Rigid but not infinitesimally rigid compact complex manifolds

joint work with I. Bauer (Bayreuth)

Roberto Pignatelli

University of Trento

Roberto.Pignatelli@unitn.it

XXI Congresso dell'Unione Matematica Italiana

Sezione 18: Geometria Algebrica

Pavia, September 5th, 2019

16

Overview

The Question

- Rigidities
- Morrow-Kodaira's question
- Our main results
 - Answers in every dimension ≥ 2

Why is that difficult?

- Rigid manifolds
- Manifolds with obstructed deformations
- The construction

Open problems

16

A compact complex manifold M is *rigid* if for each deformation of M, $f: (\mathfrak{X}, M) \to (B, b_0)$ there is an open neighbourhood $U \subset B$ of b_0 such that $M_t := f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.

16

A compact complex manifold M is *rigid* if for each deformation of M, $f: (\mathfrak{X}, M) \to (B, b_0)$ there is an open neighbourhood $U \subset B$ of b_0 such that $M_t := f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.

It is wellknown that every compact complex manifold homeomorphic to $\mathbb{P}^1_{\mathbb{C}}$ is biholomorphic to it, so $\mathbb{P}^1_{\mathbb{C}}$ is rigid.

16

A compact complex manifold M is *rigid* if for each deformation of M, $f: (\mathfrak{X}, M) \to (B, b_0)$ there is an open neighbourhood $U \subset B$ of b_0 such that $M_t := f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.

It is wellknown that every compact complex manifold homeomorphic to $\mathbb{P}^1_{\mathbb{C}}$ is biholomorphic to it, so $\mathbb{P}^1_{\mathbb{C}}$ is rigid.

On the contrary, every other compact complex manifold of dimension 1 is not rigid, their complex structures being described by the famous moduli spaces of curves \mathcal{M}_g .

16

A compact complex manifold M is *rigid* if for each deformation of M, $f: (\mathfrak{X}, M) \to (B, b_0)$ there is an open neighbourhood $U \subset B$ of b_0 such that $M_t := f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.

It is wellknown that every compact complex manifold homeomorphic to $\mathbb{P}^1_{\mathbb{C}}$ is biholomorphic to it, so $\mathbb{P}^1_{\mathbb{C}}$ is rigid.

On the contrary, every other compact complex manifold of dimension 1 is not rigid, their complex structures being described by the famous moduli spaces of curves \mathcal{M}_g .

The situation in higher dimension is much more complicated: for example the Hirzebruch surface \mathbb{F}_2 is not rigid and homeomorphic to the rigid surface $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$.

A compact complex manifold M is *rigid* if for each deformation of M, $f: (\mathfrak{X}, M) \to (B, b_0)$ there is an open neighbourhood $U \subset B$ of b_0 such that $M_t := f^{-1}(t) \cong M$ for all $t \in U$.

Roughly speaking, M is rigid if every small deformation of its complex structure gives a complex manifold isomorphic to M.

It is wellknown that every compact complex manifold homeomorphic to $\mathbb{P}^1_{\mathbb{C}}$ is biholomorphic to it, so $\mathbb{P}^1_{\mathbb{C}}$ is rigid.

On the contrary, every other compact complex manifold of dimension 1 is not rigid, their complex structures being described by the famous moduli spaces of curves \mathcal{M}_{g} .

The situation in higher dimension is much more complicated: for example the Hirzebruch surface \mathbb{F}_2 is not rigid and homeomorphic to the rigid surface $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$.

How do we check the rigidity of a manifold?

The Kuranishi family

Let M be a compact complex manifold.

Kuranishi constructed a deformation $\pi: (\mathcal{X}, M) \to (\text{Def}(M), 0)$ of Mwhere (Def(M), 0) is a germ of analytic subspace of the vector space¹ $H^1(M, \Theta)$, inverse image of the origin under a local holomorphic map, the *Kuranishi map*, $k: H^1(M, \Theta) \to H^2(M, \Theta)$ whose differential vanishes² at the origin.

²Then $H^1(M, \Theta)$ is the Zariski tangent space of (Def(M), 0). In particular (Def(M), 0) is smooth if and only if k = 0, in which case we say that M italy has unobstructed deformations.

Roberto Pignatelli (Trento)

16

¹Here Θ is the sheaf of holomorphic vector fields on *M*.

The Kuranishi family

Let M be a compact complex manifold.

Kuranishi constructed a deformation $\pi: (\mathcal{X}, M) \to (\text{Def}(M), 0)$ of Mwhere (Def(M), 0) is a germ of analytic subspace of the vector space¹ $H^1(M, \Theta)$, inverse image of the origin under a local holomorphic map, the *Kuranishi map*, $k: H^1(M, \Theta) \to H^2(M, \Theta)$ whose differential vanishes² at the origin.

Theorem (Kuranishi)

The Kuranishi family is semiuniversal, and universal if $H^0(M, \Theta) = 0$.

²Then $H^1(M, \Theta)$ is the Zariski tangent space of (Def(M), 0). In particular (Def(M), 0) is smooth if and only if k = 0, in which case we say that M italy has unobstructed deformations.

Roberto Pignatelli (Trento)

16

¹Here Θ is the sheaf of holomorphic vector fields on *M*.

Infinitesimal rigidity

Definition

A compact complex manifold M is *infinitesimally rigid* if $H^1(M, \Theta) = 0$.

/ 16

XXI Congresso dell'Unione Matematica Italian

Roberto Pignatelli (Trento)

Rigid but not infinitesimally

Infinitesimal rigidity

Definition

A compact complex manifold M is *infinitesimally rigid* if $H^1(M, \Theta) = 0$.

The word *infinitesimally rigid* comes by Kuranishi's Theorem. In fact it follows

Corollary (Kuranishi's criterion for rigidity)

M infinitesimally rigid \Rightarrow M rigid

16

Infinitesimal rigidity

Definition

A compact complex manifold M is *infinitesimally rigid* if $H^1(M, \Theta) = 0$.

The word *infinitesimally rigid* comes by Kuranishi's Theorem. In fact it follows

Corollary (Kuranishi's criterion for rigidity)

M infinitesimally rigid \Rightarrow M rigid

In particular $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$ is (infinitesimally) rigid.

Morrow and Kodaira asked if the converse implication also holds³:

THEOREM 3.2. If $H^1(M, \Theta) = 0$, then M is rigid. We will give a proof of this using elementary methods. We have the following:

PROBLEM. Find an example of an *M* which is rigid, but $H^1(M, \Theta) \neq 0$. (Not easy?)

REMARK. \mathbb{P}^n is rigid. For $n \ge 2$ the only known proof is to show $H^1(\mathbb{P}^n, \Theta) = 0$ [Bott (1957)]. Let us proceed to the proof.

A solution of the M-K Problem is a manifold M such that Def(M) is a *fat* point, a *singular* point.

³This is a screenshot of the book *Complex Manifolds* by James Morrow and Kunihikoly Kodaira (1971), *Holt, Rinehart and Winston, Inc.*

LINIVERSITY

16

Roberto Pignatelli (Trento)

Rigid but not infinitesimally

Theorem

For every even $n \ge 8$ such that $3 \nmid n$ there is a minimal regular surface S_n of general type with

$$K_{S_n}^2 = 2(n-3)^2, \ \ p_g(S_n) = \left(\frac{n}{2} - 2\right) \left(\frac{n}{2} - 1\right),$$

such that S_n is rigid, but not infinitesimally rigid: $h^1(S_n, \Theta) = 6$.

16

Theorem

For every even $n \ge 8$ such that $3 \nmid n$ there is a minimal regular surface S_n of general type with

$$K_{S_n}^2 = 2(n-3)^2, \ \ p_g(S_n) = \left(\frac{n}{2} - 2\right) \left(\frac{n}{2} - 1\right),$$

such that S_n is rigid, but not infinitesimally rigid: $h^1(S_n, \Theta) = 6$.

The canonical models of these surfaces have exactly 6 singular points, all nodes. The hard part is proving their rigidity, since Kuranishi's rigidity criterion fails.

Generalization to higher dimension

Lemma

Let M, N be compact complex manifolds, such that

$$h^0(M,\Theta)h^1(N,\mathcal{O}) = h^0(N,\Theta)h^1(M,\mathcal{O}) = 0$$

Then $Def(M \times N) = Def(M) \times Def(N)$.

Then, if M is a regular surface of general type solving the M-K Problem and N is a rigid manifold, by Künneth formula $M \times N$ is a solution too.

16

Generalization to higher dimension

Lemma

Let M, N be compact complex manifolds, such that

$$h^0(M,\Theta)h^1(N,\mathcal{O}) = h^0(N,\Theta)h^1(M,\mathcal{O}) = 0$$

Then $Def(M \times N) = Def(M) \times Def(N)$.

Then, if M is a regular surface of general type solving the M-K Problem and N is a rigid manifold, by Künneth formula $M \times N$ is a solution too. Using some known rigid manifolds⁴ we obtain

Theorem

There are rigid manifolds of dimension d and Kodaira dimension κ that are not infinitesimally rigid for all possible pairs (d, κ) with $d \ge 5$ and $\kappa \ne 0, 1, 3$ and for $(d, \kappa) = (3, -\infty), (4, -\infty), (4, 4)$.

⁴listed in Ingrid Bauer and Fabrizio Catanese, On rigid compact complex surfaces - Italy and manifolds, Adv. Math. **333**, 620–669 (2018).

16

Roberto Pignatelli (Trento)

Rigid but not infinitesimally

We need M rigid: these are rare.

Theorem (Ingrid Bauer and Fabrizio Catanese, *On rigid compact complex surfaces and manifolds, Adv. Math.* **333**, 620–669 (2018).)

Let M be a smooth compact complex surface, which is rigid. Then either

- M is a minimal surface of general type, or
- 2 *M* is a Del Pezzo surface of degree $d \ge 5$
- **3** *M* is an Inoue surface of type S_M or $S_{N,p,q,r}^-$

Rigid Del Pezzo and Inoue surfaces are infinitesimally rigid, so every surface solving M-K Problem is minimal with Kodaira dimension 2.

How do check rigidity when the Kuranishi criterion fails?

Several examples of manifolds M of dimension 2 with obstructed deformations are now known.

16

Several examples of manifolds M of dimension 2 with obstructed deformations are now known.

Burns and Wahl⁵ show how to associate to each smooth rational curve E with $E^2 = -2$ in a complex surface M a 1-dimensional subspace $H^1_E(M)$ of $H^1(M, \Theta)$.

⁵D. M. Burns Jr. and Jonathan M. Wahl, *Local contributions to global deformations* of surfaces, *Invent. Math* **26**, 67 – 88 (1974).

Roberto Pignatelli (Trento)

Rigid but not infinitesimally

Several examples of manifolds M of dimension 2 with obstructed deformations are now known.

Burns and Wahl⁵ show how to associate to each smooth rational curve E with $E^2 = -2$ in a complex surface M a 1-dimensional subspace $H^1_E(M)$ of $H^1(M, \Theta)$.

Note that in particular if M is the minimal resolution of the singularities of a *nodal* surface⁶, M can't be infinitesimally rigid.

⁵D. M. Burns Jr. and Jonathan M. Wahl, *Local contributions to global deformations of surfaces, Invent. Math* **26**, 67 – 88 (1974).

⁶A nodal surface is a singular surface whose singular points are nodes, locally the Italy quotient of a 2-dimensional disc by $p \mapsto -p$.

Roberto Pignatelli (Trento)

16

Several examples of manifolds M of dimension 2 with obstructed deformations are now known.

Burns and Wahl⁵ show how to associate to each smooth rational curve E with $E^2 = -2$ in a complex surface M a 1-dimensional subspace $H^1_E(M)$ of $H^1(M, \Theta)$.

Note that in particular if M is the minimal resolution of the singularities of a *nodal* surface⁶, M can't be infinitesimally rigid.

The minimal model of any rigid surface of general type whose canonical model is singular does the job.

⁵D. M. Burns Jr. and Jonathan M. Wahl, *Local contributions to global deformations of surfaces, Invent. Math* **26**, 67 – 88 (1974).

⁶A nodal surface is a singular surface whose singular points are nodes, locally the Italy quotient of a 2-dimensional disc by $p \mapsto -p$.

A necessary condition for M to be rigid is that it is obstructed along this line: $H_E^1(M) \not\subset \text{Def}(M)$. A way to check it has been provided by Kas.

16

A necessary condition for M to be rigid is that it is obstructed along this line: $H^1_E(M) \not\subset \text{Def}(M)$. A way to check it has been provided by Kas.

Let θ be a generator of $H^1_E(M) \subset H^1(M, \Theta)$ and write

$$k(t\theta) = \alpha t^2 + O(3) \in H^2(M, \Theta).$$

16

A necessary condition for M to be rigid is that it is obstructed along this line: $H^1_E(M) \not\subset \text{Def}(M)$. A way to check it has been provided by Kas.

Let θ be a generator of $H^1_E(M) \subset H^1(M, \Theta)$ and write

$$k(t\theta) = \alpha t^2 + O(3) \in H^2(M, \Theta).$$

Then by Serre duality we can see $\alpha \in H^2(M, \Theta)$ as a map

$$\alpha \colon H^0(M, \Omega^1 \otimes \Omega^2) \to \mathbb{C}.$$

16

A necessary condition for M to be rigid is that it is obstructed along this line: $H^1_E(M) \not\subset \text{Def}(M)$. A way to check it has been provided by Kas⁷.

Let θ be a generator of $H^1_E(M) \subset H^1(M, \Theta)$ and write

$$k(t\theta) = \alpha t^2 + O(3) \in H^2(M, \Theta).$$

Then by Serre duality we can see $\alpha \in H^2(M, \Theta)$ as a map

$$\alpha\colon H^0(M,\Omega^1\otimes\Omega^2)\to\mathbb{C}.$$

Kas provides an explicit way to compute $\alpha(\eta)$ for all $\eta \in H^0(M, \Omega^1 \otimes \Omega^2)$.

⁷Arnold Kas, Ordinary double points and obstructed surfaces, Topology **16** (**1**), **5**1 ^{Laly} 64 (1977).

Roberto Pignatelli (Trento)

A criterion to prove rigidity

The main tool for the proof of the first theorem is the following rigidity criterion for *nodal* surfaces.

Theorem

Let M be the minimal res. of the sing. of a nodal surface X. Assume that

1
$$H^1(X, \Theta) = 0;$$

the elements α_{νi} ∈ H²(M,Θ) associated to the nodes ν_i of X as in the discussion of the Kas formula are linearly independent in H⁰(M, Ω¹ ⊗ Ω²)[∨].

Then M is rigid and $h^1(M,\Theta)$ equals the number of nodes of X.

A criterion to prove rigidity

The main tool for the proof of the first theorem is the following rigidity criterion for *nodal* surfaces.

Theorem

Let M be the minimal res. of the sing. of a nodal surface X. Assume that

1
$$H^1(X, \Theta) = 0;$$

the elements α_{νi} ∈ H²(M,Θ) associated to the nodes ν_i of X as in the discussion of the Kas formula are linearly independent in H⁰(M, Ω¹ ⊗ Ω²)[∨].

Then M is rigid and $h^1(M,\Theta)$ equals the number of nodes of X.

Note that if X as at least a node, then M is not infinitesimally rigid_RSITY OF TRENTO - Italy

The Fermat curves

The Fermat curve of degree *n*, $C := \{\sum_{j=0}^{2} x_{j}^{n} = 0\} \subset \mathbb{P}^{2}_{\mathbb{C}}$ admits a natural action of the group $G \cong (\mathbb{Z}/n\mathbb{Z})^{2}$:

$$(a_1, a_2)(x_0: x_1: x_2) = (x_0: e^{a_1 \frac{2\pi i}{n}} x_1: e^{a_2 \frac{2\pi i}{n}} x_2).$$

16

XXI Congresso dell'Unione Matematica Italia

Roberto Pignatelli (Trento)

Rigid but not infinitesimally

The Fermat curves

The Fermat curve of degree *n*, $C := \{\sum_{j=0}^{2} x_{j}^{n} = 0\} \subset \mathbb{P}^{2}_{\mathbb{C}}$ admits a natural action of the group $G \cong (\mathbb{Z}/n\mathbb{Z})^{2}$:

$$(a_1, a_2)(x_0 : x_1 : x_2) = (x_0 : e^{a_1 \frac{2\pi i}{n}} x_1 : e^{a_2 \frac{2\pi i}{n}} x_2).$$

This G-action has only three orbits of cardinality different by n^2 , all of cardinality *n*:

- $C \cap \{x_0 = 0\}$ with stabilizer $\langle (1,1) \rangle \cong \mathbb{Z}/n\mathbb{Z}$
- $C \cap \{x_1 = 0\}$ with stabilizer $\langle (1,0)
 angle \cong \mathbb{Z}/n\mathbb{Z}$
- $C \cap \{x_2 = 0\}$ with stabilizer $\langle (0,1)
 angle \cong \mathbb{Z}/n\mathbb{Z}$

16

The Fermat curves

The Fermat curve of degree *n*, $C := \{\sum_{j=0}^{2} x_{j}^{n} = 0\} \subset \mathbb{P}^{2}_{\mathbb{C}}$ admits a natural action of the group $G \cong (\mathbb{Z}/n\mathbb{Z})^{2}$:

$$(a_1, a_2)(x_0 : x_1 : x_2) = (x_0 : e^{a_1 \frac{2\pi i}{n}} x_1 : e^{a_2 \frac{2\pi i}{n}} x_2).$$

This G-action has only three orbits of cardinality different by n^2 , all of cardinality *n*:

- $C \cap \{x_0 = 0\}$ with stabilizer $\langle (1,1) \rangle \cong \mathbb{Z}/n\mathbb{Z}$
- $C \cap \{x_1 = 0\}$ with stabilizer $\langle (1,0) \rangle \cong \mathbb{Z}/n\mathbb{Z}$
- $C \cap \{x_2 = 0\}$ with stabilizer $\langle (0,1)
 angle \cong \mathbb{Z}/n\mathbb{Z}$

By Hurwitz formula $C/G \cong \mathbb{P}^1$.

16

We take two copies (C, G) of the Fermat curve of degree n, n not divisible by 3.

/ 16

We take two copies (C, G) of the Fermat curve of degree n, n not divisible by 3.

Then we consider the following action of G on $C \times C$

$$g(x,y) = \left(gx, \begin{pmatrix} 1 & -2\\ 2 & -1 \end{pmatrix}gy\right);$$

the quotient surface is smooth for n odd, whereas it has six nodes for n even.

We take two copies (C, G) of the Fermat curve of degree n, n not divisible by 3.

Then we consider the following action of G on $C \times C$

$$g(x,y) = \left(gx, \begin{pmatrix} 1 & -2\\ 2 & -1 \end{pmatrix}gy\right);$$

the quotient surface is smooth for n odd, whereas it has six nodes for n even.

Our rigidity criterion fails for n = 4 and works for $n \ge 8$.

We take two copies (C, G) of the Fermat curve of degree n, n not divisible by 3.

Then we consider the following action of G on $C \times C$

$$g(x,y) = \left(gx, \begin{pmatrix} 1 & -2\\ 2 & -1 \end{pmatrix}gy\right);$$

the quotient surface is smooth for n odd, whereas it has six nodes for n even.

Our rigidity criterion fails for n = 4 and works for $n \ge 8$.

In fact S_4 is a numerical Campedelli surface with fundamental group $(\mathbb{Z}/2\mathbb{Z})^3$: these are well known, their Kuranishi family has dimension 6.

OF TRENTO - Italy

Problem (1)

Construct rigid manifolds M with $h^1(M, \Theta) = 1$, resp. arbitrarily high.

Roberto Pignatelli (Trento)

Rigid but not infinitesimally

Problem (1)

Construct rigid manifolds M with $h^1(M, \Theta) = 1$, resp. arbitrarily high.

Problem (2)

Construct simply connected rigid not infinitesimally rigid manifolds.

Note $\pi_1(S_n) \cong (\mathbb{Z}_{/\frac{n}{2}\mathbb{Z}})^3$.

/ 16

Problem (1)

Construct rigid manifolds M with $h^1(M, \Theta) = 1$, resp. arbitrarily high.

Problem (2)

Construct simply connected rigid not infinitesimally rigid manifolds.

Note
$$\pi_1(S_n) \cong (\mathbb{Z}_{/\frac{n}{2}\mathbb{Z}})^3$$
.

Problem (3)

For every fixed natural numbers $\kappa, d \in \mathbb{N}$ with $\kappa \leq d \geq 3$ are there rigid not inf. rigid manifolds of dimension d and Kodaira dimension κ ? In particular for $\kappa = 0, 1$.

16

Problem (1)

Construct rigid manifolds M with $h^1(M, \Theta) = 1$, resp. arbitrarily high.

Problem (2)

Construct simply connected rigid not infinitesimally rigid manifolds.

Note
$$\pi_1(S_n) \cong (\mathbb{Z}_{/\frac{n}{2}\mathbb{Z}})^3$$
.

Problem (3)

For every fixed natural numbers $\kappa, d \in \mathbb{N}$ with $\kappa \leq d \geq 3$ are there rigid not inf. rigid manifolds of dimension d and Kodaira dimension κ ? In particular for $\kappa = 0, 1$.

Problem (4)

Construct rigid surfaces to which our criterion does not apply.

Roberto Pignatelli (Trento)

References

Ingrid Bauer and Roberto Pignatelli (2018) Rigid but not infinitesimally rigid compact complex manifolds *arxiv:* math/1805.02559

Ingrid Bauer and Fabrizio Catanese(2018) On rigid compact complex surfaces and manifolds *Adv. Math.* 333, 620–669

D. M. Burns Jr. and Jonathan M. Wahl (1974) Local contributions to global deformations of surfaces *Invent. Math* 26, 67 – 88.

Arnold Kas (1977)

Ordinary double points and obstructed surfaces Topology 16(1), 51 - 64.

James Morrow and Kunihiko Kodaira (1971) Complex manifolds

Holt, Rinehart and Winston, Inc.

/ 16