Threefolds near the Noether line - Part 1 joint work with S. Coughlan [C], Y. Hu [H], T. Zhang [Z]

Roberto Pignatelli

Roberto.Pignatelli@unitn.it

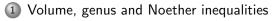
PRIN 2022 project " Birational geometry of moduli spaces and special varieties" prot. n. 20223B5S8L_002

2024 Workshop on Birational Geometry Shanghai Center for Mathematical Sciences, Fudan University Shanghai, September 28th, 2024

Roberto Pignatelli (Trento)

Threefolds near the Noether line I

SCMS, September 29th, 2024 1 / 23



Fibrations

- 3 Threefolds on the Noether line
- 4 Their moduli spaces

3

Sac

Roberto Pignatelli (Trento)

Threefolds near the Noether line I

Volume and genus

Let X be a complex projective variety whose singularities are at worst canonical. Let n be the dimension of X.

Definition

The genus of X is $p_g(X) := h^0(X, K_X)$. The volume of X is

$$\operatorname{vol}(X) := n! \limsup_{m \to \infty} \frac{h^0(X, mK_X)}{m^n}$$

A variety is of general type if and only if its volume is positive. X is a canonical model if the singularities of X are canonical and K_X is ample.

Both genus and volume are birational invariants. If X is a canonical model then

$$\operatorname{vol}(X) = K_X^n$$
.

3

・ロト ・回ト ・ヨト

Volume and genus: Noether inequality

If X is a curve (n = 1) then $2\mathbb{N} \ni \operatorname{vol}(X) = 2p_g(X) - 2$. If X is a surface (n = 2) we have the Noether inequality

$$\mathbb{N} \ni \mathsf{vol}(X) \ge 2p_g(X) - 4$$

If X is a threefold (n = 3) we have the Noether inequality¹

Theorem 1. Let X be a projective 3-fold of general type and either $p_g(X) \leq 4$ or $p_g(X) \geq 11$. Then

$$\operatorname{vol}(X) \ge \frac{4}{3}p_g(X) - \frac{10}{3}.$$

[M. Chen, Y. Hu, C. Jiang 2024]: The inequality holds also for $p_g = 5$. Moreover $vol(X) \in \mathbb{Q}$ may be not integral if the canonical model of X is not Gorenstein.

¹Chen, Jungkai A.; Chen, Meng; Jiang, Chen; *The Noether inequality for algebraic* ^{Italy} *3-folds*. With an appendix by János Kollár, Duke Math. J. **169** (2020), no.9, 1603–1645.

Roberto Pignatelli (Trento)

Threefolds near the Noether line I

UNIVERSITY

Horikawa surfaces

The canonical surfaces X with $K_X^2 = 2p_g(X) - 4$ are usually referred to as Horikawa surfaces because Horikawa described² their moduli space. Horikawa writes

In Sections 3 and 5 we shall prove that minimal algebraic surfaces with given p_g and c_1^2 satisfying $c_1^2 = 2p_g - 4$ and $p_g \ge 3$ have one and the same deformation type provided that c_1^2 is not divisible by 8.

In Section 7 we shall study the case in which c_1^2 is divisible by 8. If we fix c_1^2 , these surfaces are divided into two deformation types. They are homo-

By this classification, if $p_g \ge 7$, then there is a fibration $f: X \to \mathbb{P}^1$ with fibres of genus 2.

²Horikawa, Eiji; Algebraic surfaces of general type with small C_1^2 . *I*. Ann. of Math. Italy (2) 104 (1976), no.2, 357–387.

Roberto Pignatelli (Trento)

Genus 2 fibrations

Let $f: X \to B$ be a genus 2 fibration, that is a surjective morphism onto a projective curve B whose general fibre is a curve of genus 2. Let F be a fibre.

By the theory of genus 2 fibrations, the canonical ring of F, that is the ring $\bigoplus_d H^0(F, dK_F)$ is of one of the following two forms:

If F is 2-connected	If <i>F</i> =
$\frac{\mathbb{C}[x_0, x_1, z]}{f_6(x_0, x_1, z)}$	Ī
$\deg x_j = 1 \qquad \deg z = 3$	
$\deg f_6 = 6$	deg x
	deg f

If
$$F = C_1 + C_2$$
 with $C_1 C_2 = 1$

$$\frac{\mathbb{C}[x_0, x_1, y, z]}{f_2(x_0, x_1), f_6(x_0, x_1, y, z)}$$

$$\deg x_j = 1 \quad \deg y = 2 \quad \deg z = 3$$

$$\deg f_2 = 2 \quad \deg f_6 = 6$$

Invariants of genus 2 fibrations

If X is moreover a canonical surface, then³

$$\operatorname{vol}(X) = 2p_g(X) - 4 + 6b + \deg \tau - 2h^1(X, \mathcal{O}_X)$$

where b is the genus of the base curve B, and τ is an effective divisor on B supported on the image of the 2-disconnected fibres, those of the form $C_1 + C_2$ with $C_1 C_2 = 1$.

By an inequality of Debarre, if $K_X^2 < 2p_g$, then $h^1(X, \mathcal{O}_X) = 0$, which in turn implies b = 0.

In particular

$$\mathcal{K}_X^2 = 2p_g\left(X\right) - 4 \Leftrightarrow h^1(X, \mathcal{O}_X) = 0 \text{ and } \tau = 0.$$

³Catanese, F., Pignatelli, R.; Fibrations of low genus, I. Annales Scientifiquesede - Italy l'École Normale Supérieure, 39, 6 (2006), 1011-1049 - ロト - 伊ト - ヨト - ヨト - ヨ 500 SCMS, September 29th, 2024 7/23

LINIVERSITY

Roberto Pignatelli (Trento)

Simple genus 2 fibrations

We can reformulate more precisely the previous remark as follows:

Definition

A simple genus 2 fibration is a morphism $f: X \rightarrow B$ between projective varieties of respective dimension 2 and 1 such that

- (1) B is smooth;
- all singularities of X are canonical;
- 3 K_X is f-ample;

④ for **all** $p \in B$, the canonical ring of the fibre $X_p = f^{-1}p$ is of the form $\frac{\mathbb{C}[x_0,x_1,z]}{f_6(x_0,x_1,z)}$, with deg $x_i = 1$, deg z = 3, deg $f_6 = 6$

Theorem

Let X be a canonical surface with $p_g \ge 7$. Then $K_X^2 = 2p_g - 4$ if and only if X is a regular^a simple genus 2 fibration.

^aregular means $h^1(X, \mathcal{O}_X) = 0$

The proof of the Noether inequality for threefolds shows that, if the volume is not far from $\frac{4}{3}p_g-\frac{10}{3}$ then there exists a fibration

$$f: X \dashrightarrow \mathbb{P}^1$$

such that the general fibre of f is a (1,2)-surface.

Definition

A (1,2)-surface is a canonical surface with $K^2 = 1$ and $p_g = 2$. They are the hypersurfaces of degree 10 in $\mathbb{P}(1,1,2,5)$ with at worst canonical singularities.

200

Simple fibrations in (1, 2)-surfaces

However, the previous analysis suggests the following definition

Definition (CP 2023^a)

^aCoughlan, S.; Pignatelli, R.; *Simple fibrations in (1,2)-surfaces*, Forum of Mathematics, Sigma, Volume **11**, 2023, e43

A simple fibration in (1,2)-surfaces is a morphism $f: X \to B$ between projective varieties of respective dimension 3 and 1 such that

- (1) B is smooth;
- all singularities of X are canonical;
- 3 K_X is f-ample;
- ④ for all $p \in B$, the canonical ring of the fibre $X_p = f^{-1}p$ is of the form^a

$$\frac{\mathbb{C}[x_0, x_1, y, z]}{f_{10}(x_0, x_1, y, z)}$$

 $deg x_i = 1$, deg y = 2, deg z = 5, $deg f_{10} = 10$

Regular and/or Gorenstein simple fibrations in (1, 2)-surfaces

A simple fibration in (1,2)-surfaces is **regular** if and only if $h^1(X, \mathcal{O}_X) = 0$. In fact

$$h^1(X, \mathcal{O}_X) = 0 \Leftrightarrow B \cong \mathbb{P}^1$$

Sac

イロト イボト イヨト イヨト 二日

Regular and/or Gorenstein simple fibrations in (1, 2)-surfaces

A simple fibration in (1,2)-surfaces is **regular** if and only if $h^1(X, \mathcal{O}_X) = 0$. In fact

$$h^1(X, \mathcal{O}_X) = 0 \Leftrightarrow B \cong \mathbb{P}^1$$

A simple fibration in (1, 2)-surfaces is **Gorenstein** if and only if K_X is Cartier.

Recall that each fibre is a double cover of a quadric cone $\mathbb{P}(1, 1, 2)$ branched on the vertex v and a curve Γ .

Then

 K_X is Cartier \Leftrightarrow on each fibre of f, $v \notin \Gamma$

In other words, X is Gorenstein if and only if any fibre F does not contain the point (0,0,1,0) of $\mathbb{P}(1,1,2,5)$.

3

イロト イロト イヨト イヨト

Simple fibrations vs Noether inequality

Theorem (CP 2023)

Let $f: X \to B$ be a simple fibration in (1, 2)-surfaces. Suppose that X is **Gorenstein** and regular. Then $K_X^3 = \frac{4}{3}p_g - \frac{10}{3}$.

Sac

Threefolds near the Noether line I

イロト イボト イヨト イヨト 二日

Simple fibrations vs Noether inequality

Theorem (CP 2023)

Let $f: X \to B$ be a simple fibration in (1, 2)-surfaces. Suppose that X is Gorenstein and regular. Then $K_X^3 = \frac{4}{3}p_g - \frac{10}{3}$.

Conversely

Theorem (CHPZ^a 2024)

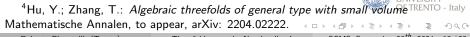
^aCoughlan, S.; Hu, Y.; Pignatelli, R.; Zhang, T.; *Threefolds on the Noether line and their moduli spaces*, arXiv:2409.17847

Suppose that X is a canonical threefold with $K_X^3 = \frac{4}{3}p_g - \frac{10}{3}$.

① If $p_g \ge 23$ then X is a Gorenstein regular simple fibration in (1, 2)-surfaces.

2 If $p_g \ge 11$ then there is a Gorenstein regular simple fibration in (1,2)-surfaces $f: Y \to \mathbb{P}^1$ with canonical model X and either the map $Y \to X$ is an isomorphism or it contracts a section of f to a point.

Suppose that X is a canonical threefold with $K_X^3 = \frac{4}{3}p_g(X) - \frac{10}{3}$. Assume that $p_g(X) \ge 11$. [HZ2022]⁴: We can choose a minimal model X_1 of X so that X_1 admits a fibration $X_1 \to \mathbb{P}^1$ whose general fiber is a smooth (1, 2)-surface. We know that X_1 is Gorenstein.



Roberto Pignatelli (Trento)

Suppose that X is a canonical threefold with $K_X^3 = \frac{4}{3}p_g(X) - \frac{10}{3}$. Assume that $p_g(X) \ge 11$.

 $[HZ2022]^4$: We can choose a minimal model X_1 of X so that X_1 admits a fibration $X_1 \to \mathbb{P}^1$ whose general fiber is a smooth (1, 2)-surface. We know that X_1 is Gorenstein.

Now replace $X_1 \to \mathbb{P}^1$ with its relative canonical model $X_0 \to \mathbb{P}^1$. Let F_p be the fibre over **any** point p. Then F_p is Gorenstein, and by the use of standard exact sequences it has $p_g = 2$, $K^2 = 1$.

⁴Hu, Y.; Zhang, T.: Algebraic threefolds of general type with small volume TRENTO - Italy Mathematische Annalen, to appear, arXiv: 2204.02222.

Roberto Pignatelli (Trento)

Suppose that X is a canonical threefold with $K_X^3 = \frac{4}{3}\rho_g(X) - \frac{10}{3}$. Assume that $\rho_g(X) \ge 11$.

 $[HZ2022]^4$: We can choose a minimal model X_1 of X so that X_1 admits a fibration $X_1 \to \mathbb{P}^1$ whose general fiber is a smooth (1, 2)-surface. We know that X_1 is Gorenstein.

Now replace $X_1 \to \mathbb{P}^1$ with its relative canonical model $X_0 \to \mathbb{P}^1$. Let F_p be the fibre over **any** point *p*. Then F_p is Gorenstein, and by the use of standard exact sequences it has $p_g = 2$, $K^2 = 1$.

If F_p is stable, by a Theorem of Franciosi, Pardini and Rollenske, F_p is a hypersurface of degree 10 in $\mathbb{P}(1, 1, 2, 5)$.

⁴Hu, Y.; Zhang, T.: Algebraic threefolds of general type with small volume TRENTO - Italy Mathematische Annalen, to appear, arXiv: 2204.02222.

SCMS, September 29th, 2024

13 / 23

Roberto Pignatelli (Trento)

Suppose that X is a canonical threefold with $K_X^3 = \frac{4}{3}\rho_g(X) - \frac{10}{3}$. Assume that $\rho_g(X) \ge 11$.

 $[HZ2022]^4$: We can choose a minimal model X_1 of X so that X_1 admits a fibration $X_1 \to \mathbb{P}^1$ whose general fiber is a smooth (1, 2)-surface. We know that X_1 is Gorenstein.

Now replace $X_1 \to \mathbb{P}^1$ with its relative canonical model $X_0 \to \mathbb{P}^1$. Let F_p be the fibre over **any** point p. Then F_p is Gorenstein, and by the use of standard exact sequences it has $p_g = 2$, $K^2 = 1$.

If F_p is stable, by a Theorem of Franciosi, Pardini and Rollenske, F_p is a hypersurface of degree 10 in $\mathbb{P}(1, 1, 2, 5)$.

Not all of our fibres are stable. However we could apply their argument: key steps are showing that $h^1(F_p, nK_{F_p}) = 0$ for all $n \in \mathbb{N}$ and that there is an integral curve $C \in |K_{F_p}|$.

⁴Hu, Y.; Zhang, T.: Algebraic threefolds of general type with small volume TRENTO - Italy Mathematische Annalen, to appear, arXiv: 2204.02222.

Roberto Pignatelli (Trento)

Suppose that X is a canonical threefold with $K_X^3 = \frac{4}{3}p_g(X) - \frac{10}{3}$. Assume that $p_g(X) \ge 11$.

 $[HZ2022]^4$: We can choose a minimal model X_1 of X so that X_1 admits a fibration $X_1 \to \mathbb{P}^1$ whose general fiber is a smooth (1, 2)-surface. We know that X_1 is Gorenstein.

Now replace $X_1 \to \mathbb{P}^1$ with its relative canonical model $X_0 \to \mathbb{P}^1$. Let F_p be the fibre over **any** point p. Then F_p is Gorenstein, and by the use of standard exact sequences it has $p_g = 2$, $K^2 = 1$.

If F_p is stable, by a Theorem of Franciosi, Pardini and Rollenske, F_p is a hypersurface of degree 10 in $\mathbb{P}(1, 1, 2, 5)$.

Not all of our fibres are stable. However we could apply their argument: key steps are showing that $h^1(F_p, nK_{F_p}) = 0$ for all $n \in \mathbb{N}$ and that there is an integral curve $C \in |K_{F_p}|$.

Then X_0 is a simple fibration in (1, 2)-surfaces and we can apply the results on them in [CP2023].

⁴Hu, Y.; Zhang, T.: Algebraic threefolds of general type with small volume TRENTO - Italy Mathematische Annalen, to appear, arXiv: 2204.02222.

Roberto Pignatelli (Trento)

Threefolds near the Noether line I

SCMS, September 29th, 2024 13 / 23

Every simple fibration in (1,2)-surfaces $X \to B$ is naturally embedded as a divisor in a 4-fold \mathbb{F} having a morphism on B whose fibres are all weighted projective spaces $\mathbb{P}(1, 1, 2, 5)$. X has relative degree 10.

Some of these \mathbb{F} are toric varieties. Consider \mathbb{C}^6 with coordinates t_0 , t_1 , x_0 , x_1 , y, z. Consider the toric 4-fold $\mathbb{F} = \mathbb{C}^6 / / (\mathbb{C}^*)^2$ defined by the weight matrix

1	t ₀	t_1	x ₀ a ₀ 1	x_1	у	z
	1	1	a_0	a_1	b	c
	0	0	1	1	2	5/

and irrelevant ideal $(t_0, t_1) \cap (x_0, x_1, y, z)$. Then (t_0, t_1) defines a bundle $f : \mathbb{F} \to \mathbb{P}^1$ in weighted projective spaces $\mathbb{P}(1, 1, 2, 5)$.

イロト 不得 トイラト イラト 二日

Theorem (CP 2023)

Let $f: X \to \mathbb{P}^1$ be a Gorenstein regular simple fibration in (1, 2)-surfaces. Then $X =: X(d; d_0)$ is a divisor in the toric 4-fold $\mathbb{C}^6 / / (\mathbb{C}^*)^2$ with weight matrix

t_0	t_1	<i>x</i> ₀	x_1	У	z
1	1	$d - d_0$	$d_0 - 2d$	0	0
0/	0	1	$\begin{array}{c} x_1 \\ d_0 - 2d \\ 1 \end{array}$	2	5/

and irrelevant ideal $(t_0, t_1) \cap (x_0, x_1, y, z)$, given by a bihomogeneous (of bidegree (0, 10)) equation of the form

$$z^2 = y^5 + \ldots$$

So we know that all canonical 3-folds on the Noether line, at least for $p_g \ge 23$ (or $p_g \ge 11$ if we allow a small modification), are \mathcal{X}_{d_1} if d_0 for university some integer $d, d_0 \in \mathbb{Z}$.

Roberto Pignatelli (Trento)

イロト 不得 トイラト イラト 二日

$X(d; d_0)$

Fix d, d_0 . The threefolds $X(d; d_0)$ form an unirational family of threefolds. Direct computations show:

1 The general $X =: X(d; d_0)$ has only canonical singularities iff

$$\frac{1}{4}d \le d_0 \le \frac{3}{2}d$$

2 If⁵ min
$$(d, d_0) \ge 1$$
, then⁶

$$p_g(X) = 3d - 2$$
 $h^1(X, \mathcal{O}_X) = h^2(X, \mathcal{O}_X) = 0$ $K_X^3 = 4d - 6$

3 K_X is big and nef⁷ iff min $(d; d_0) \ge 2$ and ample iff min $(d; d_0) \ge 3$

⁵Else $d = d_0 = 0$ and $X = S \times \mathbb{P}^1$.

⁶Note that this shows that d is a deformation invariant

⁷The cases with $d_0 = 2$ are those where we need the small contraction $d_0 = 0$ and $d_0 = 0$

Roberto Pignatelli (Trento)

The canonical image of $X(d; d_0)$

The image Σ of the canonical map of $X(d; d_0)$, a subvariety of \mathbb{P}^{3d-1} , depends from d_0 .

In fact, a basis from $H^0(X, K_X)$ is given by the monomials

 $t_0^{d_0-2}x_0, t_0^{d_0-3}t_1x_0, \dots, t_1^{d_0-2}x_0, t_0^{3d-d_0-2}x_1, t_0^{3d-d_0-3}t_1x_1, \dots, t_1^{3d-d_0-2}x_1$

So Σ is

- a rational normal curve if $d_0 = 1$.
- the cone over a rational normal curve if $d_0 = 2$
- the Hirzebruch surface \mathbb{F}_e with $e = 3d 2d_0$ if $d_0 \geq 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへへ

The singularities of the general $X(d; d_0)$

Recall that the general $X(d; d_0)$ has at worst canonical singularities iff $\frac{1}{4}d \leq d_0 \leq \frac{3}{2}d \Leftrightarrow \frac{5}{2}d \geq e \geq 0$. More precisely the singular locus of the general $X(d; d_0)$ is

empty if

$$d \le d_0 \le \frac{3}{2}d \qquad \qquad \Leftrightarrow d \ge e \ge 0$$

8d₀ - 7d terminal singularities⁸ if

$$\frac{7}{8}d < d_0 < d \qquad \qquad \Leftrightarrow \frac{5}{4}d > e > a$$

③ empty if

$$d_0 = \frac{7}{8}d \qquad \Leftrightarrow e = \frac{5}{4}d$$

18/23

(a) a section of $f: X \to \mathbb{P}^1$ if $\frac{1}{4}d \leq d_0 < \frac{7}{8}d$ (b) $f = \frac{1}{4}d \leq d_0 < \frac{7}{8}d$ (c) $f = \frac{1}{4}d < \frac{1}{4}d < \frac{7}{8}d$ (c) $f = \frac{1}{4}d < \frac{1}{4}d <$

Theorem (CP 2023)

Assume $d \ge 3$ (equiv. $p_g \ge 7$). The threefolds $X(d; d_0)$ with $d \le d_0 \le \frac{3}{2}d$ belongs all to the same irreducible component of the moduli space of canonical threefolds that I call the KCH^a component. Moreover $X(d; \lfloor \frac{3}{2}d \rfloor)$ is an open subset of the KCH component.

The threefolds $X(d; d_0)$ with $d_0 = \frac{7}{8}d$ belong to a different irreducible component.

^aThreefolds in this component, say the KCH component, had been found first by Y. Chen and Y. Hu, generalizing work of Kobayashi.

The second component shows up only when d is divisible by 8. This is a 3-dimensional version of the "second component" in the moduli space of the Horikawa surfaces, showing up only when K^2 is divisible by 8.^{F TRENTO - Italy}

Э

The explicit algebraic description of these threefolds allowed us to prove:

Theorem (CP 2023)

The general element of the KCH component is a Mori Dream Space.

In fact we proved that the general $X(d; d_0)$ is a Mori Dream Space for all $d \le d_0 \le \frac{3}{2}d$.

We still do not know if an analogous statement holds for $d_0 < d$.

イロト イボト イヨト イヨト

Components of the moduli space not containing smooth 3-folds

Theorem (CHPZ 2024)

Assume $\frac{d}{4} \leq d_0 \leq \frac{25d-3}{26}$. Then the threefolds $X(d; d_0)$ form an irreducible component of the moduli space of threefolds of general type.

< ロト < 同ト < 三ト < 三ト

Components of the moduli space not containing smooth 3-folds

Theorem (CHPZ 2024)

Assume $\frac{d}{4} \leq d_0 \leq \frac{25d-3}{26}$. Then the threefolds $X(d; d_0)$ form an irreducible component of the moduli space of threefolds of general type.

The idea of the proof is that, if a threefold $X(d, d_0)$ is a degeneration of a family of threefolds $X(d, d'_0)$, then their canonical image \mathbb{F}_{3d-2d_0} is a degeneration of a family of surfaces $\mathbb{F}_{3d-2d'_0}$, which implies $d_0 \leq d'_0$. A direct computation shows that, when $d_0 < d$, the modular dimension of the family of the threefolds $X(d; d_0)$ is strictly **decreasing** as a function of d_0 , so the general $X(d; d_0)$ cannot be specialization of any $X(d; d'_0)$ with $d'_0 < d$. If $d_0 \leq \frac{25d-3}{26}$ this dimension is also bigger than the dimension of the KCH

component, completing the proof. University of the proof.

3

イロト イボト イヨト イヨト

The moduli space

Even if we are not able to determine if the threefolds $X(d; d_0)$ with $\frac{25d-3}{26} < d_0 < d$ form an irreducible component of the moduli space or are specialisation of threefolds in the KCH component, we obtain

Corollary (CHPZ 2024)

The number of irreducible components of the moduli space of canonical threefolds with $p_g \ge 11$, $K^3 = \frac{4}{3}p_g - \frac{10}{3}$ is at most $\left\lfloor \frac{p_g+6}{4} \right\rfloor$ and at least $\left\lfloor \frac{p_g+6}{4} \right\rfloor - \left\lfloor \frac{p_g+8}{78} \right\rfloor$.

This in contrast with Horikawa's result in dimension 2. However, it is analogous to the huge number⁹ of irreducible components of the moduli space of stable surfaces with $K^2 = 2p_g - 4$.

 ⁹Rana, J., Rollenske, S. Standard stable Horikawa surfaces, Algebraic Geometry 11 Italy

 (4), 2024, 569–592

Roberto Pignatelli (Trento)

The case $\min(d, d_0) = 1$

We also studied the threefolds $X(d, d_0)$ with min $(d, d_0) = 1$, $\frac{1}{4}d \leq d_0 \leq \frac{3}{2}d$. So $d_0 = 1$, $1 \leq d \leq 4$.

We have found that X(1; 1) has Kodaira dimension zero, whereas X(2; 1), X(3; 1) and X(4; 1) are of general type.

Set then $X^+(d; 1)$ for the canonical model of X(d; 1), d = 2, 3, 4. Then

d	pg	$K_{X^+}^3$	Singularities of the general $X^+(d;1)$	
2	4	$2 + \frac{1}{4}$	$2 imes rac{1}{2}(1,1,1), \ rac{1}{4}(1,3,3)$	
3	7	$6 + \frac{1}{14}$	$\frac{1}{2}(\bar{1},1,1), \ \frac{1}{7}(\bar{3},4,6)$	
4	10	$10 + \frac{1}{30}$	$\begin{array}{c} 2 \wedge \frac{1}{2}(1,1,1), \ \frac{1}{4}(1,3,3) \\ \frac{1}{2}(1,1,1), \ \frac{1}{7}(3,4,6) \\ \frac{1}{2}(1,1,1), \ \frac{1}{3}(1,2,2), \ \frac{1}{5}(1,4,4) \end{array}$	
T 1		(1) χ^{\pm}	(2,1) + (1,1) + (1,1) + (1,1)	

The threefolds $X^+(3;1)$ and $X^+(4;1)$ were already in literature¹⁰.

Roberto Pignatelli (Trento)

Threefolds near the Noether line I

UNIVERSITY