Computer Aided Algebraic Geometry

Invariants

Quasi-étale quotients
Definitions

Roberto Pignatelli

Computing
invariants
Computer
Calculations
Department of Mathematics
University of Trento
SAGA Workshop
October $10^{\text {th }}, 2012$

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces

Invariants

Quasi-étale

 quotientsDefinitions
Computing invariants

Computer

 CalculationsThe Algorithms
Classification
Results
Open
Problems

Birational Invariants

Definition

A surface is a projective compact complex manifold of dimension 2.

Birational Invariants

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces

Invariants
Quasi-étale quotients
Definitions
Computing invariants

Computer Calculations
The Algorithms
Classification Results

Open
Problems

Definition

A surface is a projective compact complex manifold of dimension 2.

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

Birational Invariants

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants

Definition

A surface is a projective compact complex manifold of dimension 2.

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

Birational Invariants

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Compuring invariants

Computer Calculations The Algorithms Classilication Resulits

Definition

A surface is a projective compact complex manifold of dimension 2.

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.

Birational Invariants

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing invariants

Computer Calculations The Algorithms Classification Results

Definition

A surface is a projective compact complex manifold of dimension 2.

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.
- the Euler characteristic $\chi=\chi\left(\mathcal{O}_{S}\right)=1-q+p_{g}$.

Birational Invariants

Computer Aided Algebraic Geometry

Definition

A surface is a projective compact complex manifold of dimension 2.

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.
- the Euler characteristic $\chi=\chi\left(\mathcal{O}_{S}\right)=1-q+p_{g}$.
- The plurigenera $P_{n}(S)=h^{0}\left(\mathcal{O}_{S}\left(n K_{S}\right)\right)$.

Birational Invariants

Computer Aided Algebraic Geometry

Definition

A surface is a projective compact complex manifold of dimension 2.

We look at surfaces modulo birational equivalence, the equivalence relation generated by the blow-up in a point.

The classical birational invariants are

- the geometric genus

$$
p_{g}(S)=h^{2,0}(S)=h^{0}\left(\Omega_{S}^{2}\right)=h^{0}\left(\mathcal{O}_{S}\left(K_{S}\right)\right)=h^{2}\left(\mathcal{O}_{S}\right)
$$

- the irregularity $q(S)=h^{1,0}(S)=h^{0}\left(\Omega_{S}^{1}\right)=h^{1}\left(\mathcal{O}_{S}\right)$.
- the Euler characteristic $\chi=\chi\left(\mathcal{O}_{S}\right)=1-q+p_{g}$.
- The plurigenera $P_{n}(S)=h^{0}\left(\mathcal{O}_{S}\left(n K_{S}\right)\right)$.
- The Kodaira dimension $\kappa(S)$ is the rate of growth of the plurigenera: it is the smallest number κ such that P_{n} / n^{κ} is bounded from above.

Surfaces of general type

Computer Aided Algebraic Geometry
R. Pignatelli

Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems

The Enriques-Kodaira classification provides a relatively good understanding of the surfaces of special type, which are those with $\kappa(S)<2$.

Definition

A surface is of general type if $\kappa(S)=2$ (equiv. $\kappa(S) \geq 2$).

Surfaces of general type

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing invariants

Computer
Calculations
The Algorthmms
Classification Results

Open
Problems

The Enriques-Kodaira classification provides a relatively good understanding of the surfaces of special type, which are those with $\kappa(S)<2$.

Definition

A surface is of general type if $\kappa(S)=2$ (equiv. $\kappa(S) \geq 2$).

Definition

A surface is minimal if K_{S} is nef, that is if the intersection of K_{S} with any curve is nonnegative.

Surfaces of general type

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale
quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms
Classification Resulits

Open
Problems

The Enriques-Kodaira classification provides a relatively good understanding of the surfaces of special type, which are those with $\kappa(S)<2$.

Definition

A surface is of general type if $\kappa(S)=2$ (equiv. $\kappa(S) \geq 2$).

Definition

A surface is minimal if K_{S} is nef, that is if the intersection of K_{S} with any curve is nonnegative.

In every birational class of surfaces of general type there is exactly one minimal surface. If S is a surface of general type, S is obtained by the only minimal surface \bar{S} in its birational class by a sequence of $K_{\bar{S}}^{2}-K_{S}^{2}$ blow ups.

M. Noether conjecture

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces

Invariants

Quasi-étale

 quotientsDefinitions
Computing
invariants
Computer Calculations
The Algorithms
Classification
Results
Open
Problems

At the end of the XIX ${ }^{\text {th }}$ century M. Noether conjectured that every surface with $p_{g}=0$ be birational to \mathbb{P}^{2}.

M. Noether conjecture

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
classilication Results

Open
Problems

At the end of the XIX ${ }^{\text {th }}$ century M. Noether conjectured that every surface with $p_{g}=0$ be birational to \mathbb{P}^{2}. The first counterexample was done by Enriques few years later.

M. Noether conjecture

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems

At the end of the XIX ${ }^{\text {th }}$ century M. Noether conjectured that every surface with $p_{g}=0$ be birational to \mathbb{P}^{2}. The first counterexample was done by Enriques few years later. The first counterexamples of general type were done in the ' 30 s by Godeaux and Campedelli.

M. Noether conjecture

At the end of the XIX ${ }^{\text {th }}$ century M. Noether conjectured that every surface with $p_{g}=0$ be birational to \mathbb{P}^{2}.
The first counterexample was done by Enriques few years later. The first counterexamples of general type were done in the ${ }^{\prime} 30$ s by Godeaux and Campedelli.

Surfaces of general type with $p_{g}=0$ have been very useful to construct counterxamples in many different fields (Kähler-Einsten metrics, complex structures on real manifolds, Chow groups, Phantoms, ...).

M. Noether conjecture

At the end of the XIX ${ }^{\text {th }}$ century M. Noether conjectured that every surface with $p_{g}=0$ be birational to \mathbb{P}^{2}.
The first counterexample was done by Enriques few years later. The first counterexamples of general type were done in the '30s by Godeaux and Campedelli.

Surfaces of general type with $p_{g}=0$ have been very useful to construct counterxamples in many different fields (Kähler-Einsten metrics, complex structures on real manifolds, Chow groups, Phantoms, ...).

Still, they are very very difficult to construct; ten years ago we had only a couple of dozens of constructions.

Inequalities for surfaces of general type

Computer Aided Algebraic Geometry

If S is of general type, then the Riemann-Roch formula computes all $P_{n}(S)$ from χ and $K_{\bar{S}}^{2}$.

Surfaces

Invariants

Quasi-étale

 quotientsDefinitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems

Inequalities for surfaces of general type

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants

Quasi-étale

 quotientsDefinitions
Compuiting
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems

If S is of general type, then the Riemann-Roch formula computes all $P_{n}(S)$ from χ and $K_{\bar{S}}^{2}$. The possible values of the pair ($\chi, K_{\bar{S}}^{2}$) are almost all the integral points of the unbounded green region below.

Beauville construction

Computer Aided Algebraic Geometry

Beauville suggestion: take $S=\left(C_{1} \times C_{2}\right) / G$ where C_{i} are Riemann Surfaces of genus $g_{i} \geq 2$ and G is a group of order $\left(g_{1}-1\right)\left(g_{2}-1\right)$ acting freely; S is automatically minimal of general type with $\chi=1$ and $K^{2}=8$.

Surfaces isogenous to a product

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale

quotients

Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems

A surface is isogenous to a (higher) product if $S=\left(C_{1} \times C_{2}\right) / G$ where C_{i} are Riemann Surfaces of genus $g_{i} \geq 2$ and G is a group acting freely; S is automatically minimal of general type with $K^{2}=8 \chi$.

Quasi-étale quotients

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Resulis
Open
Problems

Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where C_{i} are Riemann Surfaces of genus $g_{i} \geq 2$ and G is a group of automorphisms acting freely out of a finite set of points.

Quasi-étale quotients

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale

Definitions
Computino invariants

Computer Calculations
The Algorithms
Classification Results

Open
Problems

Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where C_{i} are Riemann Surfaces of genus $g_{i} \geq 2$ and G is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming π quasi-étale (instead of étale).

Quasi-étale quotients

Computer Aided Algebraic Geometry
R. Pignatelli

Definition

A quasi-étale surface is
$X=\left(C_{1} \times C_{2}\right) / G$ where C_{i} are Riemann Surfaces of genus $g_{i} \geq 2$ and G is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming π quasi-étale (instead of étale).

- What we lose: X is singular, we need to consider a resolution of its singularities S.

Quasi-étale quotients

Computer Aided Algebraic Geometry
R. Pignatelli

Definition

A quasi-étale surface is the min. res. S of the sings of $X=\left(C_{1} \times C_{2}\right) / G$ where C_{i} are Riemann Surfaces of genus $g_{i} \geq 2$ and G is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming π quasi-étale (instead of étale).

- What we lose: X is singular, we need to consider a resolution of its singularities S.

Quasi-étale quotients

Computer Aided Algebraic Geometry

Definition

A quasi-étale surface is the min. res. S of the sings of $X=\left(C_{1} \times C_{2}\right) / G$ where C_{i} are Riemann Surfaces of genus $g_{i} \geq 2$ and G is a group of automorphisms acting freely out of a finite set of points.

If $\pi: C_{1} \times C_{2} \rightarrow X$ is the quotient map, we are assuming π quasi-étale (instead of étale).

- What we lose: X is singular, we need to consider a resolution of its singularities S.
- What we gain: It may be $K^{2}<8 \chi$. We may in principle fill most of the picture.

Quasi-étale quotients

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale

quotients

Definitions
Computing
invariants

Computer

Calculations

The Algorithms
Classification Results

Open
Problems

It may be $K^{2}<8 \chi$. We may in principle fill most of the picture.
This gives a powerful tool to answer (positively) existence conjectures.

Mixed and unmixed structures

Computer Aided Algebraic Geometry
R. Pignatelli

We know that

- either $\operatorname{Aut}\left(C_{1} \times C_{2}\right)=\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)$,
- or $C_{1} \cong C_{2} \cong C$ and $\operatorname{Aut}\left(C^{2}\right) \cong(\operatorname{Aut}(C))^{2} \rtimes \mathbb{Z}_{/ 2 \mathbb{Z}}$.

Mixed and unmixed structures

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients Definitions

Computing invariants

Computer

 CalculationsThe Algorithms
ciassilicalion Results

Open
Problems

We know that

- either $\operatorname{Aut}\left(C_{1} \times C_{2}\right)=\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)$,
- or $C_{1} \cong C_{2} \cong C$ and $\operatorname{Aut}\left(C^{2}\right) \cong(\operatorname{Aut}(C))^{2} \rtimes \mathbb{Z}_{/ 2 \mathbb{Z}}$.
$\forall G<\operatorname{Aut}\left(C_{1} \times C_{2}\right)$ we define

$$
G^{(0)}=G \cap\left(\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)\right) .
$$

There are two possibilities

- either (unmixed case) $G=G^{(0)}$;

Mixed and unmixed structures

Computer Aided Algebraic Geometry

We know that

- either $\operatorname{Aut}\left(C_{1} \times C_{2}\right)=\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)$,
- or $C_{1} \cong C_{2} \cong C$ and $\operatorname{Aut}\left(C^{2}\right) \cong(\operatorname{Aut}(C))^{2} \rtimes \mathbb{Z}_{/ 2 \mathbb{Z}}$.
$\forall G<\operatorname{Aut}\left(C_{1} \times C_{2}\right)$ we define

$$
G^{(0)}=G \cap\left(\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)\right) .
$$

There are two possibilities

- either (unmixed case) $G=G^{(0)}$;
- or (mixed case) there is an exact sequence

$$
\text { (\#) } \quad 1 \rightarrow G^{(0)} \rightarrow G \rightarrow \mathbb{Z}_{/ 2 \mathbb{Z}} \rightarrow 1
$$

Mixed and unmixed structures

Computer Aided Algebraic Geometry

We know that

- either $\operatorname{Aut}\left(C_{1} \times C_{2}\right)=\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)$,
- or $C_{1} \cong C_{2} \cong C$ and $\operatorname{Aut}\left(C^{2}\right) \cong(\operatorname{Aut}(C))^{2} \rtimes \mathbb{Z}_{/ 2 \mathbb{Z}}$.
$\forall G<\operatorname{Aut}\left(C_{1} \times C_{2}\right)$ we define

$$
G^{(0)}=G \cap\left(\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)\right) .
$$

There are two possibilities

- either (unmixed case) $G=G^{(0)}$;
- or (mixed case) there is an exact sequence

$$
\text { (\#) } \quad 1 \rightarrow G^{(0)} \rightarrow G \rightarrow \mathbb{Z}_{/ 2 \mathbb{Z}} \rightarrow 1
$$

Mixed and unmixed structures

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing invariants

Computer
Calculations
The Algorithms
Classilication Resulits

Open
Problems

We know that

- either $\operatorname{Aut}\left(C_{1} \times C_{2}\right)=\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)$,
- or $C_{1} \cong C_{2} \cong C$ and $\operatorname{Aut}\left(C^{2}\right) \cong(\operatorname{Aut}(C))^{2} \rtimes \mathbb{Z}_{/ 2 \mathbb{Z}}$.
$\forall G<\operatorname{Aut}\left(C_{1} \times C_{2}\right)$ we define

$$
G^{(0)}=G \cap\left(\operatorname{Aut}\left(C_{1}\right) \times \operatorname{Aut}\left(C_{2}\right)\right) .
$$

There are two possibilities

- either (unmixed case) $G=G^{(0)}$;
- or (mixed case) there is an exact sequence

$$
\text { (\#) } \quad 1 \rightarrow G^{(0)} \rightarrow G \rightarrow \mathbb{Z}_{/ 2 \mathbb{Z}} \rightarrow 1
$$

Theorem (Frapporti)

π is not quasi-étale if and only if $G^{(0)} \not \approx G$ and (\#) splits.

Constructing curves with group actions

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve C is equivalent to give

- the curve $C / G^{(0)}$;

Surfaces

Invariants
Quasi-étale quotients Definitions

Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems

Constructing curves with group actions

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve C is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$ and a suitable choice of loops in the complement of these points.

Constructing curves with group actions

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve C is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$ and a suitable choice of loops in the complement of these points.
- a suitable system of generators of $G^{(0)}$ (one for each loop).

Constructing curves with group actions

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve C is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$ and a suitable choice of loops in the complement of these points.
- a suitable system of generators of $G^{(0)}$ (one for each loop).

Constructing curves with group actions

By Riemann Existence Theorem, to give an action of a group $G^{(0)}$ on a curve C is equivalent to give

- the curve $C / G^{(0)}$;
- a choice of some points on $C / G^{(0)}$ and a suitable choice of loops in the complement of these points.
- a suitable system of generators of $G^{(0)}$ (one for each loop).

For later use: to each suitable system of generators we associate its signature, which is the unordered list of the orders of some of these generators. By the Hurwitz formula the genus of C is a function of $|G|$, the signature and the genus of $C / G^{(0)}$.

The irregularity

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces

Invariants

Quasi-étale quotients

Definitions
Computing invariants

Computer

Calculations

The Algorithms
Classilication
Results
Open
Problems

To construct an unmixed surface I need two curves with an action of the same group, so two systems of generators of the same group $G=G^{(0)}$.

The irregularity

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients Definitions

Computing invariants

Computer

Calculations
The Algorithms
Classilication Results

Open
Problems

To construct an unmixed surface I need two curves with an action of the same group, so two systems of generators of the same group $G=G^{(0)}$.

In the mixed case, we only need one system of generators of $G^{(0)}$, and a degree 2 unsplit extension G of $G^{(0)}$.

The irregularity

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer Calculations
The Algorithms
Classification Results

Open
Problems

To construct an unmixed surface I need two curves with an action of the same group, so two systems of generators of the same group $G=G^{(0)}$.

In the mixed case, we only need one system of generators of $G^{(0)}$, and a degree 2 unsplit extension G of $G^{(0)}$. From now on, we assume quasi-étaleness, running in parallel both the mixed and the unmixed case.

The irregularity

Computer Aided Algebraic Geometry

To construct an unmixed surface I need two curves with an action of the same group, so two systems of generators of the same group $G=G^{(0)}$.

In the mixed case, we only need one system of generators of $G^{(0)}$, and a degree 2 unsplit extension G of $G^{(0)}$. From now on, we assume quasi-étaleness, running in parallel both the mixed and the unmixed case.

There is a simple formula for the irregularity:

$$
\begin{cases}q(S)=g\left(C_{1} / G\right)+g\left(C_{2} / G\right) & \text { in the unmixed case } \\ q(S)=g\left(C / G^{(0)}\right) & \text { in the mixed case }\end{cases}
$$

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algortithms
Classification
Results
Open
Problems

We know that

$$
\begin{gathered}
K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}-\sum_{x \in \operatorname{Sing} X} k_{x} \\
\chi=\frac{K_{S}^{2}}{8}+\sum_{x \in \operatorname{Sing} X} b_{x}
\end{gathered}
$$

where k_{x} and b_{x} are positive rational numbers depending only on the analytic type of the singularity which we know how to compute.
K^{2} and χ

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing invariants

Computer Calculations The Algorithms Classification Resulits

Open Problems

We know that

$$
\begin{gathered}
K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}-\sum_{x \in \operatorname{Sing} X} k_{x} \\
\chi=\frac{K_{S}^{2}}{8}+\sum_{x \in \operatorname{Sing} X} b_{x}
\end{gathered}
$$

where k_{x} and b_{x} are positive rational numbers depending only on the analytic type of the singularity which we know how to compute.

Then we are able to construct every quasi-étale surface and compute its invariants p_{g}, q and K_{S}^{2}.

The algorithms

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces

Invariants
Quasi-étale quotients
Definitions
Computing
invariants

Computer

Calculations

The Algorithms
Classification Results

Open
Problems

Reversing the above formulas we implemented in Magma an algorithm that computes all quasi-étale surfaces S with given p_{g}, q and K_{S}^{2}.

The algorithms

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification Results

Open
Problems

Reversing the above formulas we implemented in Magma an algorithm that computes all quasi-étale surfaces S with given p_{g}, q and K_{S}^{2}.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ and configurations ("baskets") of singularities with $\sum_{x} b_{x}=8 \chi-K_{S}^{2}$;

The algorithms

Computer Aided Algebraic Geometry

Reversing the above formulas we implemented in Magma an algorithm that computes all quasi-étale surfaces S with given p_{g}, q and K_{S}^{2}.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ and configurations ("baskets") of singularities with $\sum_{x} b_{x}=8 \chi-K_{S}^{2}$;
(2) for every "basket" and pair of genera, list all (fin. many) "signatures" satisfying certain inequalities we proved;

The algorithms

Computer Aided Algebraic Geometry

Reversing the above formulas we implemented in Magma an algorithm that computes all quasi-étale surfaces S with given p_{g}, q and K_{S}^{2}.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ and configurations ("baskets") of singularities with $\sum_{x} b_{x}=8 \chi-K_{S}^{2}$;
(2) for every "basket" and pair of genera, list all (fin. many) "signatures" satisfying certain inequalities we proved;
(3) to each (pair of) signature(s), Hurwitz formula predicts $\left|G^{(0)}\right|$: then search all groups of that order for sets of generators with the prescribed signatures;

The algorithms

Computer Aided Algebraic Geometry

Reversing the above formulas we implemented in Magma an algorithm that computes all quasi-étale surfaces S with given p_{g}, q and K_{S}^{2}.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ and configurations ("baskets") of singularities with $\sum_{x} b_{x}=8 \chi-K_{S}^{2}$;
(2) for every "basket" and pair of genera, list all (fin. many) "signatures" satisfying certain inequalities we proved;
(3) to each (pair of) signature(s), Hurwitz formula predicts $\left|G^{(0)}\right|$: then search all groups of that order for sets of generators with the prescribed signatures;
(4) in the mixed case, consider all the unsplit degree 2 extensions of $G^{(0)}$;

The algorithms

Computer Aided Algebraic Geometry

Reversing the above formulas we implemented in Magma an algorithm that computes all quasi-étale surfaces S with given p_{g}, q and K_{S}^{2}.
(1) find all (fin. many) possible pairs of genera $\left(g\left(C_{1} / G^{(0)}\right), g\left(C_{2} / G^{(0)}\right)\right)$ and configurations ("baskets") of singularities with $\sum_{x} b_{x}=8 \chi-K_{S}^{2}$;
(2) for every "basket" and pair of genera, list all (fin. many) "signatures" satisfying certain inequalities we proved;
(3) to each (pair of) signature(s), Hurwitz formula predicts $\left|G^{(0)}\right|$: then search all groups of that order for sets of generators with the prescribed signatures;
(4) in the mixed case, consider all the unsplit degree 2 extensions of $G^{(0)}$;
(5) check the singularities of the surfaces in the output.

Computer Aided Algebraic Geometry

We implemented the algorithm in MAGMA in the unmixed case for $p_{g}=0$. Recall that if a surface of general type S is minimal, then K_{S}^{2} is positive.

Theorem (Bauer, Catanese, Grunewald, -)

Unmixed quasi-étale surfaces of g. t. with $p_{g}=0$ form
(1) exactly 13 irreducible families of surfaces for the case in which G acts freely: they form 13 irreducible connected components of the moduli space;

Computer Aided Algebraic Geometry

We implemented the algorithm in MAGMA in the unmixed case for $p_{g}=0$. Recall that if a surface of general type S is minimal, then K_{S}^{2} is positive.

Theorem (Bauer, Catanese, Grunewald, -)

Unmixed quasi-étale surfaces of g. t. with $p_{g}=0$ form
(1) exactly 13 irreducible families of surfaces for the case in which G acts freely: they form 13 irreducible connected components of the moduli space;
(2) exactly 72 irreducible families of minimal surfaces;

Computer Aided Algebraic Geometry

We implemented the algorithm in MAGMA in the unmixed case for $p_{g}=0$. Recall that if a surface of general type S is minimal, then K_{S}^{2} is positive.

Theorem (Bauer, Catanese, Grunewald, -)

Unmixed quasi-étale surfaces of g. t. with $p_{g}=0$ form
(1) exactly 13 irreducible families of surfaces for the case in which G acts freely: they form 13 irreducible connected components of the moduli space;
(2) exactly 72 irreducible families of minimal surfaces;
(3) there is exactly one unmixed quasi-étale surface with $p_{g}=0$ and $K_{S}^{2}>0$ which is not minimal.

Computer Aided Algebraic Geometry

We implemented the algorithm in MAGMA in the unmixed case for $p_{g}=0$. Recall that if a surface of general type S is minimal, then K_{S}^{2} is positive.

Theorem (Bauer, Catanese, Grunewald, -)

Unmixed quasi-étale surfaces of g. t. with $p_{g}=0$ form
(1) exactly 13 irreducible families of surfaces for the case in which G acts freely: they form 13 irreducible connected components of the moduli space;
(2) exactly 72 irreducible families of minimal surfaces;

3 there is exactly one unmixed quasi-étale surface with $p_{g}=0$ and $K_{S}^{2}>0$ which is not minimal.

A similar classification for $p_{g}=q \geq 1$ has been obtained by Carnovale, Mistretta, Penegini, Polizzi, Zucconi.

Computer Aided Algebraic Geometry

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing invariants

Computer Calculations The Algorithms Classification Results

In the mixed case the algorithm is implemented in the case $q=0$.

Theorem (Bauer, Catanese, Grunewald, Frapporti)

Mixed quasi-étale surfaces of general type with $p_{g}=0$ form
(1) exactly 5 irreducible families of surfaces for the case in which G acts freely: they form 5 irreducible connected components of the moduli space;

Computer Aided Algebraic Geometry

In the mixed case the algorithm is implemented in the case $q=0$.

Theorem (Bauer, Catanese, Grunewald, Frapporti)

Mixed quasi-étale surfaces of general type with $p_{g}=0$ form
(1) exactly 5 irreducible families of surfaces for the case in which G acts freely: they form 5 irreducible connected components of the moduli space;
(2) exactly 17 irreducible families of minimal surfaces;

Computer Aided Algebraic Geometry
R. Pignatelli

In the mixed case the algorithm is implemented in the case $q=0$.

Theorem (Bauer, Catanese, Grunewald, Frapporti)

Mixed quasi-étale surfaces of general type with $p_{g}=0$ form
(1) exactly 5 irreducible families of surfaces for the case in which G acts freely: they form 5 irreducible connected components of the moduli space;
(2) exactly 17 irreducible families of minimal surfaces;
(3) all mixed quasi-étale surface with $p_{g}=0$ and $K_{S}^{2}>0$ are minimal.

Computer Aided Algebraic Geometry

In the mixed case the algorithm is implemented in the case $q=0$.

Theorem (Bauer, Catanese, Grunewald, Frapporti)

Mixed quasi-étale surfaces of general type with $p_{g}=0$ form
(1) exactly 5 irreducible families of surfaces for the case in which G acts freely: they form 5 irreducible connected components of the moduli space;
(2) exactly 17 irreducible families of minimal surfaces;
(3) all mixed quasi-étale surface with $p_{g}=0$ and $K_{S}^{2}>0$ are minimal.

Similar results have been obtained by the same authors mentioned before for $p_{g}=q \geq 1$ only in the étale case.

Algorithmic problems

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems

Problem

The algorithm is very time and memory consuming. We need some help in computational algebra to get results for different values of the invariants.

Algorithmic problems

Problem

Surfaces
Invariants
Quasi-étale
quotients
Definitions
The algorithm is very time and memory consuming. We need some help in computational algebra to get results for different values of the invariants.

Problem

Extend the programs to the irregular case.

Theoretical problems

Computer
Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classification
Results
Open
Problems

Problem

How do we determine the minimal model of S ?

Theoretical problems

Computer Aided Algebraic Geometry
R. Pignatelli

Surfaces
Invariants
Quasi-étale
quotients
Definitions
Computing
invariants
Computer
Calculations
The Algorithms
Classilication Results

Problem

How do we determine the minimal model of S ?
and, related to it

Problem

Can we find all quasi-étale surfaces of general type with $p_{g}=0$, or, more generally, with given p_{g} and q ?

We need an explicit bound $K_{S}^{2} \geq k\left(p_{g}, q\right)$. We need for that a better understanding of the rational curves on X.

Literature

- I. Bauer, F. Catanese, F. Grunewald The classification of surfaces with $p_{g}=q=0$ isogenous to a product, Pure Appl. Math. Q. 4 (2008), no. 2, part 1, 547-586.
- I. Bauer, F. Catanese, F. Grunewald, P Quotients of products of curves, ..., Am. J. Math. 134, 4 (2012), 993-1049.
- I. Bauer, P The classification of minimal product-quotient surfaces with $p_{g}=0$, Math. Comp. 81, 280 (2012), 2389-2418
- D. Frapporti Mixed quasi-étale surfaces and new surfaces of general type, Ph. D. Thesis Univ. Trento
- D. Frapporti Mixed quasi-étale surfaces, new surfaces of general type with $p_{g}=0$ and their fundamental group, arXiv:1105.1259v2.

