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Rigid compact complex manifolds

Definition

A compact complex manifold M is rigid if for each deformation of M,
f : (X,M)→ (B, b0) there is an open neighbourhood U ⊂ B of b0 such
that Mt := f −1(t) ∼= M for all t ∈ U.

Roughly speaking, M is rigid if every small deformation of its complex
structure gives a complex manifold isomorphic to M.

It is wellknown that every compact complex manifold homeomorphic to P1
C

is biholomorphic to it, so P1
C is rigid.

On the contrary, every other compact complex manifold of dimension 1 is
not rigid, their complex structures being described by the famous moduli
spaces of curves Mg .
The situation in higher dimension is much more complicated: for example
the Hirzebruch surface F2 is not rigid and homeomorphic to the rigid
surface P1

C × P1
C.

How do we check the rigidity of a manifold?
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The Kuranishi family

Let M be a compact complex manifold.

Kuranishi constructed a deformation π : (X ,M)→ (Def(M), 0) of M
where (Def(M), 0) is a germ of analytic subspace of the vector space1

H1(M,Θ), inverse image of the origin under a local holomorphic map, the
Kuranishi map, k : H1(M,Θ)→ H2(M,Θ) whose differential vanishes2 at
the origin.

Theorem (Kuranishi)

The Kuranishi family is semiuniversal, and universal if H0(M,Θ) = 0.

1Here Θ is the sheaf of holomorphic vector fields on M.
2Then H1(M,Θ) is the Zariski tangent space of (Def(M), 0).

In particular (Def(M), 0) is smooth if and only if k = 0, in which case we say that M
has unobstructed deformations.
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Infinitesimal rigidity

Definition

A compact complex manifold M is infinitesimally rigid if H1(M,Θ) = 0.

The word infinitesimally rigid comes by Kuranishi’s Theorem.
In fact it follows

Corollary (Kuranishi’s criterion for rigidity)

M infinitesimally rigid⇒ M rigid

In particular P1
C × P1

C is (infinitesimally) rigid.
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Morrow-Kodaira’s Problem

Morrow and Kodaira asked if the converse implication also holds3:

A solution of the M-K Problem is a manifold M such that Def(M) is a fat
point, a singular point.

3This is a screenshot of the book Complex Manifolds by James Morrow and Kunihiko
Kodaira (1971), Holt, Rinehart and Winston, Inc.
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The main result

Theorem

For every even n ≥ 8 such that 3 - n there is a minimal regular surface Sn
of general type with

K 2
Sn = 2(n − 3)2, pg (Sn) =

(n
2
− 2
)(n

2
− 1
)
,

such that Sn is rigid, but not infinitesimally rigid: h1(Sn,Θ) = 6.

The canonical models of these surfaces have exactly 6 singular points, all
nodes. The hard part is proving their rigidity, since Kuranishi’s rigidity
criterion fails.
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Generalization to higher dimension

Lemma

Let M, N be compact complex manifolds, such that

h0(M,Θ)h1(N,O) = h0(N,Θ)h1(M,O) = 0

Then Def(M × N) = Def(M)× Def(N).

Then, if M is a regular surface of general type solving the M-K Problem
and N is a rigid manifold, by Künneth formula M × N is a solution too.

Using some known rigid manifolds we obtain

Theorem

There are rigid manifolds of dimension d and Kodaira dimension κ that
are not infinitesimally rigid for all possible pairs (d , κ) with d ≥ 5 and
κ 6= 0, 1, 3 and for (d , κ) = (3,−∞), (4,−∞), (4, 4).
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and N is a rigid manifold, by Künneth formula M × N is a solution too.
Using some known rigid manifolds4 we obtain

Theorem

There are rigid manifolds of dimension d and Kodaira dimension κ that
are not infinitesimally rigid for all possible pairs (d , κ) with d ≥ 5 and
κ 6= 0, 1, 3 and for (d , κ) = (3,−∞), (4,−∞), (4, 4).
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and manifolds, Adv. Math. 333, 620–669 (2018).
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We need M rigid: these are rare.

Theorem (Ingrid Bauer and Fabrizio Catanese, On rigid compact
complex surfaces and manifolds, Adv. Math. 333, 620–669 (2018).)

Let M be a smooth compact complex surface, which is rigid. Then either

1 M is a minimal surface of general type, or

2 M is a Del Pezzo surface of degree d ≥ 5

3 M is an Inoue surface of type SM or S−N,p,q,r

Rigid Del Pezzo and Inoue surfaces are infinitesimally rigid, so every
surface solving M-K Problem is minimal with Kodaira dimension 2.

How do check rigidity when the Kuranishi criterion fails?
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We need M with obstructed deformations

Several examples of manifolds M of dimension 2 with obstructed
deformations are now known.

Burns and Wahl show how to associate to each smooth rational curve E
with E 2 = −2 in a complex surface M a 1−dimensional subspace H1

E (M)
of H1(M,Θ).
Note that in particular if M is the minimal resolution of the singularities of
a nodal surface, M can’t be infinitesimally rigid.

The minimal model of any rigid surface of general type whose canonical
model is singular does the job.
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The Kas formula

A necessary condition for M to be rigid is that it is obstructed along this
line: H1

E (M) 6⊂ Def(M). A way to check it has been provided by Kas.

Let θ be a generator of H1
E (M) ⊂ H1(M,Θ) and write

k(tθ) = αt2 + O(3) ∈ H2(M,Θ).

Then by Serre duality we can see α ∈ H2(M,Θ) as a map

α : H0(M,Ω1 ⊗ Ω2)→ C.

Kas provides an explicit way to compute α(η) for all η ∈ H0
(
M,Ω1 ⊗ Ω2

)
.
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A criterion to prove rigidity

The main tool for the proof of the first theorem is the following rigidity
criterion for nodal surfaces.

Theorem

Let M be the minimal res. of the sing. of a nodal surface X . Assume that

1 H1(X ,Θ) = 0;

2 the elements ανi ∈ H2(M,Θ) associated to the nodes νi of X as in
the discussion of the Kas formula are linearly independent in
H0(M,Ω1 ⊗ Ω2)∨.

Then M is rigid and h1(M,Θ) equals the number of nodes of X .

Note that if X as at least a node, then M is not infinitesimally rigid.

Roberto Pignatelli (Trento) Rigid but not infinitesimally
XXI Congresso dell’Unione Matematica Italiana Sezione 18: Geometria Algebrica Pavia, September 5th , 2019 12

/ 16



A criterion to prove rigidity

The main tool for the proof of the first theorem is the following rigidity
criterion for nodal surfaces.

Theorem

Let M be the minimal res. of the sing. of a nodal surface X . Assume that

1 H1(X ,Θ) = 0;

2 the elements ανi ∈ H2(M,Θ) associated to the nodes νi of X as in
the discussion of the Kas formula are linearly independent in
H0(M,Ω1 ⊗ Ω2)∨.

Then M is rigid and h1(M,Θ) equals the number of nodes of X .

Note that if X as at least a node, then M is not infinitesimally rigid.

Roberto Pignatelli (Trento) Rigid but not infinitesimally
XXI Congresso dell’Unione Matematica Italiana Sezione 18: Geometria Algebrica Pavia, September 5th , 2019 12

/ 16



The Fermat curves

The Fermat curve of degree n, C := {
∑2

j=0 x
n
j = 0} ⊂ P2

C admits a

natural action of the group G ∼= (Z/nZ)2:

(a1, a2)(x0 : x1 : x2) = (x0 : ea1
2πi
n x1 : ea2

2πi
n x2).

This G−action has only three orbits of cardinality different by n2, all of
cardinality n:

C ∩ {x0 = 0} with stabilizer 〈(1, 1)〉 ∼= Z/nZ
C ∩ {x1 = 0} with stabilizer 〈(1, 0)〉 ∼= Z/nZ
C ∩ {x2 = 0} with stabilizer 〈(0, 1)〉 ∼= Z/nZ

By Hurwitz formula C/G ∼= P1.
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The surfaces Sn

We take two copies (C ,G ) of the Fermat curve of degree n, n not divisible
by 3.

Then we consider the following action of G on C × C

g(x , y) =

(
gx ,

(
1 −2
2 −1

)
gy

)
;

the quotient surface is smooth for n odd, whereas it has six nodes for n
even.
Our rigidity criterion fails for n = 4 and works for n ≥ 8.
In fact S4 is a numerical Campedelli surface with fundamental group
(Z/2Z)3: these are well known, their Kuranishi family has dimension 6.
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The surfaces Sn

We take two copies (C ,G ) of the Fermat curve of degree n, n not divisible
by 3.

Then we consider the following action of G on C × C

g(x , y) =

(
gx ,

(
1 −2
2 −1

)
gy

)
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the quotient surface is smooth for n odd, whereas it has six nodes for n
even.
Our rigidity criterion fails for n = 4 and works for n ≥ 8.
In fact S4 is a numerical Campedelli surface with fundamental group
(Z/2Z)3: these are well known, their Kuranishi family has dimension 6.
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Open problems

Problem (1)

Construct rigid manifolds M with h1(M,Θ) = 1, resp. arbitrarily high.

Problem (2)

Construct simply connected rigid not infinitesimally rigid manifolds.

Note π1(Sn) ∼= (Z/ n
2
Z)3.

Problem (3)

For every fixed natural numbers κ, d ∈ N with κ ≤ d ≥ 3 are there rigid
not inf. rigid manifolds of dimension d and Kodaira dimension κ?
In particular for κ = 0, 1.

Problem (4)

Construct rigid surfaces to which our criterion does not apply.
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