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Definition
A surface is a projective compact complex manifold of
dimension 2.

The goal

Our goal is to construct surfaces.

How do we decide that a surface is "interesting"?

How do we check that a surface is "new"?
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Definition
A surface is a projective compact complex manifold of
dimension 2.

The goal

Our goal is to construct new interesting surfaces.

How do we decide that a surface is "interesting"?

How do we check that a surface is "new"?
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Birational Invariants

We look at surfaces modulo birational equivalence, the
equivalence relation generated by the blow-up in a point.

The classical birational invariants are

• the geometric genus
pg(S) = h2,0(S) = h0(Ω2

S) = h0(OS(KS)) = h2(OS).
• the irregularity q(S) = h1,0(S) = h0(Ω1

S) = h1(OS).
• the Euler characteristic χ = χ(OS) = 1− q + pg.
• The plurigenera Pn(S) = h0(OS(nKS)).
• The Kodaira dimension κ(S) is the rate of growth of the

plurigenera: it is the smallest number κ such that Pn/nκ

is bounded from above.
• The (topological or algebraic) fundamental group.
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Surfaces of general type

The Enriques-Kodaira classification provides a relatively
good understanding of the surfaces of special type, which
are those with κ(S) < 2.

Definition
A surface is of general type if κ(S) = 2 (equiv.κ(S) ≥ 2) .

Definition
A surface is minimal if KS is nef, that is if the intersection of
KS with any curve is nonnegative.

In every birational class of surfaces of general type there is
exactly one minimal surface. If S is a surface of general
type, S is obtained by the only minimal surface in its
birational class S̄ by a sequence of K2

S̄ − K2
S blow ups.
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Inequalities for surfaces of general type

If S is of general type, then the Riemann-Roch formula
computes all Pn(S) from χ and K2

S̄ .

The possible values of the
pair (χ, K2

S̄ ) are almost all the integral points of the
unbounded green region below.
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Inequalities for surfaces of general type

In general, the surfaces with the most interesting geometry
are the ones when "the inequalities are equalities", as for
the boundary of the picture. This includes the surfaces with
χ = 1 and, among those, the surfaces with pg = 0.

6 / 44



Quasi-étale
quotients...

R. Pignatelli

The Goal
Invariants

Quasi-étale
quotients
Definitions

Computing
invariants

Computer
Calculations
The Algorithms

Classification
Results

Open
Problems
Rational curves

Work in progress

Beauville’s idea

Beauville suggestion: take S = (C1 × C2)/G where Ci are
Riemann Surfaces of genus gi ≥ 2 and G is a free group of
automorphisms of order (g1 − 1)(g2 − 1); S is automatically
minimal of general type with χ = 1 and K2 = 8.
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Surfaces isogenous to a product

A surface is isogenous to a (higher) product if
S = (C1 × C2)/G where Ci are Riemann Surfaces of genus
gi ≥ 2 and G is a free group of automorphisms; S is
automatically minimal of general type, with K2 = 8χ.

8 / 44
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Quasi-étale quotients

Definition
A quasi-étale surface is
X = (C1 × C2)/G where Ci are Riemann Surfaces of genus
gi ≥ 2 and G is a group of automorphisms acting freely out
of a finite set of points.

If π : C1 × C2 → X is the quotient map, we are assuming π
quasi-étale (instead of étale).This implies π∗KX = KC1×C2 , so
KX is nef .

Disadvantages:

• X is singular, we need to consider a resolution of its
singularities S.

• We lose every rigidity property.

9 / 44
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Quasi-étale quotients

Advantage: it may be K2 < 8χ. We may in principle fill most
of the picture.
This gives a powerful tool to answer (positively) existence
conjectures.
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Mixed and unmixed structures

We know that
• either Aut(C1 × C2) = Aut(C1)× Aut(C2),
• or C1 ∼= C2 ∼= C and Aut(C2) ∼= (Aut(C))2 o Z/2Z.

Following Catanese, for G < Aut(C1 × C2) we define
G(0) = G ∩ (Aut(C1)× Aut(C2)). There are two possibilities

• either G = G(0) (the unmixed case, the case of the
product-quotient surfaces, the standard isotrivial
fibrations);

• or (mixed case) there is an exact sequence

(#) 1→ G(0) → G→ Z/2Z → 1.

11 / 44
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Mixedness and quasi-étaleness

Theorem (Frapporti)

π is not quasi-étale if and only if G(0) 6∼= G and

(#) 1→ G(0) → G→ Z/2Z → 1

splits.

Assuming quasi-étale we consider a class larger than the
class of the standard isotrivial fibrations (=the unmixed quasi
étale surfaces). The quotient surfaces we are excluding are
dominated by the symmetric product of a curve.

12 / 44
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Constructing curves with group actions

By Riemann Existence Theorem, to give an action of a
group G(0) on a curve C is equivalent to give
• the curve C/G(0);

• a choice of some points on C/G(0);
• a suitable choice of loops in the complement of these

points.
• a suitable system of generators G(0): a generator for

each loop, defining a surjection from the fundamental
group of the complement of the chosen points to G(0)).

For later use: to each suitable system of generators we
associate its signature, which is the unordered list of the
orders of some of these generators. The genus of C is a
function (Hurwitz’ formula) of |G|, the signature, and the
genus of C/G(0).
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Constructing quotients

To construct an unmixed surface I need two curves with an
action of the same group, so two systems of generators of
the same group G = G(0).

In the mixed case, we only need one system of generators
of G(0) ("twice"), and a degree 2 extension G of G(0). Indeed,
fixed a G(0) action on C and τ ′ ∈ G \ G(0), then a mixed
action of G on C × C is given by{

g(x, y) = (gx, τ ′gτ ′−1y) ∀g ∈ G(0)

τ ′g(x, y) = (τ ′gτ ′−1y, τ ′2gx) ∀g ∈ G(0)

and all mixed actions come in this way.
Moreover, different choices of τ ′ give isomorphic
constructions.

14 / 44
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Computing the invariants: the irregularity

From now on, we assume quasi-étaleness, running in
parallel both the mixed and the unmixed case.

The easier formula is for the irregularity:{
q(S) = g(C1/G) + g(C2/G) in the unmixed case
q(S) = g(C/G(0)) in the mixed case

To compute the other invariants we need a better
understanding of the singularities of X = (C1 × C2)/G.

15 / 44
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The singularities

The singularities of X are the image of the points of C1 × C2
with non trivial stabilizer.

• in the unmixed case X has only cyclic quotient
singularities, locally biregular to the quotient of C2 by

the automorphism
(
ω 0
0 ωq

)
where ω is a n-th primitive

root of 1, 0 < q < n and (q, n) = 1. We say that these
singularities are of type Cn,q. We know how to compute
them from the systems of generators.

• In the mixed case we have an intermediate unmixed
quotient Y = C2/G(0) and an involution i on Y with
Y/i = X. SingX is determined by SingY and the action of
i on it: when i exchanges two singular points of Y we
get a point of type Cn,q on X; when i fixes a point of type
Cn,q, then we get a point of type Dn,q on X.

16 / 44
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Cn,q

The exceptional divisor of the minimal resolution of a
singularity Cn,q is a chain of rational curves A1, . . . ,Ak with
self intersections −b1, . . . ,−bk given by the continued
fraction:

n
q

= [b1, . . . , bk] = b1 −
1

b2 − 1
b3−...

.

The dual graph is

−b1

•
−b2

•
−bk−1

•
−bk

•

If qq′ ≡ 1 mod n, then n
q′ = [bk, . . . , b1] and therefore

Cn,q ∼= Cn,q′
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Dn,q

Proposition (Frapporti)
If P ∈ Y is a fixed point of Y, then P is a singular point of type
Cn,q with q2 ≡ 1 mod n, and the lift of i to a resolution of the
singularity exchanges the ends of the string

−b1

•
−b2

•
−b2

•
−b1

•

The resolution graph of a singularity of type Dn,q is
(k = 2h + 1)

−b1

•
−b2

•
−(1 +

bh+1
2 )

•

−2•

−2•

�
�

@
@
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K2 and χ

There are explicit formulas

K2
S =

8(g(C1)− 1)(g(C2)− 1)

|G|
−

∑
x∈SingX

kx

e(S) =
4(g(C1)− 1)(g(C2)− 1)

|G|
+

∑
x∈SingX

ex = 12χ− K2
S

where kx and ex are positive rational numbers depending
only on the type of the singularity. it follows

K2
S = 8χ−

∑
x

2ex + kx

3
≤ 8χ.

19 / 44
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The algorithms: idea

Now we are able to construct every quasi-étale surface and
compute its invariants pg, q and K2

S (which is often but not
always equal to K2

S̄ ).

We can compute π1(S) by a lemma of
Armstrong.

We are interested in the inverse procedure: if we are
interested in constructing surfaces with certain pg, q and K2,
what can we do?
Reversing the above formula we can compute by them
• the possible g(Ci/G(0)) (by q);
•
∑

x 2ex + kx = 24χ− 3K2
S : there are finitely many

possible configurations ("baskets") of singularities for
each value of this;

• Hurwitz formula yields an equation involving |G|, K2
S ,∑

kx, g(Ci/G(0)) and the "signatures" of the actions of
G(0) on the Ci.

20 / 44
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The algorithms: procedure

We proved some inequalities to bound the possible
signatures.

This gives an algorithm that computes all
quasi-étale surfaces S with fixed pg, q and K2

S .
1 find all (fin. many) possible pairs of genera

(g(C1/G(0)), g(C2/G(0))) (equal in the mixed case) and
configurations ("baskets") of singularities with∑

x(2ex + kx) = 24χ− 3K2;
2 for every "basket" and pair of genera, list all

"signatures" satisfying those inequalities;
3 to each (pair of) signature(s), search all groups (G(0)) of

the order prescribed by the Hurwitz formula for set of
generators of the prescribed signatures;

4 in the mixed case, consider all the unsplit degree 2
extensions of G(0);

5 check the singularities of the surfaces in the output.
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We implemented the algorithm in MAGMA in the unmixed
case for pg = 0. Recall that if a surface of general type S is
minimal, then K2

S is positive.

Theorem (Bauer, Catanese, Grunewald, -)
Unmixed quasi-étale surfaces of g. t. with pg = 0 form

1 exactly 13 irreducible families of surfaces for the case in
which G acts freely: they form 13 irreducible connected
components of the moduli space;

2 exactly 72 irreducible families of minimal surfaces;
3 there is exactly one unmixed quasi-étale surface with

pg = 0 and K2
S > 0 which is not minimal, the "fake

Godeaux": it has K2
S = 1, whereas K2

S̄ = 3.

A similar classification for pg = q ≥ 1 has been obtained by
Carnovale, Mistretta, Penegini and Polizzi.
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In the mixed case the algorithm is implemented in the case
q = 0.

Theorem (Bauer, Catanese, Grunewald, Frapporti)
Mixed quasi-étale surfaces of general type with pg = 0 form

1 exactly 5 irreducible families of surfaces for the case in
which G acts freely: they form 5 irreducible connected
components of the moduli space;

2 exactly 17 irreducible families of minimal surfaces;
3 all mixed quasi-étale surface with pg = 0 and K2

S > 0 are
minimal.

Similar results have been obtained by the same authors
mentioned before for pg = q ≥ 1 only in the étale case.
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Some corollaries

The Campedelli surfaces are the min. surf. of g. t. with
pg = 0, K2 = 2.

Conjecture
The possible π1 of the Campedelli surfaces are all abelian
groups of order ≤ 9 and the quaternion group.

This is now proved for πalg
1 (Reid+. . .).

By our constructions:

Corollary (1)
There are Campedelli surfaces with π1 equal Z/3Z and Z/4Z.

Park, Park and Shin found similar results for πalg
1 .

Corollary (2)

Minimal surfaces of general type with pg = 0, 3 ≤ K2
S ≤ 6

realize at least 47 topological types.

24 / 44
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Algorithmic problems

Problem
We have to run a search on all groups of a given order:
sometimes there are too many even for a computer,
sometimes we do not have a complete list of them. We used
some group theory to exclude the cases that the computer
could not do.

Problem
The algorithm is very time and memory consuming. We
need some help in computational algebra to get results for
different values of the invariants.

Problem
Extend the programs to the irregular case.

25 / 44



Quasi-étale
quotients...

R. Pignatelli

The Goal
Invariants

Quasi-étale
quotients
Definitions

Computing
invariants

Computer
Calculations
The Algorithms

Classification
Results

Open
Problems
Rational curves

Work in progress

Algorithmic problems

Problem
We have to run a search on all groups of a given order:
sometimes there are too many even for a computer,
sometimes we do not have a complete list of them. We used
some group theory to exclude the cases that the computer
could not do.

Problem
The algorithm is very time and memory consuming. We
need some help in computational algebra to get results for
different values of the invariants.

Problem
Extend the programs to the irregular case.

25 / 44



Quasi-étale
quotients...

R. Pignatelli

The Goal
Invariants

Quasi-étale
quotients
Definitions

Computing
invariants

Computer
Calculations
The Algorithms

Classification
Results

Open
Problems
Rational curves

Work in progress

Algorithmic problems

Problem
We have to run a search on all groups of a given order:
sometimes there are too many even for a computer,
sometimes we do not have a complete list of them. We used
some group theory to exclude the cases that the computer
could not do.

Problem
The algorithm is very time and memory consuming. We
need some help in computational algebra to get results for
different values of the invariants.

Problem
Extend the programs to the irregular case.

25 / 44



Quasi-étale
quotients...

R. Pignatelli

The Goal
Invariants

Quasi-étale
quotients
Definitions

Computing
invariants

Computer
Calculations
The Algorithms

Classification
Results

Open
Problems
Rational curves

Work in progress

Theoretical problems

Problem
How do we determine the minimal model of S?

And, related to it is

Problem
Can we find all quasi-étale surfaces of general type with
pg = 0, or, more generally, with given pg and q?

If we could find an explicit bound K2
S ≥ k(pg, q)...
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Searching rational curves

To answer the last questions we need to study the rational
curves on a quasi-étale surface.

We would like to be able to locate all exceptional curves of
the first kind (if any).

Remark
Rational curves on S are
• either exceptional for the resolution S→ X
• or pass through the singular points of X at least three times.
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Mistretta-Polizzi’s example

In this example pg(S) = q(S) = 1, K2
S = 1 and the basket of

singularities is
{ 1

7 , 2×
2
7

}
.

Since S is irregular, the Albanese
map α contracts all rational curves.
In this case, all exceptional divisors for S→ X are mapped
to the same point p ∈ α(S), so all rational curves are in
α−1(p). α−1(p) is made of rational curves, with dual graph

−1
•�
�
�
�
−7

@
@
@
@

•

−2
•

−4
•

−4
•

−2
•
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Then the minimal model has K2
S̄ = 3. This strategy works in

every irregular case.

Question

Can we use this argument to get an inequality K2 ≥ k(pg, q)
for the irregular case?
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How to prove the minimality in the regular case

Assume that the singularities are mild, for example just k
nodes. Then S has k (−2) curves, every further rational
curve should meet them at least three times.

If we had a (−1) curve, contracting them I would get either
two (-1) curves intersecting, or a singular rational curve
intersecting negatively the canonical system. This implies
that the surface is rational.

If the surface is not simply connected, I have a
contradiction, and the surface is minimal.

30 / 44
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nodes. Then S has k (−2) curves, every further rational
curve should meet them at least three times.

If we had a (−1) curve, contracting them I would get either
two (-1) curves intersecting, or a singular rational curve
intersecting negatively the canonical system. This implies
that the surface is rational.
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The fake Godeaux surface

• G = PSL(2, 7);
• Ψ1 : T(7, 3, 3)→ G, Ψ2 : T(7, 4, 2)→ G;
• pg(S) = 0, K2

S = 1, π1(S) = Z/6Z;

• B(X) = {1
7 , 2×

2
7}.

How do we find the (−1)−curves?
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The first exceptional curve

branch pts of f̂1

��

Ĉ1
ξ̂ //

f̂1
��

C1

f1

��

branch pts of f1

��
(7, 7, 7) P1

ξ

(3:1)
// P1 (7, 3, 3)

branch pts of f̂2

��

Ĉ2

η̂

##η̂2 //

f̂2
��

C̄2

f̄2
��

η̂1 // C2

f2
��

branch pts of f2

��
(7, 7, 7) P1

η

66
η2

(2:1)
// P1

η1

(2:1)
// P1 (7, 4, 2)
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Proposition

1 (Ĉ1, f̂1) and (Ĉ2, f̂2) are isomorphic as G-covers of P1

(hence we write Ĉ := Ĉ1 = Ĉ2).
2 The curve

C′ := (ξ̂, η̂)(Ĉ) ⊂ C1 × C2,

is G-invariant and the quotient is a rational curve
D′ ⊂ X.

3 The strict transform E′ of D′ is a (−1)-curve on S.
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The second (−1)-curve on S

(7, 7, 7, 7) // (7, 7, 7) // (7, 3, 3)

P1
(2:1) // P1

(3:1) // P1

(7, 7, 7, 7) // (7, 4, 2)

P1
(4:1) // P1

Proposition

The two G-coverings (with branching indices (7, 7, 7, 7)) of
P1 are isomorphic, and give a further (−1)-curve on S.
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The rational curves we have found on S (5 from the
resolution, 2 from the above construction) have dual graph

−1
•�
�
�
�

�
�
�
�

−7

@
@
@
@

�
�
�
�

−1
••

−4
•

−2
•

−4
•

−2
•

Exercise: the surface obtained by contracting the two
(−1)-curves is minimal.
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Work in progress (with I. Bauer)

We have 73 families of unmixed quasi-étale surfaces with
pg = 0 and K2 > 0; 72 families of minimal surfaces, and the
fake Godeaux.

By inspecting the list, we noticed that all the minimal
surfaces have H2(X) ∼= C2, generated by the classes of the
fibres of the two fibrations. On the contrary, the fake
Godeaux surface has H2(X) ∼= C4, generated by the classes
of the two fibres and of the two (−1)-curves.

Question
Is there a reason for that?
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Hodge theoretic information

For sake of simplicity we assume from now on q = 0 and
unmixedness.

Proposition

Let X := (C1 × C2)/G be the quotient model of an unmixed
quasi-étale surface. Then
• dim H2(X) ≥ 2,

• dim H2(X) ≡ 0 mod 2,

Let σ : S→ X be the minimal resolution of the singularities of
X. Then H2(S,C) ∼= H2(X,C)⊕ Cl, where l = numb. of irr.
comp.s of Exc(σ).
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Global definition of γ

Let X := (C1 × C2)/G be the quotient model of an unmixed
quasi-étale surface with q = 0. We set

γ(X) :=
h2(S,C)− l

2
− 1− 2pg(S) ∈ Z

γ ≥ −pg. Indeed γ + pg is half of the codimension in H1,1(S)
of the subspace generated by the classes we know (fibres +
exceptional).
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Global definition of γ

Let X := (C1 × C2)/G be the quotient model of an unmixed
quasi-étale surface with q = 0. We set

γ(X) :=
h2(S,C)− l

2
− 1− 2pg(S) ∈ Z

γ ≥ −pg. Indeed γ + pg is half of the codimension in H1,1(S)
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Local definition of γ

Lemma
γ depends only on the basket of X. More precisely
γ(X) =

∑
x∈B(X) γx where, for a singular point of type Cn,q

with n
q = [b1, . . . , bl],

γx =
1
6

(
q + q′

n
+

l∑
i=1

(bi − 3)

)
,

where 1 ≤ q′ ≤ n− 1 and qq′ ≡ 1 mod n.

Remark

K2
S = 8χ− 2γ − l. We have implemented a similar algorithm

constructing all product-quotient surfaces with q = 0, given pg,
and γ (and looks much quicker than the other one!)
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The dual surface

Let S be a product-quotient surface with quotient model

X = (C1 × C2)/G.

We assume furthermore that S is regular, i.e., q(S) = 0.

Suppose that S is given by a pair of spherical systems of
generators: (a1, . . . , as), (b1, . . . , bt) of G.

Definition
The dual surface S′ is the product-quotient surface given by
the pair of spherical systems of generators: (a1, . . . , as),
(b−1

t , . . . , b−1
1 ).
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The invariants of S and S′

Remark

Cn,q ∈ B(X) ⇐⇒ Cn,n−q ∈ B(X′).

Proposition

1 γ′ := γ(S′) = −γ(S) = −γ;
2 q(S′) = q(S)

3 pg(S′) = pg(S) + γ;
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Back to the original problem: bounding K2 or equivalently, γ.
Can we find an explicit function C(pg, q) such that for all
unmixed quasi-étale surfaces of general type, γ ≤ C(pg, q)?
We have

H2(S) = H2(X)⊕ L,

where L = 〈A1, . . . ,Al〉 ∼= Cl is the subspace generated by
the classes of the l irreducible rational curves of the
exceptional locus of σ.

It is easy to show that the exceptional divisors of the first
kind do not belong to H2(X).
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Consider the subspace W ⊂ H2(S,C) generated by the
exceptional divisors of the first kind.

Conjecture

W ∩ H2(X,C) = {0}.

Assume the conjecture to be true. Then:

l = dim L ≥ dimW ≥ 2χ(S)− 6− K2
S = l + 2γ − 6(χ(S) + 1),

whence
γ(S) ≤ 3(χ(S) + 1).

(and, with a similar argument γ < 4χ).
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