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Birational Invariants

Definition
A surface is a projective compact complex manifold of
dimension 2.

We look at surfaces modulo birational equivalence, the
equivalence relation generated by the blow-up in a point.

The classical birational invariants are

• the geometric genus
pg(S) = h2,0(S) = h0(Ω2

S) = h0(OS(KS)) = h2(OS).
• the irregularity q(S) = h1,0(S) = h0(Ω1

S) = h1(OS).
• the Euler characteristic χ = χ(OS) = 1− q + pg.
• The plurigenera Pn(S) = h0(OS(nKS)).
• The Kodaira dimension κ(S) is the rate of growth of the

plurigenera: it is the smallest number κ such that Pn/nκ

is bounded from above.
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Surfaces of general type

The Enriques-Kodaira classification provides a relatively
good understanding of the surfaces of special type, which
are those with κ(S) < 2.

Definition
A surface is of general type if κ(S) = 2 (equiv.κ(S) ≥ 2) .

Definition
A surface is minimal if KS is nef, that is if the intersection of
KS with any curve is nonnegative.

In every birational class of surfaces of general type there is
exactly one minimal surface. If S is a surface of general
type, S is obtained by the only minimal surface S̄ in its
birational class by a sequence of K2

S̄ − K2
S blow ups.
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M. Noether conjecture

At the end of the XIXth century M. Noether conjectured that
every surface with pg = 0 be birational to P2.

The first counterexample was done by Enriques few years
later. The first counterexamples of general type were done
in the ′30s by Godeaux and Campedelli.

Surfaces of general type with pg = 0 have been very useful
to construct counterxamples in many different fields
(Kähler-Einsten metrics, complex structures on real
manifolds, Chow groups, Phantoms, ...).

Still, they are very very difficult to construct; ten years ago
we had only a couple of dozens of constructions.
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Inequalities for surfaces of general type

If S is of general type, then the Riemann-Roch formula
computes all Pn(S) from χ and K2

S̄ .

The possible values of the
pair (χ, K2

S̄ ) are almost all the integral points of the
unbounded green region below.
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Beauville construction

Beauville suggestion: take S = (C1 × C2)/G where Ci are
Riemann Surfaces of genus gi ≥ 2 and G is a group of order
(g1 − 1)(g2 − 1) acting freely; S is automatically minimal of
general type with χ = 1 and K2 = 8.
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Surfaces isogenous to a product

A surface is isogenous to a (higher) product if
S = (C1 × C2)/G where Ci are Riemann Surfaces of genus
gi ≥ 2 and G is a group acting freely; S is automatically
minimal of general type with K2 = 8χ.
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Quasi-étale quotients

Definition
A quasi-étale surface is
X = (C1 × C2)/G where Ci are Riemann Surfaces of genus
gi ≥ 2 and G is a group of automorphisms acting freely out
of a finite set of points.

If π : C1 × C2 → X is the quotient map, we are assuming π
quasi-étale (instead of étale).

• What we lose: X is singular, we need to consider a
resolution of its singularities S.

• What we gain: It may be K2 < 8χ. We may in principle
fill most of the picture.
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Quasi-étale quotients

It may be K2 < 8χ. We may in principle fill most of the
picture.
This gives a powerful tool to answer (positively) existence
conjectures.
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Mixed and unmixed structures

We know that
• either Aut(C1 × C2) = Aut(C1)× Aut(C2),
• or C1 ∼= C2 ∼= C and Aut(C2) ∼= (Aut(C))2 o Z/2Z.

∀G < Aut(C1 × C2) we define

G(0) = G ∩ (Aut(C1)× Aut(C2)).

There are two possibilities

• either (unmixed case) G = G(0);
• or (mixed case) there is an exact sequence

(#) 1→ G(0) → G→ Z/2Z → 1.

Theorem (Frapporti)

π is not quasi-étale if and only if G(0) 6∼= G and (#) splits.
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Constructing curves with group actions

By Riemann Existence Theorem, to give an action of a
group G(0) on a curve C is equivalent to give
• the curve C/G(0);

• a choice of some points on C/G(0) and a suitable
choice of loops in the complement of these points.

• a suitable system of generators of G(0) (one for each
loop).

For later use: to each suitable system of generators we
associate its signature, which is the unordered list of the
orders of some of these generators. By the Hurwitz formula
the genus of C is a function of |G|, the signature and the
genus of C/G(0).
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genus of C/G(0).
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The irregularity

To construct an unmixed surface I need two curves with an
action of the same group, so two systems of generators of
the same group G = G(0).

In the mixed case, we only need one system of generators
of G(0), and a degree 2 unsplit extension G of G(0).
From now on, we assume quasi-étaleness, running in
parallel both the mixed and the unmixed case.

There is a simple formula for the irregularity:{
q(S) = g(C1/G) + g(C2/G) in the unmixed case
q(S) = g(C/G(0)) in the mixed case
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K2 and χ

We know that

K2
S =

8(g(C1)− 1)(g(C2)− 1)

|G|
−

∑
x∈SingX

kx

χ =
K2

S
8

+
∑

x∈SingX

bx

where kx and bx are positive rational numbers depending
only on the analytic type of the singularity which we know
how to compute.

Then we are able to construct every quasi-étale surface and
compute its invariants pg, q and K2

S .
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The algorithms

Reversing the above formulas we implemented in Magma
an algorithm that computes all quasi-étale surfaces S with
given pg, q and K2

S .

1 find all (fin. many) possible pairs of genera
(g(C1/G(0)), g(C2/G(0))) and configurations ("baskets")
of singularities with

∑
x bx = 8χ− K2

S ;
2 for every "basket" and pair of genera, list all (fin. many)

"signatures" satisfying certain inequalities we proved;
3 to each (pair of) signature(s), Hurwitz formula predicts
|G(0)|: then search all groups of that order for sets of
generators with the prescribed signatures;

4 in the mixed case, consider all the unsplit degree 2
extensions of G(0);

5 check the singularities of the surfaces in the output.
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We implemented the algorithm in MAGMA in the unmixed
case for pg = 0. Recall that if a surface of general type S is
minimal, then K2

S is positive.

Theorem (Bauer, Catanese, Grunewald, -)
Unmixed quasi-étale surfaces of g. t. with pg = 0 form

1 exactly 13 irreducible families of surfaces for the case in
which G acts freely: they form 13 irreducible connected
components of the moduli space;

2 exactly 72 irreducible families of minimal surfaces;
3 there is exactly one unmixed quasi-étale surface with

pg = 0 and K2
S > 0 which is not minimal.

A similar classification for pg = q ≥ 1 has been obtained by
Carnovale, Mistretta, Penegini, Polizzi, Zucconi.
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In the mixed case the algorithm is implemented in the case
q = 0.

Theorem (Bauer, Catanese, Grunewald, Frapporti)
Mixed quasi-étale surfaces of general type with pg = 0 form

1 exactly 5 irreducible families of surfaces for the case in
which G acts freely: they form 5 irreducible connected
components of the moduli space;

2 exactly 17 irreducible families of minimal surfaces;
3 all mixed quasi-étale surface with pg = 0 and K2

S > 0 are
minimal.

Similar results have been obtained by the same authors
mentioned before for pg = q ≥ 1 only in the étale case.
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Algorithmic problems

Problem
The algorithm is very time and memory consuming. We
need some help in computational algebra to get results for
different values of the invariants.

Problem
Extend the programs to the irregular case.
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Theoretical problems

Problem
How do we determine the minimal model of S?

and, related to it

Problem
Can we find all quasi-étale surfaces of general type with
pg = 0, or, more generally, with given pg and q?

We need an explicit bound K2
S ≥ k(pg, q). We need for that a

better understanding of the rational curves on X.
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