{g}$.
- The plurigenera $P_{n}(S)=h^{0}\left(\mathcal{O}_{S}\left(n K_{S}\right)\right)$.
- The Kodaira dimension $\kappa(S)$ is the rate of growth of the plurigenera: it is the smallest number $\kappa$ such that $P_{n} / n^{\kappa}$ is bounded from above.


## Birational Invariants

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling invariants.

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.
- the Euler characteristic $\chi=\chi\left(\mathcal{O}_{S}\right)=1-q+p_{g}$.
- The plurigenera $P_{n}(S)=h^{0}\left(\mathcal{O}_{S}\left(n K_{S}\right)\right)$.
- The Kodaira dimension $\kappa(S)$ is the rate of growth of the plurigenera: it is the smallest number $\kappa$ such that $P_{n} / n^{\kappa}$ is bounded from above.
- The (topological or algebraic) fundamental group.


## Surfaces of general type

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorilims
Classiltcation Results

Open
Problems
Rational curves Work in progress

The Enriques-Kodaira classification provides a relatively good understanding of the surfaces of special type, which are those with $\kappa(S)<2$.

## Definition

A surface is of general type if $\kappa(S)=2$ (equiv. $\kappa(S) \geq 2$ ).

## Surfaces of general type

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuring invariants.

Computer
Calculations
The Algorithms

The Enriques-Kodaira classification provides a relatively good understanding of the surfaces of special type, which are those with $\kappa(S)<2$.

## Definition

A surface is of general type if $\kappa(S)=2$ (equiv. $\kappa(S) \geq 2$ ).

## Definition

A surface is minimal if $K_{S}$ is nef, that is if the intersection of $K_{S}$ with any curve is nonnegative.

## Surfaces of general type

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations

The Enriques-Kodaira classification provides a relatively good understanding of the surfaces of special type, which are those with $\kappa(S)<2$.

## Definition

A surface is of general type if $\kappa(S)=2$ (equiv. $\kappa(S) \geq 2$ ).

## Definition

A surface is minimal if $K_{S}$ is nef, that is if the intersection of $K_{S}$ with any curve is nonnegative.

In every birational class of surfaces of general type there is exactly one minimal surface. If $S$ is a surface of general type, $S$ is obtained by the only minimal surface in its birational class $\bar{S}$ by a sequence of $K_{\bar{S}}^{2}-K_{S}^{2}$ blow ups.

## Inequalities for surfaces of general type

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants.
Computer
Calculations
The Algorithms
Classilication
Results
Open
Problems
Rational curves
Work in progress

If $S$ is of general type, then the Riemann-Roch formula computes all $P_{n}(S)$ from $\chi$ and $K_{\bar{S}}^{2}$.

## Inequalities for surfaces of general type

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer Calculations The Algorithms Classification Results

If $S$ is of general type, then the Riemann-Roch formula computes all $P_{n}(S)$ from $\chi$ and $K_{\bar{S}}^{2}$. The possible values of the pair ( $\chi, K_{\bar{S}}^{2}$ ) are almost all the integral points of the unbounded green region below.


## Inequalities for surfaces of general type

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants
Computer Calculations The Algorithms Classification Results

In general, the surfaces with the most interesting geometry are the ones when "the inequalities are equalities", as for the boundary of the picture. This includes the surfaces with $\chi=1$ and, among those, the surfaces with $p_{g}=0$.


## Beauville's idea

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer Calculations The Algorithms Classification Results

## Problems

## Rational curves

 Work in progressBeauville suggestion: take $S=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a free group of automorphisms of order $\left(g_{1}-1\right)\left(g_{2}-1\right) ; S$ is automatically minimal of general type with $\chi=1$ and $K^{2}=8$.


## Surfaces isogenous to a product

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients

## Definitions

Computing
invariants
Computer Calculations The Algorithms Classification Results

Open

## Problems

## Rational curves

 Work in progressA surface is isogenous to a (higher) product if $S=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a free group of automorphisms; $S$ is automatically minimal of general type, with $K^{2}=8 \chi$.


## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients

## Definitions

Computing
invariants
Computer
Calculations
The Algorithms
Classilication Results

Open
Problems
Rational curves Work in progress

## Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a group of automorphisms acting freely out of a finite set of points.

## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves Work in progress

## Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming $\pi$ quasi-étale (instead of étale).

## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open

## Problems

## Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming $\pi$ quasi-étale (instead of étale). This implies $\pi^{*} K_{X}=K_{C_{1} \times C_{2}}$, so $K_{X}$ is nef.

## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants
Computer
Calculations
The Algorithms
Classification Results

## Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming $\pi$ quasi-étale (instead of étale). This implies $\pi^{*} K_{X}=K_{C_{1} \times C_{2}}$, so $K_{X}$ is nef .

## Disadvantages:

- $X$ is singular,


## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants
Computer
Calculations
The Algorithms
Classification Results

## Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming $\pi$ quasi-étale (instead of étale). This implies $\pi^{*} K_{X}=K_{C_{1} \times C_{2}}$, so $K_{X}$ is nef .

## Disadvantages:

- $X$ is singular,


## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients

## Definitions

Compuling invariants

Computer
Calculations

## Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming $\pi$ quasi-étale (instead of étale). This implies $\pi^{*} K_{X}=K_{C_{1} \times C_{2}}$, so $K_{X}$ is nef.

## Disadvantages:

- $X$ is singular, we need to consider a resolution of its singularities $S$.


## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale quotients

## Definitions

Computing invariants

Computer
Calculations

## Definition

A quasi-étale surface is the min. res. $S$ of the sings of $X=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming $\pi$ quasi-étale (instead of étale). This implies $\pi^{*} K_{X}=K_{C_{1} \times C_{2}}$, so $K_{X}$ is nef.

## Disadvantages:

- $X$ is singular, we need to consider a resolution of its singularities $S$.


## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale quotients

## Definitions

Computing invariants

Computer
Calculations

## Definition

A quasi-étale surface is the min. res. $S$ of the sings of $X=\left(C_{1} \times C_{2}\right) / G$ where $C_{i}$ are Riemann Surfaces of genus $g_{i} \geq 2$ and $G$ is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming $\pi$ quasi-étale (instead of étale). This implies $\pi^{*} K_{X}=K_{C_{1} \times C_{2}}$, so $K_{X}$ is nef.

## Disadvantages:

- $X$ is singular, we need to consider a resolution of its singularities $S$.
- We lose every rigidity property.


## Quasi-étale quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open

## Problems

## Rational curves

 Work in progressAdvantage: it may be $K^{2}<8 \chi$. We may in principle fill most of the picture.
This gives a powerful tool to answer (positively) existence conjectures.


## Mixed and unmixed structures

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems
Rational curves
Work in progress

We know that

- either $\operatorname{Aut}\left(C_{1} \times C_{2}\right)=\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)$,
- or $C_{1} \cong C_{2} \cong C$ and $\operatorname{Aut}\left(C^{2}\right) \cong(\operatorname{Aut}(C))^{2} \rtimes \mathbb{Z}_{/ 2 \mathbb{Z}}$.


## Mixed and unmixed structures

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms
Classification Results

We know that

- either $\operatorname{Aut}\left(C_{1} \times C_{2}\right)=\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)$,
- or $C_{1} \cong C_{2} \cong C$ and $\operatorname{Aut}\left(C^{2}\right) \cong(\operatorname{Aut}(C))^{2} \rtimes \mathbb{Z}_{/ 2 \mathbb{Z}}$.

Following Catanese, for $G<\operatorname{Aut}\left(C_{1} \times C_{2}\right)$ we define $G^{(0)}=G \cap\left(\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)\right)$. There are two possibilities

- either $G=G^{(0)}$ (the unmixed case, the case of the product-quotient surfaces, the standard isotrivial fibrations);


## Mixed and unmixed structures

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations The Algorithms Classification Results

We know that

- either $\operatorname{Aut}\left(C_{1} \times C_{2}\right)=\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)$,
- or $C_{1} \cong C_{2} \cong C$ and $\operatorname{Aut}\left(C^{2}\right) \cong(\operatorname{Aut}(C))^{2} \rtimes \mathbb{Z}_{/ 2 \mathbb{Z}}$.

Following Catanese, for $G<\operatorname{Aut}\left(C_{1} \times C_{2}\right)$ we define $G^{(0)}=G \cap\left(\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)\right)$. There are two possibilities

- either $G=G^{(0)}$ (the unmixed case, the case of the product-quotient surfaces, the standard isotrivial fibrations);
- or (mixed case) there is an exact sequence

$$
\text { (\#) } \quad 1 \rightarrow G^{(0)} \rightarrow G \rightarrow \mathbb{Z}_{/ 2 \mathbb{Z}} \rightarrow 1
$$

## Mixedness and quasi-étaleness

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale quotients
Definitions
Computing invariants

Computer Calculations

The Aigorithms

Classification Results

Open
Problems
Rational curves Work in progress

## Theorem (Frapporti)

$\pi$ is not quasi-étale if and only if $G^{(0)} \not \not \approx G$ and

$$
\text { (\#) } \quad 1 \rightarrow G^{(0)} \rightarrow G \rightarrow \mathbb{Z}_{/ 2 \mathbb{Z}} \rightarrow 1
$$

## splits.

## Mixedness and quasi-étaleness

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations

## Theorem (Frapporti)

$\pi$ is not quasi-étale if and only if $G^{(0)} \not \not \approx G$ and

$$
\text { (\#) } \quad 1 \rightarrow G^{(0)} \rightarrow G \rightarrow \mathbb{Z}_{/ 2 \mathbb{Z}} \rightarrow 1
$$

splits.

Assuming quasi-étale we consider a class larger than the class of the standard isotrivial fibrations (=the unmixed quasi étale surfaces). The quotient surfaces we are excluding are dominated by the symmetric product of a curve.

## Constructing curves with group actions

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algoritims
Classification Results

Open
Problems
Rational curves
Work in progress

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve $C$ is equivalent to give

- the curve $C / G^{(0)}$;


## Constructing curves with group actions

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algoritims
Classilication Results

Open
Problems
Rational curves
Work in progress

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve $C$ is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$;


## Constructing curves with group actions

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations
The Algoritims
Classilication Results

Open

## Problems

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve $C$ is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$;
- a suitable choice of loops in the complement of these points.


## Constructing curves with group actions

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients

## Definitions

Computing invariants

Computer Calculations The Algorithms Classilication Results

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve $C$ is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$;
- a suitable choice of loops in the complement of these points.
- a suitable system of generators $G^{(0)}$ : a generator for each loop, defining a surjection from the fundamental group of the complement of the chosen points to $\left.G^{(0)}\right)$.


## Constructing curves with group actions

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients

## Definitions

Computing invariants

Computer Calculations The Algorithms Classilication Results

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve $C$ is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$;
- a suitable choice of loops in the complement of these points.
- a suitable system of generators $G^{(0)}$ : a generator for each loop, defining a surjection from the fundamental group of the complement of the chosen points to $\left.G^{(0)}\right)$.


## Constructing curves with group actions

Quasi-étale quotients...
R. Pignatelli

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve $C$ is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$;
- a suitable choice of loops in the complement of these points.
- a suitable system of generators $G^{(0)}$ : a generator for each loop, defining a surjection from the fundamental group of the complement of the chosen points to $\left.G^{(0)}\right)$.

For later use: to each suitable system of generators we associate its signature, which is the unordered list of the orders of some of these generators. The genus of $C$ is a function (Hurwitz' formula) of $|G|$, the signature, and the genus of $C / G^{(0)}$.

## Constructing quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants
Computer
Calculations
The Algorithms
Classification Resuits

Open

## Problems

Rational curves Work in progress

To construct an unmixed surface I need two curves with an action of the same group, so two systems of generators of the same group $G=G^{(0)}$.

## Constructing quotients

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms
Classilication Results

Open

## Problems

To construct an unmixed surface I need two curves with an action of the same group, so two systems of generators of the same group $G=G^{(0)}$.

In the mixed case, we only need one system of generators of $G^{(0)}$ ("twice"), and a degree 2 extension $G$ of $G^{(0)}$.

## Constructing quotients

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients

## Definitions

Computing invariants

Computer
Calculations

To construct an unmixed surface I need two curves with an action of the same group, so two systems of generators of the same group $G=G^{(0)}$.

In the mixed case, we only need one system of generators of $G^{(0)}$ ("twice"), and a degree 2 extension $G$ of $G^{(0)}$. Indeed, fixed a $G^{(0)}$ action on $C$ and $\tau^{\prime} \in G \backslash G^{(0)}$, then a mixed action of $G$ on $C \times C$ is given by

$$
\begin{cases}g(x, y)=\left(g x, \tau^{\prime} g \tau^{\prime-1} y\right) & \forall g \in G^{(0)} \\ \tau^{\prime} g(x, y)=\left(\tau^{\prime} g \tau^{\prime-1} y, \tau^{\prime 2} g x\right) & \forall g \in G^{(0)}\end{cases}
$$

and all mixed actions come in this way.

## Constructing quotients

Quasi-étale quotients...
R. Pignatelli

To construct an unmixed surface I need two curves with an action of the same group, so two systems of generators of the same group $G=G^{(0)}$.

In the mixed case, we only need one system of generators of $G^{(0)}$ ("twice"), and a degree 2 extension $G$ of $G^{(0)}$. Indeed, fixed a $G^{(0)}$ action on $C$ and $\tau^{\prime} \in G \backslash G^{(0)}$, then a mixed action of $G$ on $C \times C$ is given by

$$
\begin{cases}g(x, y)=\left(g x, \tau^{\prime} g \tau^{\prime-1} y\right) & \forall g \in G^{(0)} \\ \tau^{\prime} g(x, y)=\left(\tau^{\prime} g \tau^{-1} y, \tau^{\prime 2} g x\right) & \forall g \in G^{(0)}\end{cases}
$$

and all mixed actions come in this way. Moreover, different choices of $\tau^{\prime}$ give isomorphic constructions.

## Computing the invariants: the irregularity

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Atgorithms
Classification Results

Open

## Problems

Rational curves
Work in progress

From now on, we assume quasi-étaleness, running in parallel both the mixed and the unmixed case.

## Computing the invariants: the irregularity

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Resulis

Open

## Problems

From now on, we assume quasi-étaleness, running in parallel both the mixed and the unmixed case.

The easier formula is for the irregularity:

$$
\begin{cases}q(S)=g\left(C_{1} / G\right)+g\left(C_{2} / G\right) & \text { in the unmixed case } \\ q(S)=g\left(C / G^{(0)}\right) & \text { in the mixed case }\end{cases}
$$

## Computing the invariants: the irregularity

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations

From now on, we assume quasi-étaleness, running in parallel both the mixed and the unmixed case.

The easier formula is for the irregularity:

$$
\begin{cases}q(S)=g\left(C_{1} / G\right)+g\left(C_{2} / G\right) & \text { in the unmixed case } \\ q(S)=g\left(C / G^{(0)}\right) & \text { in the mixed case }\end{cases}
$$

To compute the other invariants we need a better understanding of the singularities of $X=\left(C_{1} \times C_{2}\right) / G$.

## The singularities

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorthms
Classilication
Results
Open
Problems
Fational curves
Work in progress

The singularities of $X$ are the image of the points of $C_{1} \times C_{2}$ with non trivial stabilizer.

## The singularities

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open

## Problems

The singularities of $X$ are the image of the points of $C_{1} \times C_{2}$ with non trivial stabilizer.

- in the unmixed case $X$ has only cyclic quotient singularities, locally biregular to the quotient of $\mathbb{C}^{2}$ by the automorphism $\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{q}\end{array}\right)$ where $\omega$ is a $n$-th primitive root of $1,0<q<n$ and $(q, n)=1$. We say that these singularities are of type $C_{n, q}$.


## The singularities

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations

The singularities of $X$ are the image of the points of $C_{1} \times C_{2}$ with non trivial stabilizer.

- in the unmixed case $X$ has only cyclic quotient singularities, locally biregular to the quotient of $\mathbb{C}^{2}$ by the automorphism $\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{q}\end{array}\right)$ where $\omega$ is a $n$-th primitive root of $1,0<q<n$ and $(q, n)=1$. We say that these singularities are of type $C_{n, q}$. We know how to compute them from the systems of generators.


## The singularities

Quasi-étale quotients...
R. Pignatelli

The singularities of $X$ are the image of the points of $C_{1} \times C_{2}$ with non trivial stabilizer.

- in the unmixed case $X$ has only cyclic quotient singularities, locally biregular to the quotient of $\mathbb{C}^{2}$ by the automorphism $\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{q}\end{array}\right)$ where $\omega$ is a $n$-th primitive root of $1,0<q<n$ and $(q, n)=1$. We say that these singularities are of type $C_{n, q}$. We know how to compute them from the systems of generators.
- In the mixed case we have an intermediate unmixed quotient $Y=C^{2} / G^{(0)}$ and an involution $i$ on $Y$ with $Y / i=X . \operatorname{Sing} X$ is determined by $\operatorname{Sing} Y$ and the action of $i$ on it:


## The singularities

Quasi-étale quotients...
R. Pignatelli

The singularities of $X$ are the image of the points of $C_{1} \times C_{2}$ with non trivial stabilizer.

- in the unmixed case $X$ has only cyclic quotient singularities, locally biregular to the quotient of $\mathbb{C}^{2}$ by the automorphism $\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{q}\end{array}\right)$ where $\omega$ is a $n$-th primitive root of $1,0<q<n$ and $(q, n)=1$. We say that these singularities are of type $C_{n, q}$. We know how to compute them from the systems of generators.
- In the mixed case we have an intermediate unmixed quotient $Y=C^{2} / G^{(0)}$ and an involution $i$ on $Y$ with $Y / i=X . \operatorname{Sing} X$ is determined by $\operatorname{Sing} Y$ and the action of $i$ on it: when $i$ exchanges two singular points of $Y$ we get a point of type $C_{n, q}$ on $X$;


## The singularities

Quasi-étale quotients...
R. Pignatelli

The singularities of $X$ are the image of the points of $C_{1} \times C_{2}$ with non trivial stabilizer.

- in the unmixed case $X$ has only cyclic quotient singularities, locally biregular to the quotient of $\mathbb{C}^{2}$ by the automorphism $\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{q}\end{array}\right)$ where $\omega$ is a $n$-th primitive root of $1,0<q<n$ and $(q, n)=1$. We say that these singularities are of type $C_{n, q}$. We know how to compute them from the systems of generators.
- In the mixed case we have an intermediate unmixed quotient $Y=C^{2} / G^{(0)}$ and an involution $i$ on $Y$ with $Y / i=X . \operatorname{Sing} X$ is determined by $\operatorname{Sing} Y$ and the action of $i$ on it: when $i$ exchanges two singular points of $Y$ we get a point of type $C_{n, q}$ on $X$; when $i$ fixes a point of type $C_{n, q}$, then we get a point of type $D_{n, q}$ on $X$.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems

The exceptional divisor of the minimal resolution of a singularity $C_{n, q}$ is a chain of rational curves $A_{1}, \ldots, A_{k}$ with self intersections $-b_{1}, \ldots,-b_{k}$ given by the continued fraction:

$$
\frac{n}{q}=\left[b_{1}, \ldots, b_{k}\right]=b_{1}-\frac{1}{b_{2}-\frac{1}{b_{3}-\ldots}}
$$

The dual graph is

$$
-b_{1} \quad-b_{2} \quad-b_{k-1} \quad-b_{k}
$$

If $q q^{\prime} \equiv 1 \bmod n$, then $\frac{n}{q^{\prime}}=\left[b_{k}, \ldots, b_{1}\right]$ and therefore $C_{n, q} \cong C_{n, q^{\prime}}$

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations

## Proposition (Frapporti)

If $P \in Y$ is a fixed point of $Y$, then $P$ is a singular point of type $C_{n, q}$ with $q^{2} \equiv 1 \bmod n$, and the lift of $i$ to a resolution of the singularity exchanges the ends of the string

$$
-b_{1} \quad-b_{2} \quad-b_{2} \quad-b_{1}
$$

The resolution graph of a singularity of type $D_{n, q}$ is

$$
(k=2 h+1)
$$

$$
-b_{1} \quad-b_{2}
$$



Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms
Classification Results

Open
Problems

## Rational curves

 Work in progressThere are explicit formulas

$$
\begin{gathered}
K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}-\sum_{x \in \operatorname{Sing} X} k_{x} \\
e(S)=\frac{4\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}+\sum_{x \in \operatorname{Sing} X} e_{x}=12 \chi-K_{S}^{2}
\end{gathered}
$$

where $k_{x}$ and $e_{x}$ are positive rational numbers depending only on the type of the singularity. it follows

$$
K_{S}^{2}=8 \chi-\sum_{x} \frac{2 e_{x}+k_{x}}{3} \leq 8 \chi
$$

## The algorithms: idea

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classilication
Results
Open
Problems
Rational curves
Work in progress

Now we are able to construct every quasi-étale surface and compute its invariants $p_{g}, q$ and $K_{S}^{2}$ (which is often but not always equal to $K_{\bar{S}}^{2}$ ).

## The algorithms: idea

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classilication Results

Open

## Problems

Rational curves
Work in progress

Now we are able to construct every quasi-étale surface and compute its invariants $p_{g}, q$ and $K_{S}^{2}$ (which is often but not always equal to $K_{\bar{S}}^{2}$ ). We can compute $\pi_{1}(S)$ by a lemma of Armstrong.

## The algorithms: idea

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations

Now we are able to construct every quasi-étale surface and compute its invariants $p_{g}, q$ and $K_{S}^{2}$ (which is often but not always equal to $K_{\bar{S}}^{2}$ ). We can compute $\pi_{1}(S)$ by a lemma of Armstrong.

We are interested in the inverse procedure: if we are interested in constructing surfaces with certain $p_{g}, q$ and $K^{2}$, what can we do?
Reversing the above formula we can compute by them

- the possible $g\left(C_{i} / G^{(0)}\right)$ (by $q$ );


## The algorithms: idea

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations

Now we are able to construct every quasi-étale surface and compute its invariants $p_{g}, q$ and $K_{S}^{2}$ (which is often but not always equal to $K_{\bar{S}}^{2}$ ). We can compute $\pi_{1}(S)$ by a lemma of Armstrong.

We are interested in the inverse procedure: if we are interested in constructing surfaces with certain $p_{g}, q$ and $K^{2}$, what can we do?
Reversing the above formula we can compute by them

- the possible $g\left(C_{i} / G^{(0)}\right)$ (by $q$ );
- $\sum_{x} 2 e_{x}+k_{x}=24 \chi-3 K_{S}^{2}$ : there are finitely many possible configurations ("baskets") of singularities for each value of this;


## The algorithms: idea

Quasi-étale quotients...
R. Pignatelli

Now we are able to construct every quasi-étale surface and compute its invariants $p_{g}, q$ and $K_{S}^{2}$ (which is often but not always equal to $K_{\bar{S}}^{2}$ ). We can compute $\pi_{1}(S)$ by a lemma of Armstrong.

We are interested in the inverse procedure: if we are interested in constructing surfaces with certain $p_{g}, q$ and $K^{2}$, what can we do?
Reversing the above formula we can compute by them

- the possible $g\left(C_{i} / G^{(0)}\right)$ (by $q$ );
- $\sum_{x} 2 e_{x}+k_{x}=24 \chi-3 K_{S}^{2}$ : there are finitely many possible configurations ("baskets") of singularities for each value of this;
- Hurwitz formula yields an equation involving $|G|, K_{S}^{2}$, $\sum k_{x}, g\left(C_{i} / G^{(0)}\right)$ and the "signatures" of the actions of $G^{(0)}$ on the $C_{i}$.


## The algorithms: procedure

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer Calculations

## The Algorithms

## Classification

 Results
## Open

## Problems

## Rational curves

Work in progress

We proved some inequalities to bound the possible signatures.

## The algorithms: procedure

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer Calculations
The Algorithms
Classilication Results

## Open

Problems
Rational curves
Work in progress

We proved some inequalities to bound the possible signatures. This gives an algorithm that computes all quasi-étale surfaces $S$ with fixed $p_{g}, q$ and $K_{S}^{2}$.

## The algorithms: procedure

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants
Computer Calculations The Algorithms Classilication Results

We proved some inequalities to bound the possible signatures. This gives an algorithm that computes all quasi-étale surfaces $S$ with fixed $p_{g}, q$ and $K_{S}^{2}$.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ (equal in the mixed case) and configurations ("baskets") of singularities with $\sum_{x}\left(2 e_{x}+k_{x}\right)=24 \chi-3 K^{2}$;

## The algorithms: procedure

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer

We proved some inequalities to bound the possible signatures. This gives an algorithm that computes all quasi-étale surfaces $S$ with fixed $p_{g}, q$ and $K_{S}^{2}$.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ (equal in the mixed case) and configurations ("baskets") of singularities with $\sum_{x}\left(2 e_{x}+k_{x}\right)=24 \chi-3 K^{2} ;$
2 for every "basket" and pair of genera, list all "signatures" satisfying those inequalities;

## The algorithms: procedure

Quasi-étale quotients...
R. Pignatelli

We proved some inequalities to bound the possible signatures. This gives an algorithm that computes all quasi-étale surfaces $S$ with fixed $p_{g}, q$ and $K_{S}^{2}$.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ (equal in the mixed case) and configurations ("baskets") of singularities with
$\sum_{x}\left(2 e_{x}+k_{x}\right)=24 \chi-3 K^{2} ;$
2 for every "basket" and pair of genera, list all "signatures" satisfying those inequalities;
3 to each (pair of) signature(s), search all groups ( $G^{(0)}$ ) of the order prescribed by the Hurwitz formula for set of generators of the prescribed signatures;

## The algorithms: procedure

Quasi-étale quotients...
R. Pignatelli

We proved some inequalities to bound the possible signatures. This gives an algorithm that computes all quasi-étale surfaces $S$ with fixed $p_{g}, q$ and $K_{S}^{2}$.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ (equal in the mixed case) and configurations ("baskets") of singularities with
$\sum_{x}\left(2 e_{x}+k_{x}\right)=24 \chi-3 K^{2} ;$
2 for every "basket" and pair of genera, list all "signatures" satisfying those inequalities;
(3) to each (pair of) signature(s), search all groups $\left(G^{(0)}\right)$ of the order prescribed by the Hurwitz formula for set of generators of the prescribed signatures;
(4) in the mixed case, consider all the unsplit degree 2 extensions of $G^{(0)}$;

## The algorithms: procedure

Quasi-étale quotients...
R. Pignatelli

We proved some inequalities to bound the possible signatures. This gives an algorithm that computes all quasi-étale surfaces $S$ with fixed $p_{g}, q$ and $K_{S}^{2}$.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ (equal in the mixed case) and configurations ("baskets") of singularities with
$\sum_{x}\left(2 e_{x}+k_{x}\right)=24 \chi-3 K^{2} ;$
2 for every "basket" and pair of genera, list all "signatures" satisfying those inequalities;
(3) to each (pair of) signature(s), search all groups ( $G^{(0)}$ ) of the order prescribed by the Hurwitz formula for set of generators of the prescribed signatures;
(4) in the mixed case, consider all the unsplit degree 2 extensions of $G^{(0)}$;
(5) check the singularities of the surfaces in the output.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants.

Computer Calculations

We implemented the algorithm in MAGMA in the unmixed case for $p_{g}=0$. Recall that if a surface of general type $S$ is minimal, then $K_{S}^{2}$ is positive.

## Theorem (Bauer, Catanese, Grunewald, -)

Unmixed quasi-étale surfaces of g. $t$. with $p_{g}=0$ form
(1) exactly 13 irreducible families of surfaces for the case in which $G$ acts freely: they form 13 irreducible connected components of the moduli space;

Quasi-étale quotients...
R. Pignatelli

We implemented the algorithm in MAGMA in the unmixed case for $p_{g}=0$. Recall that if a surface of general type $S$ is minimal, then $K_{S}^{2}$ is positive.

## Theorem (Bauer, Catanese, Grunewald, -)

Unmixed quasi-étale surfaces of $g$. $t$. with $p_{g}=0$ form
(1) exactly 13 irreducible families of surfaces for the case in which $G$ acts freely: they form 13 irreducible connected components of the moduli space;
(2) exactly 72 irreducible families of minimal surfaces;

Quasi-étale quotients...
R. Pignatelli

We implemented the algorithm in MAGMA in the unmixed case for $p_{g}=0$. Recall that if a surface of general type $S$ is minimal, then $K_{S}^{2}$ is positive.

## Theorem (Bauer, Catanese, Grunewald, -)

Unmixed quasi-étale surfaces of g. $t$. with $p_{g}=0$ form
(1) exactly 13 irreducible families of surfaces for the case in which $G$ acts freely: they form 13 irreducible connected components of the moduli space;
(2) exactly 72 irreducible families of minimal surfaces;
(3) there is exactly one unmixed quasi-étale surface with $p_{g}=0$ and $K_{S}^{2}>0$ which is not minimal, the "fake Godeaux": it has $K_{S}^{2}=1$, whereas $K_{\bar{S}}^{2}=3$.

Quasi-étale quotients...
R. Pignatelli

We implemented the algorithm in MAGMA in the unmixed case for $p_{g}=0$. Recall that if a surface of general type $S$ is minimal, then $K_{S}^{2}$ is positive.

## Theorem (Bauer, Catanese, Grunewald, -)

Unmixed quasi-étale surfaces of g. $t$. with $p_{g}=0$ form
(1) exactly 13 irreducible families of surfaces for the case in which $G$ acts freely: they form 13 irreducible connected components of the moduli space;
(2) exactly 72 irreducible families of minimal surfaces;
(3) there is exactly one unmixed quasi-étale surface with $p_{g}=0$ and $K_{S}^{2}>0$ which is not minimal, the "fake Godeaux": it has $K_{S}^{2}=1$, whereas $K_{\bar{S}}^{2}=3$.

A similar classification for $p_{g}=q \geq 1$ has been obtained by Carnovale, Mistretta, Penegini and Polizzi.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations

In the mixed case the algorithm is implemented in the case $q=0$.

## Theorem (Bauer, Catanese, Grunewald, Frapporti)

Mixed quasi-étale surfaces of general type with $p_{g}=0$ form
(1) exactly 5 irreducible families of surfaces for the case in which $G$ acts freely: they form 5 irreducible connected components of the moduli space;

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations

In the mixed case the algorithm is implemented in the case $q=0$.

## Theorem (Bauer, Catanese, Grunewald, Frapporti)

Mixed quasi-étale surfaces of general type with $p_{g}=0$ form
(1) exactly 5 irreducible families of surfaces for the case in which $G$ acts freely: they form 5 irreducible connected components of the moduli space;
(2) exactly 17 irreducible families of minimal surfaces;

Quasi-étale quotients...
R. Pignatelli

In the mixed case the algorithm is implemented in the case $q=0$.

## Theorem (Bauer, Catanese, Grunewald, Frapporti)

Mixed quasi-étale surfaces of general type with $p_{g}=0$ form
(1) exactly 5 irreducible families of surfaces for the case in which $G$ acts freely: they form 5 irreducible connected components of the moduli space;
(2) exactly 17 irreducible families of minimal surfaces;
(3) all mixed quasi-étale surface with $p_{g}=0$ and $K_{S}^{2}>0$ are minimal.

Quasi-étale quotients...
R. Pignatelli

In the mixed case the algorithm is implemented in the case $q=0$.

## Theorem (Bauer, Catanese, Grunewald, Frapporti)

Mixed quasi-étale surfaces of general type with $p_{g}=0$ form
(1) exactly 5 irreducible families of surfaces for the case in which $G$ acts freely: they form 5 irreducible connected components of the moduli space;
(2) exactly 17 irreducible families of minimal surfaces;
(3) all mixed quasi-étale surface with $p_{g}=0$ and $K_{S}^{2}>0$ are minimal.

Similar results have been obtained by the same authors mentioned before for $p_{g}=q \geq 1$ only in the étale case.

## Some corollaries

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer Calculations The Algorithms Classification Results

The Campedelli surfaces are the min. surf. of g . t . with $p_{g}=0, K^{2}=2$.

## Conjecture

The possible $\pi_{1}$ of the Campedelli surfaces are all abelian groups of order $\leq 9$ and the quaternion group.

This is now proved for $\pi_{1}^{\text {alg }}$ (Reid+...).

## Some corollaries

Quasi-étale quotients...
R. Pignatelli

The Campedelli surfaces are the min. surf. of g . t . with $p_{g}=0, K^{2}=2$.

## Conjecture

The possible $\pi_{1}$ of the Campedelli surfaces are all abelian groups of order $\leq 9$ and the quaternion group.

This is now proved for $\pi_{1}^{\text {alg }}$ (Reid+...). By our constructions:

## Corollary (1)

There are Campedelli surfaces with $\pi_{1}$ equal $\mathbb{Z}_{/ 3 \mathbb{Z}}$ and $\mathbb{Z}_{/ 4 \mathbb{Z}}$.
Park, Park and Shin found similar results for $\pi_{1}^{a l g}$.

## Some corollaries

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale quotients
Definitions
Computing invariants

Computer Calculations

The Campedelli surfaces are the min. surf. of g . t . with $p_{g}=0, K^{2}=2$.

## Conjecture

The possible $\pi_{1}$ of the Campedelli surfaces are all abelian groups of order $\leq 9$ and the quaternion group.

This is now proved for $\pi_{1}^{\text {alg }}$ (Reid+...). By our constructions:

## Corollary (1)

There are Campedelli surfaces with $\pi_{1}$ equal $\mathbb{Z}_{/ 3 \mathbb{Z}}$ and $\mathbb{Z}_{/ 4 \mathbb{Z}}$.
Park, Park and Shin found similar results for $\pi_{1}^{a l g}$.

## Corollary (2)

Minimal surfaces of general type with $p_{g}=0,3 \leq K_{S}^{2} \leq 6$ realize at least 47 topological types.

## Algorithmic problems

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms
Classification Results

Open
Problems

## Rational curves

Work in progress

Problem
We have to run a search on all groups of a given order: sometimes there are too many even for a computer, sometimes we do not have a complete list of them. We used some group theory to exclude the cases that the computer could not do.

## Algorithmic problems

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms

## Problem

We have to run a search on all groups of a given order: sometimes there are too many even for a computer, sometimes we do not have a complete list of them. We used some group theory to exclude the cases that the computer could not do.

## Problem

The algorithm is very time and memory consuming. We need some help in computational algebra to get results for different values of the invariants.

## Algorithmic problems

Quasi-étale quotients...
R. Pignatelli

## Problem

We have to run a search on all groups of a given order: sometimes there are too many even for a computer, sometimes we do not have a complete list of them. We used some group theory to exclude the cases that the computer could not do.

## Problem

The algorithm is very time and memory consuming. We need some help in computational algebra to get results for different values of the invariants.

## Problem

Extend the programs to the irregular case.

## Theoretical problems

## Problem

## The Goal

Invariants
How do we determine the minimal model of $S$ ?

Quasi-étale
quotients
Definitions
Computing
invariants
Computer

## Calculations

## The Algorithms

Classification
Results
Open
Problems
Rational curves
Work in progress

## Theoretical problems

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Resuits
Open
Problems
Rational curves
Work in progress

## Problem

How do we determine the minimal model of $S$ ?

And, related to it is

## Problem

Can we find all quasi-étale surfaces of general type with $p_{g}=0$, or, more generally, with given $p_{g}$ and $q$ ?

If we could find an explicit bound $K_{S}^{2} \geq k\left(p_{g}, q\right) \ldots$

## Searching rational curves

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms
Classification Results

Open
Problems

## Rational curves

Work in progress

To answer the last questions we need to study the rational curves on a quasi-étale surface.

We would like to be able to locate all exceptional curves of the first kind (if any).

## Searching rational curves

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves Work in progress

To answer the last questions we need to study the rational curves on a quasi-étale surface.

We would like to be able to locate all exceptional curves of the first kind (if any).

## Remark

Rational curves on $S$ are

- either exceptional for the resolution $S \rightarrow X$


## Searching rational curves

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves
Work in progress

To answer the last questions we need to study the rational curves on a quasi-étale surface.

We would like to be able to locate all exceptional curves of the first kind (if any).

## Remark

Rational curves on $S$ are

- either exceptional for the resolution $S \rightarrow X$
- or pass through the singular points of $X$ at least three times.


## Mistretta-Polizzi's example

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale quotients

## Definitions

Computing
invariants
Computer
Calculations

## The Algorithms

Classification
Results

## Open

Problems

## Rational curves

Work in progress

In this example $p_{g}(S)=q(S)=1, K_{S}^{2}=1$ and the basket of singularities is $\left\{\frac{1}{7}, 2 \times \frac{2}{7}\right\}$.

## Mistretta-Polizzi's example

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves
Work in progress

In this example $p_{g}(S)=q(S)=1, K_{S}^{2}=1$ and the basket of singularities is $\left\{\frac{1}{7}, 2 \times \frac{2}{7}\right\}$. Since $S$ is irregular, the Albanese map $\alpha$ contracts all rational curves.

## Mistretta-Polizzi's example

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants.
Computer
Calculations
The Algorithms
Classification Results

Open

## Problems

## Rational curves

Work in progress

In this example $p_{g}(S)=q(S)=1, K_{S}^{2}=1$ and the basket of singularities is $\left\{\frac{1}{7}, 2 \times \frac{2}{7}\right\}$. Since $S$ is irregular, the Albanese map $\alpha$ contracts all rational curves.
In this case, all exceptional divisors for $S \rightarrow X$ are mapped to the same point $p \in \alpha(S)$, so all rational curves are in $\alpha^{-1}(p)$.

## Mistretta-Polizzi's example

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants
Computer
Calculations
The Algorithms
Classification Results

In this example $p_{g}(S)=q(S)=1, K_{S}^{2}=1$ and the basket of singularities is $\left\{\frac{1}{7}, 2 \times \frac{2}{7}\right\}$. Since $S$ is irregular, the Albanese map $\alpha$ contracts all rational curves.
In this case, all exceptional divisors for $S \rightarrow X$ are mapped to the same point $p \in \alpha(S)$, so all rational curves are in $\alpha^{-1}(p) . \alpha^{-1}(p)$ is made of rational curves, with dual graph


## Mistretta-Polizzi's example

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer Calculations
The Algorithms
Classification Resuilis

Open
Problems
Rational curves Work in progress

In this example $p_{g}(S)=q(S)=1, K_{S}^{2}=1$ and the basket of singularities is $\left\{\frac{1}{7}, 2 \times \frac{2}{7}\right\}$.


Then the minimal model has $K_{\bar{S}}^{2}=3$. This strategy works in every irregular case.

## Question

Can we use this argument to get an inequality $K^{2} \geq k\left(p_{g}, q\right)$ for the irregular case?

## How to prove the minimality in the regular case

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves
Work in progress

Assume that the singularities are mild, for example just $k$ nodes. Then $S$ has $k(-2)$ curves, every further rational curve should meet them at least three times.

## How to prove the minimality in the regular case

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations The Algorithms Classification Results

Assume that the singularities are mild, for example just $k$ nodes. Then $S$ has $k(-2)$ curves, every further rational curve should meet them at least three times.

If we had a $(-1)$ curve, contracting them I would get either two (-1) curves intersecting, or a singular rational curve intersecting negatively the canonical system. This implies that the surface is rational.

## How to prove the minimality in the regular case

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale quotients
Definitions
Computing invariants

Computer

Assume that the singularities are mild, for example just $k$ nodes. Then $S$ has $k(-2)$ curves, every further rational curve should meet them at least three times.

If we had a $(-1)$ curve, contracting them I would get either two (-1) curves intersecting, or a singular rational curve intersecting negatively the canonical system. This implies that the surface is rational.

If the surface is not simply connected, I have a contradiction, and the surface is minimal.

## The fake Godeaux surface

Quasi-étale quotients...
R. Pignatelli

## The Goal

Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems

## Rational curves

Work in progress

- $G=\operatorname{PSL}(2,7)$;
- $\Psi_{1}: \mathbb{T}(7,3,3) \rightarrow G, \Psi_{2}: \mathbb{T}(7,4,2) \rightarrow G$;
- $p_{g}(S)=0, K_{S}^{2}=1, \pi_{1}(S)=\mathbb{Z}_{/ 6 \mathbb{Z}}$;
- $\mathfrak{B}(X)=\left\{\frac{1}{7}, 2 \times \frac{2}{7}\right\}$.

How do we find the $(-1)$-curves?

## The first exceptional curve

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale quotients
Definitions
Computing
invariants

## Computer

Calculations
The Algorithms
Classification
Results

## Open

Problems
Rational curves
Work in progress

branch pts of $f_{1}$

## The first exceptional curve

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer Calculations
The Algorithms
Classification Results

## Open

Problems
Rational curves
Work in progress
branch pts of $\hat{f}_{1}$

$(7,7,7)$

branch pts of $f_{1}$

$(7,3,3)$


Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves

## Proposition

(1) $\left(\hat{C}_{1}, \hat{f}_{1}\right)$ and $\left(\hat{C}_{2}, \hat{f}_{2}\right)$ are isomorphic as $G$-covers of $\mathbb{P}^{1}$ (hence we write $\hat{C}:=\hat{C}_{1}=\hat{C}_{2}$ ).
(2) The curve

$$
C^{\prime}:=(\hat{\xi}, \hat{\eta})(\hat{C}) \subset C_{1} \times C_{2}
$$

is $G$-invariant and the quotient is a rational curve $D^{\prime} \subset X$.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves Work in progress

## Proposition

(1) $\left(\hat{C}_{1}, \hat{f}_{1}\right)$ and $\left(\hat{C}_{2}, \hat{f}_{2}\right)$ are isomorphic as $G$-covers of $\mathbb{P}^{1}$ (hence we write $\hat{C}:=\hat{C}_{1}=\hat{C}_{2}$ ).
(2) The curve

$$
C^{\prime}:=(\hat{\xi}, \hat{\eta})(\hat{C}) \subset C_{1} \times C_{2}
$$

is $G$-invariant and the quotient is a rational curve $D^{\prime} \subset X$.
(3) The strict transform $E^{\prime}$ of $D^{\prime}$ is a $(-1)$-curve on $S$.

## The second (-1)-curve on $S$

Quasi-étale quotients...
R. Pignatelli

## The Goal

Invariants
Quasi-étale quotients
Definitions
Computing
invariants

## Computer

## Calculations

The Algorithms
Classification
Results

## Open

Problems

## Rational curves

Work in progress

$$
\begin{gathered}
(7,7,7,7) \longrightarrow(7,7,7) \longrightarrow(7,3,3) \\
\mathbb{P}^{1} \xrightarrow{(2: 1)} \longrightarrow \mathbb{P}^{1} \xrightarrow{(3: 1)} \mathbb{P}^{1}
\end{gathered}
$$

## The second $(-1)$-curve on $S$

Quasi-étale quotients...
R. Pignatelli

## The Goal

Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer Calculations

## The Algorithms

Classification
Results
Open
Problems

## Rational curves

Work in progress

$$
\begin{gathered}
(7,7,7,7) \longrightarrow(7,7,7) \longrightarrow(7,3,3) \\
\mathbb{P}^{1} \xrightarrow{(2: 1)} \mathbb{P}^{1} \xrightarrow{(3: 1)} \mathbb{P}^{1} \\
(7,7,7,7) \\
\longrightarrow(7,4,2) \\
\mathbb{P}^{1} \xrightarrow[(4: 1)]{\longrightarrow} \mathbb{P}^{1}
\end{gathered}
$$

## The second $(-1)$-curve on $S$

Quasi-étale quotients...
R. Pignatelli

## The Goal

Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer Calculations
The Algorithms
Classification Results

$$
(7,7,7,7) \longrightarrow(7,7,7) \longrightarrow(7,3,3)
$$

$$
\mathbb{P}^{1} \xrightarrow{(2: 1)} \mathbb{P}^{1} \xrightarrow{(3: 1)} \mathbb{P}^{1}
$$

$$
(7,7,7,7) \longrightarrow(7,4,2)
$$

$$
\mathbb{P}^{1} \xrightarrow{(4: 1)} \mathbb{P}^{1}
$$

## Proposition

The two $G$-coverings (with branching indices $(7,7,7,7)$ ) of $\mathbb{P}^{1}$ are isomorphic, and give a further $(-1)$-curve on $S$.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations

## The Algorithms

Classification Results

## Open

Problems
Rational curves
Work in progress

The rational curves we have found on $S$ (5 from the resolution, 2 from the above construction) have dual graph


Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

## Open

Problems
Rational curves
Work in progress

The rational curves we have found on $S$ (5 from the resolution, 2 from the above construction) have dual graph


Exercise: the surface obtained by contracting the two $(-1)$-curves is minimal.

## Work in progress (with I. Bauer)

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open

## Problems

Rational curves
Work in progress

We have 73 families of unmixed quasi-étale surfaces with $p_{g}=0$ and $K^{2}>0 ; 72$ families of minimal surfaces, and the fake Godeaux.

## Work in progress (with I. Bauer)

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants.
Computer
Calculations
The Algorithms
Classification Results

Open

## Problems

Rational curves
Work in progress

We have 73 families of unmixed quasi-étale surfaces with $p_{g}=0$ and $K^{2}>0 ; 72$ families of minimal surfaces, and the fake Godeaux.

By inspecting the list, we noticed that all the minimal surfaces have $H^{2}(X) \cong \mathbb{C}^{2}$, generated by the classes of the fibres of the two fibrations.

## Work in progress (with I. Bauer)

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems

Work in progress

We have 73 families of unmixed quasi-étale surfaces with $p_{g}=0$ and $K^{2}>0 ; 72$ families of minimal surfaces, and the fake Godeaux.

By inspecting the list, we noticed that all the minimal surfaces have $H^{2}(X) \cong \mathbb{C}^{2}$, generated by the classes of the fibres of the two fibrations. On the contrary, the fake Godeaux surface has $H^{2}(X) \cong \mathbb{C}^{4}$, generated by the classes of the two fibres and of the two $(-1)$-curves.

## Work in progress (with I. Bauer)

Quasi-étale quotients...
R. Pignatelli

The Goal Invariants

Quasi-étale
quotients
Definitions
Compuling invariants

Computer Calculations

We have 73 families of unmixed quasi-étale surfaces with $p_{g}=0$ and $K^{2}>0 ; 72$ families of minimal surfaces, and the fake Godeaux.

By inspecting the list, we noticed that all the minimal surfaces have $H^{2}(X) \cong \mathbb{C}^{2}$, generated by the classes of the fibres of the two fibrations. On the contrary, the fake Godeaux surface has $H^{2}(X) \cong \mathbb{C}^{4}$, generated by the classes of the two fibres and of the two $(-1)$-curves.

## Question

Is there a reason for that?

## Hodge theoretic information

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results.

Open
Problems
Rational curves
Work in progress

For sake of simplicity we assume from now on $q=0$ and unmixedness.

## Proposition

Let $X:=\left(C_{1} \times C_{2}\right) / G$ be the quotient model of an unmixed quasi-étale surface. Then

- $\operatorname{dim} H^{2}(X) \geq 2$,


## Hodge theoretic information

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems
Rational curves
Work in progress

For sake of simplicity we assume from now on $q=0$ and unmixedness.

## Proposition

Let $X:=\left(C_{1} \times C_{2}\right) / G$ be the quotient model of an unmixed quasi-étale surface. Then

- $\operatorname{dim} H^{2}(X) \geq 2$,
- $\operatorname{dim} H^{2}(X) \equiv 0 \bmod 2$,


## Hodge theoretic information

For sake of simplicity we assume from now on $q=0$ and unmixedness.

## Proposition

Let $X:=\left(C_{1} \times C_{2}\right) / G$ be the quotient model of an unmixed quasi-étale surface. Then

- $\operatorname{dim} H^{2}(X) \geq 2$,
- $\operatorname{dim} H^{2}(X) \equiv 0 \bmod 2$,

Let $\sigma: S \rightarrow X$ be the minimal resolution of the singularities of $X$. Then $H^{2}(S, \mathbb{C}) \cong H^{2}(X, \mathbb{C}) \oplus \mathbb{C}^{l}$, where $l=$ numb. of irr. comp.s of $\operatorname{Exc}(\sigma)$.

## Global definition of $\gamma$

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer Calculations

## The Algorithms

Classilication Results

## Open

## Problems

Work in progress

Let $X:=\left(C_{1} \times C_{2}\right) / G$ be the quotient model of an unmixed quasi-étale surface with $q=0$. We set

$$
\gamma(X):=\frac{h^{2}(S, \mathbb{C})-l}{2}-1-2 p_{g}(S) \in \mathbb{Z}
$$

## Global definition of $\gamma$

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Compuling
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves
Work in progress

Let $X:=\left(C_{1} \times C_{2}\right) / G$ be the quotient model of an unmixed quasi-étale surface with $q=0$. We set

$$
\gamma(X):=\frac{h^{2}(S, \mathbb{C})-l}{2}-1-2 p_{g}(S) \in \mathbb{Z}
$$

$\gamma \geq-p_{g}$. Indeed $\gamma+p_{g}$ is half of the codimension in $H^{1,1}(S)$ of the subspace generated by the classes we know (fibres + exceptional).

## Local definition of $\gamma$

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale quotients
Definitions
Computing
invariants.
Computer
Calculations
The Algorithms
Classification
Results.

## Lemma

$\gamma$ depends only on the basket of X. More precisely $\gamma(X)=\sum_{x \in \mathfrak{B}(X)} \gamma_{x}$ where, for a singular point of type $C_{n, q}$ with $\frac{n}{q}=\left[b_{1}, \ldots, b_{l}\right]$,

$$
\gamma_{x}=\frac{1}{6}\left(\frac{q+q^{\prime}}{n}+\sum_{i=1}^{l}\left(b_{i}-3\right)\right)
$$

where $1 \leq q^{\prime} \leq n-1$ and $q q^{\prime} \equiv 1 \bmod n$.

## Local definition of $\gamma$

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations
where $1 \leq q^{\prime} \leq n-1$ and $q q^{\prime} \equiv 1 \bmod n$.

## Lemma

$\gamma$ depends only on the basket of X. More precisely
$\gamma(X)=\sum_{x \in \mathfrak{B}(X)} \gamma_{x}$ where, for a singular point of type $C_{n, q}$ with $\frac{n}{q}=\left[b_{1}, \ldots, b_{l}\right]$,

$$
\gamma_{x}=\frac{1}{6}\left(\frac{q+q^{\prime}}{n}+\sum_{i=1}^{l}\left(b_{i}-3\right)\right)
$$

## Remark

$K_{S}^{2}=8 \chi-2 \gamma-l$. We have implemented a similar algorithm constructing all product-quotient surfaces with $q=0$, given $p_{g}$, and $\gamma$ (and looks much quicker than the other one!)

## The dual surface

Quasi-étale quotients...
R. Pignatelli

## The Goal

Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classilication
Results
Open

## Problems

Rational curves
Work in progress

Let $S$ be a product-quotient surface with quotient model

$$
X=\left(C_{1} \times C_{2}\right) / G
$$

We assume furthermore that $S$ is regular, i.e., $q(S)=0$.

## The dual surface

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms

## Problems

Rational curves
Work in progress

Let $S$ be a product-quotient surface with quotient model

$$
X=\left(C_{1} \times C_{2}\right) / G
$$

We assume furthermore that $S$ is regular, i.e., $q(S)=0$. Suppose that $S$ is given by a pair of spherical systems of generators: $\left(a_{1}, \ldots, a_{s}\right),\left(b_{1}, \ldots, b_{t}\right)$ of $G$.

## Definition

The dual surface $S^{\prime}$ is the product-quotient surface given by the pair of spherical systems of generators: $\left(a_{1}, \ldots, a_{s}\right)$, $\left(b_{t}^{-1}, \ldots, b_{1}^{-1}\right)$.

## The invariants of $S$ and $S^{\prime}$

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer Calculations
The Algorithms
Classification
Results
Open
Problems
Rational curves
Work in progress

$$
C_{n, q} \in \mathfrak{B}(X) \Longleftrightarrow C_{n, n-q} \in \mathfrak{B}\left(X^{\prime}\right) .
$$

## The invariants of $S$ and $S^{\prime}$

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems
Rational curves
Work in progress

$$
C_{n, q} \in \mathfrak{B}(X) \Longleftrightarrow C_{n, n-q} \in \mathfrak{B}\left(X^{\prime}\right) .
$$

## Proposition

(1) $\gamma^{\prime}:=\gamma\left(S^{\prime}\right)=-\gamma(S)=-\gamma$;
(2) $q\left(S^{\prime}\right)=q(S)$
(3) $p_{g}\left(S^{\prime}\right)=p_{g}(S)+\gamma$;

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results.

Open
Problems

Work in progress

Back to the original problem: bounding $K^{2}$ or equivalently, $\gamma$. Can we find an explicit function $C\left(p_{g}, q\right)$ such that for all unmixed quasi-étale surfaces of general type, $\gamma \leq C\left(p_{g}, q\right)$ ?
We have

$$
H^{2}(S)=H^{2}(X) \oplus L
$$

where $L=\left\langle A_{1}, \ldots, A_{l}\right\rangle \cong \mathbb{C}^{l}$ is the subspace generated by the classes of the $l$ irreducible rational curves of the exceptional locus of $\sigma$.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems

Work in progress

Back to the original problem: bounding $K^{2}$ or equivalently, $\gamma$. Can we find an explicit function $C\left(p_{g}, q\right)$ such that for all unmixed quasi-étale surfaces of general type, $\gamma \leq C\left(p_{g}, q\right)$ ?
We have

$$
H^{2}(S)=H^{2}(X) \oplus L
$$

where $L=\left\langle A_{1}, \ldots, A_{l}\right\rangle \cong \mathbb{C}^{l}$ is the subspace generated by the classes of the $l$ irreducible rational curves of the exceptional locus of $\sigma$.
It is easy to show that the exceptional divisors of the first kind do not belong to $H^{2}(X)$.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Consider the subspace $W \subset H^{2}(S, \mathbb{C})$ generated by the exceptional divisors of the first kind.

## Conjecture

$W \cap H^{2}(X, \mathbb{C})=\{0\}$.

Quasi-étale quotients...
R. Pignatelli

The Goal
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer Calculations
The Algorithms
Classification
Results
Open
Problems

Raional curves

Work in progress

Consider the subspace $W \subset H^{2}(S, \mathbb{C})$ generated by the exceptional divisors of the first kind.

## Conjecture

$W \cap H^{2}(X, \mathbb{C})=\{0\}$.

Assume the conjecture to be true. Then:

$$
l=\operatorname{dim} L \geq \operatorname{dim} W \geq 2 \chi(S)-6-K_{S}^{2}=l+2 \gamma-6(\chi(S)+1)
$$

whence

$$
\gamma(S) \leq 3(\chi(S)+1)
$$

(and, with a similar argument $\gamma<4 \chi$ ).

## Literature

Quasi-étale
R. Pignatelli

- [BCG]
- I. Bauer, F. Catanese, F. Grunewald, R. Pignatelli Quotients of products of curves, new surfaces with $p_{g}=0$ and their fundamental groups, arXiv:0809.3420, to appear in Am. J. Math.
- I. Bauer, R. Pignatelli The classification of minimal product-quotient surfaces with $p_{g}=0$ arXiv:1006.3209, to appear in Math. of Computations.
- D. Frapporti Mixed quasi-étale surfaces and new surfaces of general type Ph. D. Thesis Univ. Trento
- D. Frapporti Mixed quasi-étale surfaces, new surfaces of general type with $p_{g}=0$ and their fundamental group arXiv:1105.1259v2.
- I. Bauer, R. Pignatelli (unpublished notes)

